
Received February 21, 2020, accepted March 6, 2020, date of publication March 11, 2020, date of current version April 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2980119

An Empirical Survey of Autonomous Scheduling
Methods for TSCH
ATIS ELSTS 1, (Member, IEEE), SEOHYANG KIM 2,3, HYUNG-SIN KIM 3,
AND CHONGKWON KIM 2,3
1Institute of Electronics and Computer Science, LV-1006 Riga, Latvia
2Department of Computer Science and Engineering, Seoul National University, Seoul 08816, South Korea
3Department of Data Science, Seoul National University, Seoul 08816, South Korea
4Institute of Electronics and Computer Science, Seoul National University, Seoul 08816, South Korea

Corresponding author: Chongkwon Kim (ckim@snu.ac.kr)

This work was supported by the ERDF Activity 1.1.1.2 ‘‘Post-doctoral Research Aid’’ (No. 1.1.1.2/VIAA/2/18/282), and also supported by
the Institute for Industrial System Innovation and the Institute of Engineering Research at Seoul National University, and the NRF grant
funded by the Korean Government (MSIP) (No. 2016R1A5A1012966).

ABSTRACT Time Slotted Channel Hopping (TSCH) is a link layer protocol defined in the IEEE
802.15.4 standard. Although it is designed to provide highly reliable and efficient service targeting industrial
automation systems, scheduling TSCH transmissions in the time and frequency dimensions is left to the
implementers. We evaluate the performance of existing autonomous scheduling approaches for TSCH on
various traffic patterns and network configurations. We thoroughly investigate the pros and cons of each
scheme; moreover, we propose the use of node based channel allocation to improve the performance of the
best scheme, and demonstrate its practicality and reliability, with up to 6 percentage points better packet
delivery ratio than the second best option while retaining a similar radio duty cycle. Finally, based on our
extensive performance evaluation, we provide some guidelines on how to select a scheduler for a given
network.

INDEX TERMS IEEE 802.15.4, TSCH, autonomous scheduling, MAC, low-power wireless protocols.

I. INTRODUCTION
The TSCH protocol from the IEEE 802.15.4-2015 stan-
dard [1] brings highly reliable communications to the field
of low-power wireless networks. TSCH has found its uses in
industrial monitoring [2], smart homes for healthcare [3], [4],
smart buildings [5], environmental monitoring [6] and other
areas. One aspect not specified in the IEEE 802.15.4 standard
is the construction of a TSCH schedule. Hence, this task has
attracted a large attention from the research community.

The approaches to TSCH scheduling can be classified in
three main groups: centralized, distributed, and autonomous
scheduling. With centralized scheduling [2], a central con-
troller node builds the schedule and distributes it to other
nodes. Frequently, this controller is placed outside of the low-
power network. With distributed scheduling [7], the sched-
ule is constructed through negotiations between neighboring
nodes. The attention of this paper is on autonomous schedul-
ing – namely, on approach where the schedule is constructed
by each node autonomously, typically (but not exclusively!)
relying on routing information already present on the node.

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Khalil Afzal .

Since the publication of the Orchestra scheduler
in 2015 [8], autonomous scheduling has proven to be a
versatile and reliable component of low-power wireless sys-
tems. While centralized scheduling can construct maximally
efficient schedules, assuming sufficient information on the
controller, it has limited scalability and may entail large
overhead for information collection and distribution due to
the rapid dynamics of low-power wireless links. Distributed
scheduling, on the other hand, is vulnerable to the visibility
problem: it is difficult for the network operator to monitor
and to debug a low-power network in which the decisions
are made through intra-node negotiation in a process that
is often complex and opaque. Autonomous scheduling is
an attractive alternative as it avoids these problems due to
its decentralized nature and low complexity. Furthermore,
both centralized and distributed schedulers must rely on
some autonomous mechanisms in order to bootstrap their
more advanced customized schedules, therefore some kind
of autonomous cell allocation mechanism is a necessary part
of any TSCH network.

Despite the popularity of autonomous schedulers, a com-
prehensive evaluation of their various pros and cons is miss-
ing from the existing literature. Research papers that present

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 67147

https://orcid.org/0000-0001-5150-272X
https://orcid.org/0000-0002-8697-0272
https://orcid.org/0000-0001-8605-5077
https://orcid.org/0000-0002-9492-6546
https://orcid.org/0000-0002-6161-1310

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

new autonomous schedulers typically evaluate them only on
a single traffic pattern or even optimize them for a single spe-
cific goal. In contrast, the goal of the present paper is to obtain
comparative results covering all of the main autonomous
scheduling approaches. To this end, we describe and exper-
imentally evaluate1 the performance of these approaches on
three different traffic patterns: data collection, queries, local
traffic, and in two different network types: sparse and dense.

This paper makes the following contributions:
• We provide a taxonomy and description of autonomous
TSCH scheduling approaches;

• We model the packet reception probability in three dif-
ferent cell allocation strategies (sender based, receiver
based, link based) mathematically, and show that the
proposedmodel has a good fit with numerical simulation
results.

• We improve upon the performance of the state-of-the-
art approach ALICE [9] by using it in conjunction with
a simple but effective idea: a node based channel alloca-
tion approach;

• We are the first to scientifically describe and compara-
tively evaluate an existing approach of the Orchestra [8]
scheduler: the Receiver Based Non-Storing variant;

• We provide an experimental performance comparison of
all these main autonomous scheduling methods;

• We include provisional guidelines to network designers
for choosing an autonomous scheduling method.

The body of this paper starts with a literature survey
and taxonomy (Section II). Section III provides theoret-
ical results through modeling and numerical simulations.
Section IV presents and analyzes experimental results.
Section V includes a discussion with some provisional guide-
lines, and an overview of future research to be done in the
area. Finally, Section VI concludes the paper. We acknowl-
edge the FIT IoT-LAB testbed used for the experimental
evaluation.

II. LITERATURE SURVEY AND TAXONOMY
A. BACKGROUND ON TIME SLOTTED CHANNEL HOPPING
To support more reliable and efficient link-layer communica-
tion, in the early 2016 the IEEE enhanced the 802.15.4 stan-
dard [1] with the 802.15.4e draft amendment [10]. Time
Slotted Channel Hopping (TSCH) is one mode defined in the
updated standard. It utilizes both time synchronization and
frequency hopping techniques. Using this link-layer protocol,
neighboring nodes can exchange packets on a scheduled time
slot and channel. Since multiple packets cannot be exchanged
simultaneously at the same channel, the operation of each
node should be organized to avoid collision and achieve
high reliability and efficiency. To this end, TSCH utilizes
two-dimensional schedule table called slotframe. Figure 1
shows an example of tree-structured routing topology and
its corresponding TSCH slotframe. The x axis of slotframe
is time offset and y axis is channel offset. We call a pair

1Available at https://github.com/atiselsts/tsch-scheduling-comparison

FIGURE 1. Example of a TSCH schedule. a) one example of a multihop
routing topology with 6 nodes; b) the corresponding slotframe for
TSCH-based communication.

of time offset and channel offset a cell; In the example
network (Fig. 1), the slotframe has 7 timeslots and 4 channel
offsets; the time dimension is also sometimes referred to as
the size of the slotframe. Thereby, there are 28 cells in the
slotframe. In a cell, a pair of nodes can exchange one data
packet and its corresponding acknowledgement. The actions
in a cell are done at specific points, according to pre-agreed
timing template, such as the template defined in the IEEE
802.15.4 standard. The typical duration of a time slot ranges
from 10ms to 15ms. In the example network, the node B is
scheduled to transmit a packet to the node D at a cell (0,1)
and receive packet from the node D at a cell (1,2). The node
B is also scheduled to communicate with the node E at the
cells (2,1) and (5,0). It is also scheduled to communicate with
the node A at the cells (3,1) and (5,3). However, it must be
stressed that the IEEE 802.15.4 standard does not define how
to schedule the slotframes, leaving it an open research area.

A TSCH network is created by a TSCH coordinator. The
coordinator sets some important values such as the network
ID, slotframe size, and frequency hopping sequence (FHS),
which will be shared by the nodes joined in its network. Then,
it creates the network by setting the Absolute Slot Number
(ASN) to 0. The ASN increases by one at the end of each
timeslot. The coordinator and other joined nodes periodically
broadcast Enhanced Beacon (EB) messages, which include
important information needed to manage the time synchro-
nized network. Nodes who receive an EB message can join
the network by utilizing this information from the EB.When a
node joins the network after hearing an EB from its neighbor,
it sets that neighbor as its TSCH time source and synchronizes
its time to the network time using the ASN. After joining the
TSCH network, the node periodically broadcasts EB to make
sure its neighbor nodes can join through it and synchronize
their time through this node.

A pair of nodes can exchange a data packet and its corre-
sponding acknowledgement in a cell. The transmitter trans-
mits a packet on a specific channel; the receiver must listen
on the same channel. Note that the TSCH channel offset
does not have one-to-one correspondence with a physical
IEEE 802.15.4 channel. Instead, it is as an offset in the
FHS. For example, let us assume a TSCH network that
uses 15, 11, 19, 13 as its FHS. Then, the FHS of chan-
nel offset 0 will be 15, 11, 19, 13, that of channel offset 1
will be 11, 19, 13, 15, and that of channel offset 2 will be
19, 13, 15, 11. Thereby, the channel to be used at ASN time

67148 VOLUME 8, 2020

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

slot is:

channel = FHS[(ASN+ ChannelOffset) mod ||FHS||]

The scheduled slotframe repeats over time and the effective
frequency used by one cell can be changed at the next iteration
of the slotframe.

Since packets are forwarded to the final destination on a
routing layer, most of the packets are exchanged between
routing layer neighbors. Routing Protocol for Low power and
Lossy networks (RPL) [11] is the most widely used routing
protocol in the current multi-hop networks, and is standard-
ized by the Internet Engineering Task Force (IETF). RPL
constructs an directed acyclic graph (DAG) based routing
topology. In practice, the DAG is typically implemented as
a tree; each node selects one node as its parent, but can
have multiple children nodes. RPL supports multiple modes,
including the storing and non-storing modes. In the non-
storing mode, each node only keeps the routing entry to its
parent. In the storing mode, each node also keeps all routing
entries to its children. Thereby, in terms of downward packet
transmissions, storing mode can directly support packet
exchange between children nodes; however, that comes at the
cost of a higher memory usage. In the non-storing mode, all
node-to-node routing must take place through the root. For
downward packet transmissions, source routingmust be used.
Generally, TSCH slotframe is scheduled based on the routing
topology, so the slotframe should be continuously updated
whenever the routing topology changes.

Consider an example: three nodes A, B and C , where
node A is the parent of the nodes B and C (Fig. 1), and let
us set the slotframe size M = 7 and the number of channel
offsets to 4. The communication between the nodes should
be scheduled on a slotframe. A slotframe can be defined to
schedule the node A to listen at the cells (3, 1) and (5, 3), and
the nodes B and C to transmit their packets to the node A at
the cells (3, 1) and (5, 3), respectively, as shown in Fig. 1.
Now, what happens when the routing topology changes and
the node B becomes the parent of the node C instead? The
nodes A and C remove the scheduled cell for their communi-
cation since A is not a parent of C anymore. Instead, nodes B
andC add new cells for their communication. As described in
this example, the schedule of TSCH slotframe should reflect
the relation between neighboring nodes of a routing layer to
support efficient multihop communication.

In this paper, we focus on autonomous cell allocation
strategies, where the Tx and Rx cells are placed in the
slotframes by the nodes themselves, with minimal or no
control traffic exchange. Another simple network and a few
autonomous schedules for that network are shown in Fig. 2.
In a real network, the actual cell placement will likely be
different as it is typically decided by a pseudorandom hash
function that is shared by all of the nodes in the network;
however, the pattern will stay the same. The approaches
depicted in the figure are described in the Section II-D.

FIGURE 2. Slotframe examples: The figure shows slotframe examples for
Node B in the example network using the main autonomous scheduling
approaches.

B. SEARCH METHODOLOGY
The literature search was carried out in a systematic way
using the SCOPUS database. We searched for the keywords
‘‘autonomous’’ or ‘‘autonomously’’ and ‘‘TSCH’’ in the title,
abstract and keyword fields of articles indexed in SCO-
PUS. This yielded 17 papers published during 2015–2019.
The results were then manually filtered to remove irrelevant
entries: only English papers where TSCH scheduling was the
main topic were included, excluding, for example, papers on
TSCH applications such as time synchronization and energy
harvesting, and excluding one paper not in English. We also
excluded TSCH scheduling papers that were not autonomous,

VOLUME 8, 2020 67149

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

e.g. that relied on 6top [12] or other packet exchange,
such as [13], [14]. This filtering yielded 10 papers [8], [9],
[15]–[22]. In addition to these search results, we include the
Internet Draft of the Minimal Scheduling Function [7] in
the survey. Although not a scientific publication, this draft
is a strong candidate for an IETF standard, and as such
to have an extensive influence on future publications. For
similar reasons, we include the 6tisch minimal schedule [23].
Finally, we add one more autonomous scheduling approach:
the Orchestra Receiver Based Non-Storing mode (Orchestra
RB/NS). We justify this in two ways: first, while Orchestra
RB/NS has not been formally described in an individual pub-
lication yet, it has already been used in the research literature,
e.g., by Mohamadi et al. [24] and by Duquennoy et al. [25].
Second, it is the default approach in the Contiki2 and Contiki-
NG3 operating systems, and is the only one that is compatible
with non-storing mode routing.

C. TAXONOMY
The literature survey reveals several dimensions on which
autonomous scheduling methods can be mapped (Fig. 3).
Here we describe these dimensions.

1) INTERACTION WITH ROUTING
If the complete network stack is considered, most of
the autonomous scheduling approaches are not fully
autonomous. Instead, they just use information from the
routing layer to decide which cells to allocate in the sched-
ule. Typically, a node allocates some cells for its parent
and children nodes. However, it is also possible to build
the schedule completely autonomously, without looking at
the routing tree. This is especially useful in the network
bootstrap phase, e.g., for neighbor discovery. Such a routing
independent approach (e.g., Orchestra [8] in theNon-Storing
mode) is more general and makes the minimum amount of
assumptions; in contrast, themore typical routing dependent
approaches can be more efficient, as they have access to more
information during the schedule allocation time.

2) CELL ALLOCATION
Two broad categories of cell allocation strategies emerge:
node based and link based. The node based strategies are
further divided in sender based (SB) and receiver based
(RB) [8]. In node based strategies, each node selects a slot
that as ‘‘its own’’, typically based on the hash of its MAC
address, and schedules a cell in that slot. In a sender based
schedule, the node’s ‘‘own slot’’ is allocated for transmission
(Tx); in receiver based, for reception (Rx) – hence the names
of these approaches. Subsequently, the node allocates slots for
its neighbor (parent and children) nodes; these are Rx slots in
the sender based approach, and Tx slots in the receiver based
approach. This means that, paradoxically, most of the active
slots in a sender based schedule are for reception, while for

2http://www.contiki-os.org/
3https://www.contiki-ng.org/

FIGURE 3. Taxonomy of autonomous TSCH scheduling approaches.

receiver based schedule, the opposite is true. In contrast, in a
link based (LB) approach [9], there are one or more Rx slots
and one or more Tx slots for each link. See the Fig. 2 for a
visual overview of the resulting slotframes. Assuming a fixed
size slotframe and sparse traffic, the receiver based approach
leads to lower energy consumption, as it has the minimum
amount of Rx slots; however, it is also more susceptible
to collisions since all its neighbor nodes are scheduled to
transmit packet at the same cell.

3) CHANNEL ALLOCATION
The initial work on autonomous scheduling used a single
channel offset for all cells [8]. This was demonstrated to be
suboptimal [9], [15]. Two other strategies have emerged: link
based channel allocation [9], possible only in conjunction
with link based cell allocation; and node based channel allo-
cation [7], [15], [17], [18], where each node selects a single

67150 VOLUME 8, 2020

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

channel offset as ‘‘its own’’ and the other nodes accommodate
for that. Using multiple channel offsets is beneficial as it
allows multiple pairs of nodes in a single radio range to
communicate simultaneously without packet collisions utiliz-
ing channel diversity. The link based approach has the least
amount of collisions; however, it has a different drawback:
if a hypothetical node A has Rx cells from both nodes B and
C at the same time slot but on the different channel offsets,
the node should select only one channel offset it will be
activated on since it has only one radio interface. The node
randomly selects one of multiple cells since it does not have
the information needed to reliably select one; hence, channel
mismatch between the sender and receiver may occur. In case
of multiple Tx cells in the same timeslot, this problem does
not arise. Regarding themismatch problem, natural tie-breaks
exist for cell selection: for example, the node can look at the
neighbor queue sizes, and select the cell to the neighbor with
the most packets to send [7].

4) TARGET APPLICATION
The main interest of this paper is in general autonomous
scheduling approaches [8], [9], suitable for data collection,
interactive queries and other Internet of Things and sensor
network applications. However, some of the surveyed works
have been designed to optimize the performance for a sin-
gle purpose, such as low latency [16], or for a specific target
application [17]. Furthermore, autonomous scheduling can be
a building block for more complex scheduling protocols [7],
including for network construction and maintenance [21].

5) CELL REALLOCATION
While pseudorandom cell allocation policies lead to good
average-case behavior, their worst-case performance can
be terrible. With a pseudorandom hash function h(MAC),
the worst-case situation is when it maps all MAC addresses in
the network to the same timeslot. One way to avoid this is to
make the hash function time-dependent. Such a hash function
h(MAC, t), even if it leads to a collision in the time moment
ti, is very likely to result in better allocation in the subsequent
time moments ti+1, ti+2, . . . , ti+k−1 where k is the period of
the hash function. The Absolute Slot Number (ASN) of the
TSCH network or the slotframe number (the ASN divided
by the slotframe size) can be used as the time parameter t in
the hash function. Whenever t changes, the hash function h
is recomputed, and all affected cells are reallocated [9]. This
is the pseudorandom reallocation strategy. A more complex
and involved way would be to detect collisions and try to
reallocate cells in order to avoid these collisions. This has
not been investigated yet, to the best of our knowledge; while
MSF includes cell reallocation functionality, it is not applied
to the autonomous cells.

6) TRAFFIC ADAPTATION
Purely autonomous approaches do not change the sched-
ule depending on traffic, so they are static in this aspect.
However, their simplicity can be traded off in order to achieve

better performance in networks where the packet rate cannot
be reliably known at the time of deployment, or is signif-
icantly different on different links or in different periods.
Consequently, in adaptive approaches [15], [18], [19],
the nodes typically start with a purely autonomous schedule,
which is subsequently modified and improved through a dis-
tributed negotiation process.

D. OVERVIEW OF THE APPROACHES
Table 1 lists the main autonomous scheduling approaches.
Note that we treat Orchestra as having node based channel
allocation, using multiple channel offsets though the original
Orchestra uses a single channel offset for all cells, since
this feature is in the version implemented in this paper and
released by us in the Contiki-NG 4.4 operating system.

1) GENERAL APPROACHES
The field of autonomous scheduling for TSCHwas started by
the publication ofOrchestra byDuquennoy et al. in 2015 [8].
Orchestra is an autonomous scheduler that offers several
different modes of operation. The original paper describes
receiver based (RB) and sender based (SB) Orchestra
modes that both rely on storing routing in order to schedule
unicast cells to other nodes (the routing parent and routing
children). An unicast cell is also scheduled for the node itself;
this cell is Rx in the RB mode and Tx in the SB mode.
The cells to other nodes are Tx and Rx, respectively, and
scheduled on a cell by hashing its neighbor’s address. The
timeslot tsnode in which to schedule a cell for a node with
MAC addressMACnode is decided based on Orchestra’s hash
function h(MAC):

tsnode := h(MACnode).

In the sender based mode, a node always uses its own times-
lot to send out packets. In the receiver based mode, upon
transmitting a packet to MAC addressMACpacket , a node first
checks whether a Tx slot for h(MACpacket) is in its schedule.
If the answer is positive, the timeslot it used; otherwise,
the default slotframe (see below) is used. The Tx/Rx cells
for the remote nodes are dynamically added in the schedule
based on RPL routing information. Whenever a RPL pre-
ferred parent is changed or when a route to a direct RPL child
is added or removed, the Tx/Rx cells are updated.

In 2016, a new mode was added to Orchestra: Receiver
Based Non-Storing. This mode is a hybrid between a per-
packet scheduler and per-node scheduler. Rx cells are sched-
uled in same way as in Orchestra RB. In contrast, Tx cells are
handled differently: a Tx cell is indiscriminately scheduled on
each timeslot. The hash function h(MAC) is used to decide
which of those Tx cells to use for which packets. Similarly
to the original Orchestra, a packet with destination address
MACpacket is scheduled in a unicast timeslot tspacket such that:

tspacket := h(MACpacket).

Upon transmitting a packet to MAC address MACpacket ,
a node can always be sure that a Tx timeslot for h(MACpacket)

VOLUME 8, 2020 67151

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

TABLE 1. Autonomous TSCH scheduling approaches.

is in its schedule. There is no need to update the schedule
on RPL changes, and there is no need to ever use the default
slotframe. However, more scheduled cells implies a higher
memory overhead, as well as higher CPU usage – depending
on the implementation, the nodes may have to wake up in
every slot.

Besides the unicast slotframe scheduled in the different
ways described above, the Orchestra scheduler also includes
two other slotframes to exchange control packets: one with
slots for Enhanced Beacon (EB) packets, and another with
a default timeslot. The default timeslot is shared by all the
nodes in the same network. It is used both for broadcast
packets (excluding EB) and unicast packets that do not have
a matching cell in the unicast slotframe. The EB slotframe is
optional; if it is not present in the configuration, EB packets
are sent on the default timeslot.

The original Orchestra version puts all cells at the same
channel offset; based on the preliminary modeling study in
this paper (Section III), we have extended Orchestra with the
node based channel allocation approach and report results of
this version in the experimental section (Section IV). The
node based approach means that each node selects a single
channel offset as ‘‘its own’’ for Rx slots and the other nodes
accommodate for that when scheduling their Tx slots. Unlike
in the case when only a single channel offset is used, dif-
ferent nodes may select different channel offsets for Rx; but
unlike in a completely random channel allocation scenario,
a single node never uses more than one channel offset for
its own Rx slots. The modeling study shows that the node
based multi channel offset version performs better than the

original (single channel offset) Orchestra; this is confirmed
by a preliminary experimental study. In this paper, we report
just the results from the improved Orchestra.

In 2019, ALICE was proposed [9] by Kim et al. It departs
from Orchestra in three main aspects. First, ALICE uses link
based (LB) scheduling instead of node based scheduling.
Although link based scheduling has already been used in
centralized, distributed, and even some autonomous sched-
ulers [17], ALICE was the first to formulate and investigate
this approach in the context of general-purpose autonomous
schedulers. Second, ALICE uses link based channel offset
allocation instead of using just a single channel offset as in
the original Orchestra. Third, ALICE periodically reallocates
all unicast cells using a time-dependent hash function. This
happens once per slotframe. The authors provide [9] com-
parative results between ALICE and single-channel offset
Orchestra and show that ALICE performs better in all metrics
for a data query application. However, its performance in
data collection applications has not been investigated so far.
The second major limitation of the ALICE study is that
they do not attempt to quantify the individual effects from
these three main differences. In the present paper, we extend
ALICE with node based channel allocation (see the descrip-
tion above), and compare the original version of ALICE with
our modification, as well as with Orchestra with node based
channel offset allocation (Section IV). We show that most of
the benefits in ALICE come from the link based slot allo-
cation. The periodic reallocation does not affect the average-
case performance of the network, even though it has amassive
effect on the worst-case performance, as some nodes may be

67152 VOLUME 8, 2020

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

TABLE 2. Qualitative evaluation of autonomous TSCH scheduling approaches. N – number of neighbors, S – slotframe size, ST - subtree size.

continuously suffering from a slot collision. Finally, the link
based channel offset allocation might cause a cell mismatch
problem and actually produces a negative effect compared
with the node based channel offset allocation.

The 6tischminimal schedule [23] is a very simple schedul-
ing approach that is mainly intended to be used as a way to
bootstrap a more complex scheduling scheme. All the nodes
in the network share a common cell in a slotframe, and all data

packets are exchanged on this cell. Consequently, the 6tisch
minimal schedule does not need to generate any control pack-
ets. However, the tradeoff here is in the inefficient resource
utilization. All transmissions are concentrated on this one
cell, therefore the 6tisch minimal schedule does not uti-
lize channel and time diversity. This increases the collision
probability due to the lack of communication opportunities.
The collision problem may become severe, especially when

VOLUME 8, 2020 67153

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

the traffic load per node increases, and in large & dense
networks.

The Minimal Scheduling Function (MSF) [7] is defined
in an Internet Draft that describes a distributed schedul-
ing mechanism for TSCH on top of the 6top protocol.
A full description of the MSF is outside of the scope of this
paper. For the purposes of this work, we are interested in
the autonomous cells used in the MSF. Each node that runs
the MSF allocates some cells autonomously. One Rx cell is
allocated for the node itself. Both the time slot and the channel
offset are decided used a hash function. The rest of the cells
potentially serve as Tx cells. Unlike in Orchestra, the Tx cells
in the MSF are added on-needed basis and removed when
they are not used anymore, e.g. when there is no traffic to
send to a particular neighbor. In case multiple Tx cells are
scheduled in the same timeslot, a tie-break mechanism is
applied: the cell with the most packets to send is selected.
The on-needed aspect only concerns the run-time aspect of
the MSF, not the cell allocation method. Considering the
evaluation in this paper (Section IV), the MSF is effectively
identical to, and expected to achieve the same performance
as the Orchestra Receiver Based Non-Storing approach with
node based channel offset allocation. The only difference is
in the hash function; however, there a no a priori reasons why
the hash function used by the MSF would make a difference
in our evaluation scenarios. Hence, we do not run separate
experiments with the MSF autonomous scheduler, expecting
identical performance to the Orchestra Receiver Based Non-
Storing approach. We hope that our evaluation, especially
with the ‘‘local’’ traffic pattern, sheds some light on how
well the autonomous scheduling component of the MSF is
expected to perform relative to other potential approaches.
We note that our preliminary experiments investigated the
performance of a different older version of the MSF internet
draft; the performance of this older version was significantly
worse than that of the Orchestra Receiver Based Non-Storing
approach.

BOOST [20] is a protocol that blends TSCH with oppor-
tunistic routing and autonomous scheduling. BOOST com-
plements the spatial and channel diversity of TSCH with the
receiver diversity of opportunistic routing, in this way leading
to increased reliability. It supports multiple traffic priorities.
Technically, BOOST groups network nodes in layers; the
n-th layer consists of nodes n hops away from the root (this
information is obtained from the routing protocol). Even-odd
transmission/reception slot scheduling is used: depending on
the layer, the nodes either transmit or receive in the first slot
of the slotframe, do the opposite action in the second slot, and
so on. Backoff is used to lower the duty cycle of nodes: if in
a Rx slot no packet is received, a subsequent number of Rx
slots are skipped. Also, the nodes only wake up in their Tx
slots if there are packets to sent.

DiGS (Distributed Graph routing and autonomous
Scheduling) [22] is an approach that decentralizes the net-
work management in WirelessHART networks. It allows
the field devices to compute their own graph routes and

transmission schedules. The authors adopt the Wire-
lessHART graph routing with multiple upstream routes for
each node in order to increase reliability by taking advantage
of routing path diversity. Multiple transmission attempts are
scheduled for each data packet through primary and backup
routes. The timeslot for a transmission is decided based on
node’s ID and the attempt number, effectively creating a
variation of the sender based approach.

2) SINGLE-PURPOSE OPTIMIZED APPROACHES
Escalator [16] is a node based scheduling approach which
hashes node address to calculate its cell. The authors of
Escalator point out that Orchestra does not allocate enough
cells for the nodes close to the root even though each node
suffers from different traffic load based on the location of the
node in a routing tree. To solve the problem, while a node
using Orchestra schedules a slotframe by hashing its own
address and its neighbor’s address, a node using Escalator
schedules a slotframe by hashing its own node address and
the addresses of all the nodes in its subtree. As a result, a node
with a large underlying subtree will have many active cells,
thus also will consume a lot more energy. In the best case,
Escalator can achieve very low end-to-end latency, since a
packet can be forwarded from the source to the destination in
the same number of slots as the number of hops between the
source and the destination. However, there are no dedicated
slots for downward packets, which must be transmitted on
the common shared slot, as Escalator focuses just on the data
collection scenario.

The SPHERE [17], [26] project has deployed a large
number of real-life IoT networks in volunteer homes
with the aim to monitor residents’ health and behavior.
IEEE 802.15.4 TSCH is used together with BLE in their
networks. To collect a large volume of data from IoT devices,
they target high-throughput communication service and use
a customized static TSCH schedule to provide both high
efficiency and reliability. To this end, the SPHERE TSCH
schedule introduces shared slots, the usage of which is nego-
tiated between the parent and children nodes. It also allo-
cates the cells statically, but at the runtime uses the routing
state to select one of multiple scheduled cells depending
on the node’s position in the network, ensuring fast adap-
tations whenever the routing information changes. In this
way, the SPHERE TSCH supports heterogeneous links with
high rate unpredictable traffic, and shows high reliability
(99.96% PDR for networks that generate 7.5 packets per
second [26]).

The scope of collision-free advertisement schedul-
ing [21] is more limited: this work specifically investi-
gates the scheduling of Enhanced Beacon (EB) packets. The
paper proposes a novel EB scheduling method and claims
that it completely eliminates EB collisions. It is based on
two core ideas: first, advertisement slots are divided in
subslots, so that in each slot multiple EB packets can be
transmitted without collisions. Subsequently, each adver-
tising node is assigned a unique advertisement slot and

67154 VOLUME 8, 2020

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

subslot combination. The schedule depends on all advertising
nodes having already assigned unique identifiers that are
small integers.

3) ADAPTIVE APPROACHES
Though autonomous TSCH schedulers [8], [9], [16] provide
quite reliable service based on simple and efficient algo-
rithms, they fail to provide adaptability on varying traffic
load. For example, they just provide fixed number of active
slots for each nodes based on given routing topology. The
authors of TESLA [15] point out to this problem and pro-
pose a traffic-aware TSCH cell scheduling method. With
TESLA, each node continuously sends its traffic load to its
neighbor nodes exchanging control packets. By doing this, all
nodes in the network can figure out their neighbors’ traffic
loads, and add or remove slots from the slotframe contin-
uously. By doing this, they can achieve higher adaptability
with enhanced performance in terms of PDR, latency, and
radio duty cycle, especially in a high-traffic load scenario.
However, as it requires exchange of traffic load information
among nodes, TESLA is not fully autonomous anymore - this
is a drawback in terms of lightness, simplicity, and speed of
the scheduling algorithm.

The authors of PAAS [18] also point out that Orchestra
does not provide reliable service when a node has many
children nodes, as it suffers from high traffic load. Since
Orchestra schedules a fixed number of slots on a slotframe
not considering collision probability, it suffers from high col-
lision probability on slots on which the traffic is concentrated.
By using reserved fields in RPL protocol messages, nodes
using PAAS exchange useful information for scheduling and
allocates more cells if they are needed. As information is
exchanged, PAAS is not a fully-autonomous approach, same
as TESLA [15]. However, it achieves higher packet reception
ratio and lower latency at the same energy efficiency com-
pared with Orchestra.

e-TSCH-Orch [19] schedules the slotframe based on the
Orchestra. The authors of e-TSCH-Orch also points out that
Orchestra provides fixed schedule based on the number of
routing-layer neighbor. However, each node has different
traffic load and some nodes suffer from a number of pack-
ets on their transmission queue, which might cause drop-
ping incoming packets. To empty out the transmission queue
quickly, e-TSCH-Orch subsequently transmits multiple pack-
ets. To this end, a transmitter transmits the number of packets
it has in the transmission queue by using TSCH header. The
receiver checks the number of packets the transmitter will
transmit at a time and immediately schedules the receive
cells sequentially. Thereby, the transmitter and the receiver
wakes up for the multiple slots exchanging packets. How-
ever, without careful priority settings, this approach might
ruin the original Orchestra schedule resulting collapse of the
network due to severe collision. Moreover, this work assumes
packet collection scenario not supporting downward stream
scenario.

III. MODELING AND NUMERICAL SIMULATIONS
A. MODELING THE COLLISION PROBABILITY
We are going to use Ptx to denote the probability to transmit
a packet in an active slot. If this probability is identically and
independently distributed, the average number of packets sent
in an active slot is given by k · Ptx , where k is the number
of potentially transmitting nodes (i.e., neighbors). There is a
collision if and only if k ·Ptx > 1. The probability of collision
is zero when k = 1, i.e., in sender based or link based
slotframes with a collision-free hash function. However, very
few hash functions are collision free in real networks.

We can reuse existing results about hash tables tomodel the
collisions for our application. In aM element hash table with
A entries filled, the average number of slots with k entries
(Sk) is given by:

Sk (M ,A) =
(
A
k

)
(M − 1)A−k /MA (1)

In our application,M is the slotframe size andA the number of
active neighbors, i.e., the neighbors sending packets. It then
follows that the average number of neighbors sending packets
per each active slot (Packets Per Slot, PPS) can be calculated
as the weighted average of all Sk where k ≥ 1.

PPS(M ,A) =

∑A
k=1k ·Sk (M ,A)∑A
k=1Sk (M ,A)

(2)

The Figure 4 shows the number of expected number of pack-
ets per each active slot. Results from numerical simulations
in the figure show a close match with the Eq. 3.

FIGURE 4. The expected number of packets per active slot. M = 7.

The Packet Reception Rate of a slotframe (PRRSF) in case
of M slots and A active neighbors is the proportion of packets
without collisions per slot against all packets per slot. Given
that there is a packet in each active cell, the first term is equal
to the number of slots with a single active cell, i.e. the value
of Sk:=1(M ,A):

PRRSF (M ,A) =
S1(M ,A)
PPS(M ,A)

(3)

The next challenge is to take into account the transmission
probability Ptx as normally not all neighbors N are active

VOLUME 8, 2020 67155

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

in each slotframe, but only Ptx · N are. The PRR can be
expressed as a sum of the different PRRSF , weighted against
the probability of seeing each:

PRRM ,N =

∑N
A=1(

(N
A

)
PAtx(1− Ptx)

(N−A)
·PRRSF (M ,A))∑N

A=1
(N
A

)
PAtx(1− Ptx)(N−A)

(4)

The Eq. 4 can now be applied to calculate the upstream PRR
of the different cell allocation strategies (Section II-C. With
sender based scheduling, the value of PRR (SBPRR) is simply
the same as Eq. 4, as an Rx cell is allocated randomly in the
slotframe for each neighbor:

SBPRRM ,N = PRRM ,N (5)

Since we only attempt to analytically model upstream traffic,
link based scheduling has the same expected PRR (LBPRR)
as sender based, as these approaches have the same cell
allocation pattern for reception:

LBPRRM ,N = PRRM ,N (6)

In contrast, in receiver based scheduling the PRR (RBPRR)
is expected to be lower, since all neighbors share the same
single cell for sending packets. As a result, the slotframe size
M is not relevant to RBPRR:

RBPRRM ,N = PRR1,N (7)

B. CELL ALLOCATION METHODS
The main cell allocation methods are depicted in Fig. 2.
We use our modeling results and numerical simulations to
investigate the expected performance of each approach in
a simple network. These results are aimed to increase the
understanding of each approach and to serve as a motivation
for experiments in a real testbed. We look at two different
traffic patterns: data collection from leaf nodes, and queries
from the central node with replies by the leaf nodes. Further
experiments in the testbed (Section IV) additionally inves-
tigate the performance of a third pattern: localized parent-
child interaction; however, in this single hop network, it is
equivalent to the query pattern.

First, we use the Equation 4 to show how Ptx affects the
different cell allocation approaches. For a data collection
application which generates upstream packets only for the
application layer service, we can notice that the sender based
and link based approaches are identical in terms of the fact
that both schemes allocate different slots for each link from
the child node to its corresponding parent, hence, only one
of them must be modeled. Meanwhile, the receiver based
approach allocates only one receive slot from all children
nodes to their one common parent which increases collision
probability at the common slot. The results (Fig. 5) show the
PRR of each scheme when the slotframe size is 7 and the
number of nodes is 3. In the graph, the PRR of the receiver
based approach decreases faster due to its higher collision
probability. This is explained by the fact that in receiver based
approach the central node only has a single Rx slot to receive
traffic from all leaf nodes; in contrast, with sender and link

FIGURE 5. The effect of packet transmission probability depending on the
scheduling approach. M = 7, N = 3.

FIGURE 6. The effect of the scheduling approach. Ptx = 0.3, M = 7,
N = 3. Numerical simulation results.

based methods, it has one to three slots, depending on the
results of the pseudorandom hash function that maps between
nodes and slots. Furthermore, it is much more likely to have
all three slots than just one slot. Through this experiment,
we have validated the results of our mathematical model,
as we show a good match with the simulation results.

Afterwards we use the now-validated numerical simula-
tions and compare two different traffic patterns: collection
and query (Fig. 6). As expected, the receiver based approach
leads to worse performance than the other approaches regard-
less of the traffic pattern. The worst-case performance in data
collection (the left side of Fig. 6) is the same for all three
approaches, while the average performance of the sender and
link based ones is much better, with PRR > 90%. With the
collection pattern, the performance of the sender based and
link based approaches is nearly indistinguishable. In contrast,
with the query-type traffic pattern, the link based approach
shows much better results than the sender based approach,
since there are dedicated Rx cells in both upward and down-
ward directions.

In conclusion, the results in this subsection show that the
link based approach is expected to perform better than the
other approaches for query traffic. However, for data collec-
tion, which is more a general IoT application scenario, both
the link based and sender based approaches achieve better
performance than the receiver based approach.

67156 VOLUME 8, 2020

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

FIGURE 7. The effect from using multiple channels in a star network with 6 leaf nodes (N = 6), with sender or link based slotframe. M = 19.
Numerical simulation results.

FIGURE 8. The effect of the slotframe size (M) in a star network with
6 leaf nodes (N = 6), with sender or link based slotframe. 4 channels,
Ptx =0.1, Pii =0.1. Numerical simulation results.

C. MULTIPLE CHANNELS AND CHANNEL OFFSETS
In this subsection, we evaluate the effect of the number of
channels and channel offsets. Numerical simulation results
show (Fig. 7) that the use of multiple physical channels
almost always is beneficial. Most of the benefits are already
there with as few as 4 active channels, therefore using many
more channels than 4 may not be necessary. Multiple chan-
nels are additionally useful when there is non-zero internal
interference probability (Pii > 0) with the rest of a hypothet-
ical network.

Fig. 7a and Fig. 7b show the performance of PRR on low
and high traffic load scenarios, respectively. The link based
channel offset allocation approach is beneficial for slotframes
that have high traffic load (Fig. 7b). With low traffic load
(as normally expected on small size networks), node based
channel offset allocation shows better results (Figs. 7a, 8).
The effect is especially strong for shorter slotframes (Fig. 8).
The link based approach is expected to perform particularly
good in larger networks and on nodes close to the root, as in
tree routing topologies nodes with low routing ranks typically
have to forward a high number of packets for their respective
sub-trees.

TABLE 3. Experimental settings.

The results are only relevant to sender and link based slot-
frames. With the receiver based approach and in the absence
of internal interference, the results would be equal to the
results in the Figure 7 when just one channel is used: since
all senders transmit at the same timeslot, packet multiplex-
ing via multiple channels would not give any benefits in
a star network. Nevertheless, in a multihop network multi-
ple simultaneously communicating pairs of nodes may arise
(i.e., Pii > 0); this situation would benefit from using
multiple channel offsets even with the receiver based
approach.

IV. EVALUATION
A. METHODOLOGY
We use the Contiki-NG implementation of TSCH [27] in
the FIT IoT-LAB testbed [28] to conduct the experimental
evaluation (Table 3).

VOLUME 8, 2020 67157

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

1) SCHEDULING APPROACH SELECTION
Since our main interest is in the core building blocks of
generally-applicable autonomous scheduling mechanisms,
we exclude traffic-adaptive and single-metric optimized
approaches (Table 1) from the experimental study. That
leaves us with the different modes of Orchestra and ALICE.
Preliminary investigations showed that our adapted version
of Orchestra with multiple channel offsets performs signifi-
cantly better than the single channel offset version described
previously [8], so we only report the results for the former.
We do, however, report both the published version of ALICE,
with link based channel allocation [9], and our modified one,
with node based channel allocation, as we are interested in
showing the tradeoffs, as well as the margin of improvement
upon the current best state-of-the-art method.

2) TRAFFIC PATTERNS
We investigate the performance on three different traffic
patterns:

• Data collection. Each node in the network generates a
data message and sends it to the root node, resulting in
end-to-end upward traffic to the root.

• Query. Here, the root generates a query message for
each node that is in its routing table. The network nodes
reply to the root node, resulting in end-to-end down-
ward traffic from the root and its upward reply to the
root.

• Local traffic. Each node that has some children gener-
ates messages to each child. The child nodes reply to the
parent node, resulting in one-hop downward traffic from
the parent and its upward reply to the parent.

The first two traffic types emulate typical IoT applications.
The third type is designed to mimic the interaction in a
distributed scheduling mechanism such as the MSF [7].

3) NETWORK SETTINGS
To evaluate performance on various network configura-
tions, we pre-selected some nodes in the IoT-LAB testbed
to obtain networks with different densities. First, we pre-
selected 31 nodes such that each node has 10 neighbors with
link quality≥50% on the average generating dense network.
Then, we pre-selected another 31 nodes such that each node
has only 4 neighbors on the average generating relatively
sparse network. As shown in the Fig. 9, these dense and
sparse topologies give rise to considerably different routing
trees.

4) METRICS
Our evaluation uses the following metrics:

• Packet Delivery Ratio (PDR). PDR directly measures
the end-to-end reliability of the protocol.

– For data collection traffic, it is ratio between
application-level data packets received on the root
against the packets generated on the network nodes.

FIGURE 9. Routing tree shape depending on experiment configuration
settings in the IoT-LAB. Experimental data from representative runs.

– For query traffic, it is ratio between application-
level reply packets received on the root against the
number of queries issued from the root.

– For local traffic, it is ratio between application-level
reply packets received on parent nodes against the
number of queries issued from these nodes.

• Packet Acknowledgement Ratio (PAR). PAR is
defined for a node as the ratio between the number
of MAC-layer packets acknowledged by the parent of
the node and the number of packets sent to the parent.
Network’s PAR is the aggregate of node PAR across
all non-root nodes. We do not use Packet Reception
Ratio (PRR) here because PAR is easier to track in real
networks, and because it shows the effect from link-layer
retransmissions.

• Queue losses. This is the total number of packets
lost due to queue overflow on the sender side. Along
with packet collisions and sender/receiver mismatches,
it is one of the main sources of packet loss in TSCH
networks.

• Radio duty cycle (RDC). This is the ratio of the radio-
on time against the total time. The RDC in TSCH net-
works is mostly determined by two factors: the total
number of Rx slots, and the number of used Tx slots.

We are interested in the tradeoff between RDC and reliability.
The slotframe size cannot be reliably used as a proxy for RDC
measurement, since the different approaches add different
number of active cells per slotframe. Moreover, different
scheduling methods results in different collision probability
and different number of retransmissions. Therefore, we mea-
sure RDC of each schedulers directly by used slotframe
length. Generally, schedulers utilizing more slots achieve

67158 VOLUME 8, 2020

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

FIGURE 10. Data collection (from nodes to root), dense network. Experimental results. Here and further: sf = <number>
shows the slotframe size used; the labels of the points show the PDR in percent.

higher reliability at the cost of high energy consumption.
To explicitly show the tradeoff between reliability and energy
efficiency, we plot the PDR against RDC.

5) EXPERIMENTAL DETAILS
We report results from a total of 360 hours (15 days) of testbed
runs (Table 3), excluding any preliminary investigations.
Each option is run for 1 hour, which include 30min warm-
up time with no application traffic for a network bootstrap
phase, and 30min of data packet generation for performance
evaluation. The warm-up time is quite long due to the unpre-
dictable time it takes all nodes to join the TSCH network
and to discover their neighbors and the link qualities of these
neighbors.We shuffle the different protocol options randomly
to avoid back-to-back runs of a single protocol. To minimize
the impact of random external factors on the results, each
option is run three times in total; these runs are then sorted
by PDR, and only the results of the median run are reported.

B. EXPERIMENTAL RESULTS
The experimental results are shown in six figures: Fig. 10
and Fig. 11 for data collection, Fig. 12 and Fig. 13 for
the query traffic, Fig. 14 and Fig. 15 for the local traffic.
In the experiments, we compare the performance of end-to-
end PDR and duty cycle of each scheme varying slotframe
length from 7 to 101 (Table 3). We also compare the PAR and
the number of queue losses by the slotframe length.We repeat
the same experiment by varying the network density and
traffic pattern.

1) DATA COLLECTION
First of all, we start with the data collection traffic pattern.
At the dense network topology (Fig. 10), each node has

a larger number of neighbors, thereby ALICE and Orchestra
SB schedule more Rx slots per a slotframe. However, Orches-
tra RB schedules only one Rx slot per a slotframe, regard-
less of the number of neighbors it has. Thereby, Orchestra
RB achieves high PDR only when the slotframe length is
extremely low (sf = 7); its PDR drastically decreases as the
slotframe length increase due to the high number of collisions
at the single Rx slot. When the slotframe length is 101,
an Orchestra RB node still allocates only one Rx slot per
a slotframe; all its neighbors are likely to attempt a packet
transmission at this Rx slot, which causes high collisions.
However, its duty cycle decreases as the slotframe length
increases.

Orchestra SB and ALICE schedule a higher number of
cells compared with Orchestra RB, thereby they achieve a
higher PDR. ALICE and Orchestra SB show similar perfor-
mance; ALICE achieves a slightly higher PDR and a lower
number of queue losses. When the slotframe is extremely
short (sf = 7), ALICE shows worse performance compared
with Orchestra SB due to the channel mismatch problem.
However, by adopting node based channel offsets, we were
able to enhance the performance of ALICE; our proposal
(ALICE with node based channel offsets) achieves the best
performance among all evaluated schemes.

It is interesting to note that the network density clearly
affects PDR performance. When the network topology is
sparse (Fig. 11), each node has few neighbors, thus a small
number of cells per each slotframe are allocated, and oppor-
tunities for communication are limited. This results in a long
queuing delay and full transmission queues; outgoing packets
are dropped. Consequently, as the slotframe length increases,
all the schemes suffer from long transmission queues, result-
ing in queue losses and decreased PDR. In case of Orchestra

VOLUME 8, 2020 67159

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

FIGURE 11. Data collection (from nodes to root), sparse network. Experimental results.

FIGURE 12. Periodic queries (from root to all nodes and back), dense network. Experimental results.

RB, many packets are also lost due to continuous collisions,
which result in low PAR and decreased PDR.

2) PERIODIC QUERIES
We repeat the same experiments by changing the traffic pat-
tern from data collection to periodic queries (Fig. 12 and
Fig. 13). Here, the root generates downward traffic and each
node replies by generating upward traffic, thereby resulting
in bidirectional traffic on each link. Since ALICE schedules

its slotframes by using directional link based scheduling,
it allocates a higher number of cells per slotframe compared
with both Orchestra SB and RB; thereby ALICE achieves a
higher PDR and lower number of queue losses. Similarly to
the previous experiment, the density of the network affects
its performance. There is a tradeoff here: in a dense network,
each node has a higher number of neighbors and suffers from
higher collision and interference probability. This increases
the length of transmission queues and the number of packet
losses. However, in a dense network a higher number of good

67160 VOLUME 8, 2020

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

FIGURE 13. Periodic queries (from root to all nodes and back), sparse network. Experimental results.

FIGURE 14. Local traffic (node-parent interaction), dense network. Experimental results.

links are available for each node, as well as more choice in
terms of the routing parent, and the network has fewer hops.
In our experiments, the dense network topology shows better
results.

3) LOCAL TRAFFIC
We repeat the same experiments with a local traffic scenario
(Fig. 14 and Fig. 15). Here, all application level packets are
exchanged between one-hop neighbors. Thereby, the traffic

volume is decreased compared with the previous experi-
ments, especially for nodes closer to the root. As a result,
each scheduling method achieves increased PDR compared
with the previous experiments, but PAR still remains low
in case of both Orchestra SB and RB with sf = 101.
The reason is that both of these Orchestra node based
schedulers allocate an insufficient number of slots and thus
have insufficient communication opportunities. In contrast,
ALICE shows extremely high PAR even with long slot-
frames due to its increased number of active slots and

VOLUME 8, 2020 67161

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

FIGURE 15. Local traffic (node-parent interaction), sparse network. Experimental results.

communication opportunities. Its queue losses are extremely
low regardless of the slotframe length and network density.
Our proposed node based channel offset allocation method
for ALICE once again shows its effectiveness and efficiency
by demonstrating increased PDR and PAR while keeping the
queue losses low.

4) SUMMARY OF THE MAIN RESULTS
• Receiver based approaches in general perform worse.
This holds for all three traffic types, and is consistent
with the results in the Section III, Fig. 6.

• Longer slotframes in general correspond to better energy
efficiency; however, this becomes less true when the
PDR falls a lot below 100%; see e.g., Orchestra RB
in Fig. 13 and Fig. 14.

• The ALICE with a node based channel offset allocation
approach dominates all other approaches (within the
margin of experimental error) in the query experiments,
with both network types, and in the collection experi-
ments, with dense network. This is as expected from the
results in the Section III, Fig. 6.

• In the collection experiments with sparse networks, both
ALICE options and the Orchestra SB approach show
approximately equal results. Still, the ALICE options
have better PAR than the sender based approach when
the slotframe size is large, and the ALICE node based
approach also has a better PAR with the slotframe size
is short.

• In all-but-one experiments with short slotframes ALICE
with link based channel offsets has the worst PAR of all
approaches. Since queue losses with short slotframes are
negligible, and as ALICE is expected to have the least

amount of collisions from all approaches, the cause of
this loss is clear: it is the channel mismatch between
the sender/receiver cells. That is, the receiver listens to
a different channel than the sender transmits to.

• With local traffic, all application level packets are
exchanged between one-hop neighbors and not for-
warded further, which results in lower network conges-
tion, even for nodes close to the root. There is no clear
domination since all approaches show relatively good
performance. Still, ALICE has better PAR and fewer
queue losses, especially with longer slotframes.

• The storing version of the receiver based Orchestra fre-
quently shows better results than the non-storing version
of the receiver based Orchestra. This is explained by
implementation differences in the two versions: first of
all, the exponential backoff does not work well in the
non-storing version; second, the storing version uses
the default slotframe more liberally. The exponential
backoff increments the ‘‘slots backed off’’ counter on
each Tx cell; since the non-storing Orchestra rule adds a
Tx cell in each timeslot, the backoff expires very fast and
effectively is disabled. In addition, the storing version
uses a unicast slot for communication to a node only
after a routing relationship has been negotiated with that
node through routing protocol message exchange; other-
wise, it uses the default slotframe. In contrast, the non-
storing option uses a unicast slot to a node whenever the
node is present in the neighbor table, and uses the default
slotframe only for broadcast packets. This means that
the storing option effectively has more Tx slots available
for unicast. This becomes especially important when
the unicast slotframe is larger than the default slotframe

67162 VOLUME 8, 2020

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

FIGURE 16. Effect from the pseudorandom slot reallocation. Data collection, dense network. Experimental results.

(which has size 31). However, the ‘‘storing’’ Orchestra
scheduler is somewhat less practical than the ‘‘non-
storing’’ one, since the latter can be used in conjunction
both with the storing routing, non-storing routing, and
in the absence of any routing protocol, while the former
only with he storing routing.

5) SLOT REALLOCATION EXPERIMENT
To quantify the effect from the pseudorandom slot realloca-
tion, we run a separate experiment where we compare the
default version of ALICE with a ‘‘static’’ version where the
pseudorandom slot reallocation is disabled. The Figure 16
shows the results. We fail to detect a significant difference
between the two in the PDR and queue loss metrics. As far
as the PAR metric is considered, the version without real-
location performs better, indicating a higher likelihood of
the sender to receive ACK from the corresponding receiver
after the transmission of the data packet in a slot. Due to
the calculation time needed for rescheduling the slotframe,
it might cause sender/receiver mismatch in terms of slot start
time in micro scale. This shows that while there are argu-
ments for slot reallocation due to the worst-case behavior,
the impact on average-case performance is negligible, and the
slot reallocation functionality cannot be a major reason in
the performance differences between ALICE and Orchestra.
As a result, we do not include the ‘‘static’’ version of ALICE
in the main experiment series.

V. DISCUSSION
A. SELECTION GUIDELINES
Figure 17 shows provisional guidelines for choosing a
scheduling approach. For networks that use non-storing

FIGURE 17. Provisional guidelines for choosing a scheduling approach.

routing, there is only one choice: receiver based scheduling.
Our experiments show that it has worse performance than the
other methods, however, to some extent this can be compen-
sated by the fact that non-storing routing itself performs better
than storing routing [25]. The sender based approach never
shows significantly better performance than ALICE, conse-
quently, we do not recommend the sender based approach at
all. However, in many settings, it shows similar performance,
so for existing networks that already use the sender based
approach there is no urgent need to upgrade. ALICE with
node based channel allocation outperforms ALICE with link
based channel allocation (original ALICE [9]) in our experi-
ments, therefore, we recommend ALICE with the link based
approach only when the expected utilization of active slots is
very high; for the motivation, see the results in Section III-C.
Figure 18 gives our recommendations regarding cell reallo-

cation. Our preliminary investigations did not show any sig-
nificant average-case effect from the reallocation; however,

VOLUME 8, 2020 67163

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

FIGURE 18. Provisional guidelines for choosing a cell reallocation policy.

in a worst-case situation it would make a huge impact on the
performance (Section II-C). Reallocation requires some addi-
tional CPU time for calculation; however, as the CPU typi-
cally has lower energy consumption than the radio, we believe
that this cost is justified, and we recommend the reallocation
approach for all networks except those where a collision-free
hash function for cell allocation is used, or where collision
detection is performed.

B. FUTURE WORK
When Table 1 (Section II-D) is considered, it is clear that
many combinations in the autonomous scheduler design
space (Fig. 3) have not been explored yet, and provide oppor-
tunities for future work.

One aspect we noticed in our experiments is that a lot of
inefficiency in autonomous scheduling comes down to the
fact that the root has to deal with a lot more traffic than the
rest of the network. The same is true, to a lesser extent, for
other nodes close to the root working as packet forwarders
in the multi-hop network. This problem has been considered
in MAC design previously, either by allowing for an ‘‘always
on’’ radio option on the root node, or by developing MAC
protocols with behavior dependent on the distance to the
root [29]. A simple approach for schedulingwould be to intro-
duce a special, ‘‘always Rx’’ rule on the root node, and change
the schedules of the directly attached nodes respectively.
We have already made a tentative investigation of this idea.
When it is applied, the performance changes significantly;
moreover, the receiver based Orchestra scheduler becomes
competitive and in some scenarios even shows the best results
of all.

More work towards traffic adaptations is definitely pos-
sible and recommended. Some worthy approaches already
exist [15], [18]. However, it is a double-edged sword, as going
too far in this direction would make the protocol much like
another distributed mechanism with all of the associated
drawbacks: increased complexity and limited transparency.

In contrast, adaptations to collisions is an idea that has
not been explored yet in the context of autonomous schedul-
ing. Similar counterarguments as against traffic adaptations
can be made; however, cell reallocation based on collision
detection could remove the problem of the terrible worst-case

performance, while avoiding pseudorandom reallocation
which requires additional CPU load.

VI. CONCLUSION
This paper surveys the state of the art in autonomous
scheduling for TSCH. It first walks through the design space
of different approaches using mathematical modeling and
numerical simulations. Subsequently, for an experimental
study we select various modes of Orchestra and ALICE, two
general-purpose autonomous schedulers, and present their
results on three different traffic patterns and in two different
network density settings.

Highlights of the experimental results include:
• We show that receiver based schedulers are not ‘‘more
efficient’’, as commonly believed. For a constant-size
slotframe they do result in lower duty cycle; however,
when the tradeoff between PDR and RDC is explicitly
considered as a function of slotframe size, other options
achieve better PDR at a similar RDC.

• We show that ALICE has much higher PDR than the
other options at the same RDC in query applications;
however, for other traffic types the sender based Orches-
tra remains competitive.

• We quantify the average-case effect from the three main
features of ALICE, and show that nearly all of its per-
formance gains are due to the link based slot allocation;
the pseudorandom reallocation does not have significant
average case effect, and the link based slot channel off-
set allocation has a negative effect unless slot utilization
is very high.

• We show that our contribution, ALICE with node based
channel allocation, has the best performance of all
approaches, and is robust to experimental parameter
changes.

Taking into account the experimental results, this paper ends
with guidelines on selecting the best-fit autonomous sched-
uler on different network scenarios.

REFERENCES
[1] IEEE Standard for Local and Metropolitan Area Networks—Part 15.4:

Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Stan-
dard 802.15.4-2015, Sep. 2015.

[2] D. Chen, M. Nixon, and A. Mok, WirelessHART(TM): Real-Time Mesh
Network for Industrial Automation. New York, NY, USA: Springer, 2010,
p. 276.

[3] A. Elsts, X. Fafoutis, P. Woznowski, E. Tonkin, G. Oikonomou,
R. Piechocki, and I. Craddock, ‘‘Enabling healthcare in smart homes:
The SPHERE IoT network infrastructure,’’ IEEE Commun. Mag., vol. 56,
no. 12, pp. 164–170, Dec. 2018.

[4] N. Tsiftes, S. Duquennoy, T. Voigt, M. U. Ahmed, U. Köckemann, and
A. Loutfi, ‘‘The E-care@ home infrastructure for IoT-enabled health-
care,’’ in Proc. Int. Conf. IoT Technol. HealthCare. New York, NY, USA:
Springer, 2016, pp. 138–140.

[5] K. Brun-Laguna, A. L. Diedrichs, D. Dujovne, C. Taffernaberry, R. Léone,
X. Vilajosana, and T. Watteyne, ‘‘Using SmartMesh IP in smart agriculture
and smart building applications,’’ Comput. Commun., vol. 121, pp. 83–90,
May 2018.

[6] T. Watteyne, A. L. Diedrichs, K. Brun-Laguna, J. E. Chaar, D. Dujovne,
J. C. Taffernaberry, and G. Mercado, ‘‘PEACH: Predicting frost events
in peach orchards using IoT technology,’’ EAI Endorsed Trans. Internet
Things, vol. 2, no. 5, 2016, Art. no. 151711.

67164 VOLUME 8, 2020

A. Elsts et al.: Empirical Survey of Autonomous Scheduling Methods for TSCH

[7] T. Chang, M. Vucinic, X. Vilajosana, S. Duquennoy, and D. Dujovne,
6TiSCH Minimal Scheduling Function (MSF), document, draft-chang-
6tisch-msf, IETF, Internet Draft, 2019.

[8] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, ‘‘Orches-
tra: Robust mesh networks through autonomously scheduled TSCH,’’ in
Proc. 13th ACM Conf. Embedded Netw. Sensor Syst. (SenSys), 2015,
pp. 337–350.

[9] S. Kim, H.-S. Kim, and C. Kim, ‘‘ALICE: Autonomous link-based cell
scheduling for TSCH,’’ in Proc. 18th ACM/IEEE Int. Conf. Inf. Process.
Sensor Netw. (IPSN), Apr. 2019, pp. 121–132.

[10] IEEE Standard for Information Technology, 802.15.4E, Part. 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC
Sublayer, IEEE Standard P802.15.4, IEEE Computer Society, 2012.

[11] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, IPv6 over Low
PowerWireless Personal Area Networks (6LowPAN), document RFC 4944,
IETF, 2007.

[12] Q. Wang, X. Vilajosana, and T. Watteyne, 6TiSCH Operation Sublayer
(6TOP) Protocol (6P), document RFC 8480, Nov. 2018.

[13] I. Hosni, ‘‘Distributed scheduling with efficient collision detection for end-
to-end delay optimization in 6TiSCH multi-hop wireless networks,’’ Ann.
Telecommun., vol. 74, nos. 5–6, pp. 239–255, Jun. 2019.

[14] M. V. Ngo, Q. D. La, D. Leong, T. Q. S. Quek, and H. Shin, ‘‘User
behavior driven MAC scheduling for body sensor networks: A cross-
layer approach,’’ IEEE Sensors J., vol. 19, no. 17, pp. 7755–7765,
Sep. 2019.

[15] S. Jeong, J. Paek, H.-S. Kim, and S. Bahk, ‘‘TESLA: Traffic-aware
elastic slotframe adjustment in TSCH networks,’’ IEEE Access, vol. 7,
pp. 130468–130483, 2019.

[16] S. Oh, D. Hwang, K.-H. Kim, and K. Kim, ‘‘Escalator: An autonomous
scheduling scheme for convergecast in TSCH,’’ Sensors, vol. 18, no. 4,
p. 1209, 2018.

[17] A. Elsts, X. Fafoutis, J. Pope, G. Oikonomou, R. Piechocki, and
I. Craddock, ‘‘Scheduling high-rate unpredictable traffic in IEEE 802.15.4
TSCH networks,’’ in Proc. 13th Int. Conf. Distrib. Comput. Sensor Syst.
(DCOSS), Jun. 2017, pp. 3–10.

[18] J. Jung, D. Kim, J. Hong, J. Kang, and Y. Yi, ‘‘Parameterized slot
scheduling for adaptive and autonomous TSCH networks,’’ in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Apr. 2018,
pp. 76–81.

[19] S. Rekik, N. Baccour, M. Jmaiel, K. Drira, and L. A. Grieco, ‘‘Autonomous
and traffic-aware scheduling for TSCH networks,’’ Comput. Netw.,
vol. 135, pp. 201–212, Apr. 2018.

[20] Y. Jin, U. Raza, and M. Sooriyabandara, ‘‘BOOST: Bringing opportunistic
ROuting and effortless-scheduling to TSCHMAC,’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–7.

[21] A. Karalis, D. Zorbas, and C. Douligeris, ‘‘Collision-free advertisement
scheduling for IEEE 802.15.4-TSCH networks,’’ Sensors, vol. 19, no. 8,
p. 1789, 2019.

[22] J. Shi,M. Sha, and Z. Yang, ‘‘DiGS: Distributed graph routing and schedul-
ing for industrial wireless sensor-actuator networks,’’ in Proc. IEEE 38th
Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2018, pp. 354–364.

[23] X. Vilajosana, K. Pister, and T. Watteyne, Minimal IPv6 Over the TSCH
Mode of IEEE 802.15.4e (6TiSCH) Configuration, document RFC 8180,
IETF, 2017.

[24] M. Mohamadi, B. Djamaa, and M. R. Senouci, ‘‘Performance evaluation
of TSCH-minimal and orchestra scheduling in IEEE 802.15.4e networks,’’
in Proc. Int. Symp. Program. Syst. (ISPS), Apr. 2018, pp. 1–6.

[25] S. Duquennoy, J. Eriksson, and T. Voigt, ‘‘Five-nines reliable down-
ward routing in RPL,’’ 2017, arXiv:1710.02324. [Online]. Available:
http://arxiv.org/abs/1710.02324

[26] A. Elsts, X. Fafoutis, G. Oikonomou, R. Piechocki, and I. Craddock,
‘‘TSCH networks for health IoT: Design, evaluation and trials in the wild,’’
ACM Trans. Internet Things, vol. 1, no. 1, p. 29, 2020.

[27] S. Duquennoy, A. Elsts, B. A. Nahas, and G. Oikonomo, ‘‘TSCH and
6TiSCH for contiki: Challenges, design and evaluation,’’ in Proc. DCOSS,
Jun. 2017, pp. 11–18.

[28] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-
Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and T.Watteyne, ‘‘FIT
IoT-LAB: A large scale open experimental IoT testbed,’’ in Proc. IEEE 2nd
World Forum Internet Things (WF-IoT), Dec. 2015, pp. 459–464.

[29] G.-S. Ahn, S. G. Hong, E. Miluzzo, A. T. Campbell, and F. Cuomo,
‘‘Funneling-MAC: A localized, sink-oriented MAC for boosting fidelity
in sensor networks,’’ in Proc. 4th Int. Conf. Embedded Netw. Sensor Syst.
(SenSys), 2006, pp. 293–306.

ATIS ELSTS (Member, IEEE) received the Ph.D.
degree in computer science from the University of
Latvia, in 2014. He was with the Digital Health
Engineering Group, University of Bristol, from
2016 to 2018, with the Swedish Institute of Com-
puter Science (SICS), in 2015, and a Researcher
with Uppsala University, from 2014 to 2015. Since
December 2018, he has been a Researcher with
the Institute of Electronics and Computer Science
(EDI), Riga, Latvia. He is a maintainer of the

Contiki-NG operating system for the Internet of Things (IoT). His scientific
interests focus on experimental research in networked embedded Systems,
including network protocols, wearable devices, and embedded machine
learning.

SEOHYANG KIM received the B.S. degree in
computer science from Sejong University, Seoul,
South Korea, in 2013, and the Ph.D. degree
in electrical engineering and computer science
from Seoul National University, Seoul, super-
vised by Prof. Chongkwon Kim, in 2019. Her
current research interests include two different
research areas: video streaming and sensor net-
work. In video streaming area, she studies client-
side ACK regulation for data rate adjustment and

balancing the tradeoff between data efficiency and energy efficiency in
wireless video streaming. In sensor network area, she studies autonomous
TSCH slotframe scheduling method and probabilistic abnormal situation
detection.

HYUNG-SIN KIM received the B.S. degree in
electrical engineering and the M.S. and Ph.D.
degrees in electrical engineering and computer
science (EECS) from Seoul National University
(SNU), Seoul, South Korea, in 2009, 2011, and
2016, respectively, all with outstanding thesis
awards. He was a Postdoctoral Scholar with Net-
work Laboratory (NETLAB), SNU, until August
2016 and Real-time, Intelligent, Secure, Explain-
able systems (RISELab), University of Califor-

nia, Berkeley, until August 2019, and a Software Engineer with Google
Nest, until February 2020. His research interest includes the development
of embedded networked systems for the Internet of Things and ambient
artificial intelligence. He received the Qualcomm Fellowship, in 2011, and
the National Research Foundation (NRF) Global Ph.D. Fellowship and
Postdoctoral Fellowship, in 2011 and 2016, respectively.

CHONGKWON KIM received the B.S. degree in
industrial engineering from Seoul National Uni-
versity, Seoul, South Korea, the M.S. degree in
operations research from the Georgia Institute of
Technology, Atlanta, GA, USA, and the Ph.D.
degree in computer science from the University
of Illinois at Urbana–Champaign, Champaign,
IL, USA, in 1981, 1982, and 1987, respectively.
In 1987, he joined Bellcore as a member of Tech-
nical Staff and worked on Broadband ISDN and

ATM. Since 1991, he has been a Professor with the School of Computer
Science and Engineering, Seoul National University. His research interests
include two different research areas: wireless network and social network.
In wireless network, he studies video streaming, sensor network, andMIMO.
In social network area, he studies recommender system, spam detection,
and graph analysis. He is also interested in high-speed network control,
distributed processing, and performance evaluation.

VOLUME 8, 2020 67165

