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ABSTRACT Big data processing frameworks (e.g., Spark, Storm) have been extensively used for massive
data processing in the industry. To improve the performance and robustness of these frameworks, developers
provide users with highly-configurable parameters. Due to the high-dimensional parameter space and
complicated interactions of parameters, manual tuning of parameters is time-consuming and ineffective.
Building performance-predicting models for big data frameworks is challenging for several reasons: (1) the
significant time required to collect training data and (2) the poor accuracy of the prediction model when
training data are limited. To meet this challenge, we proposes an auto-tuning configuration parameters
system (ATCS), a new auto-tuning approach based on Generative Adversarial Nets (GAN). ATCS can build
a performance prediction model with less training data and without sacrificing model accuracy. Moreover,
an optimizedGenetic Algorithm (GA) is used in ATCS to explore the parameter space for optimum solutions.
To prove the effectiveness of ATCS, we select five frequently-used workloads in Spark, each of which
runs on five different sized data sets. The results demonstrate that ATCS improves the performance of
five frequently-used Spark workloads compared to the default configurations. We achieved a performance
increase of 3.5× on average, with a maximum of 6.9×. To obtain similar model accuracy, experiment results
also demonstrate that the quantity of ATCS training data is only 6% of Deep Neural Network (DNN) data,
13% of Support Vector Machine (SVM) data, 18% ofDecision Tree (DT) data. Moreover, compared to other
machine learning models, the average performance increase of ATCS is 1.7× that of DNN, 1.6× that of
SVM, 1.7× that of DT on the five typical Spark programs.

INDEX TERMS Big data, generative adversarial nets, spark, genetic algorithm, automatic tune parameters.

I. INTRODUCTION
Currently, multiple big data applications are required to mine
valuable information from the big data, but developing a
unique processing framework for each application is cost-
prohibitive. The typical method is to design a general big
data processing framework [1] that supports multiple big data
applications. To achieve high performance in every big data
application, framework developers provide users with several
highly-configurable parameters. For example, Spark [2] has
more than 180 parameters, and can be used for applications
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such as machine learning [3], graphics computing [2], [3],
stream computing [4], and database management [5].

Consequently, these general big data processing frame-
works have high-dimension parameter spaces, and offer sev-
eral selectable configurations for each application. Moreover,
the interactions of parameters is cumbersome. For exam-
ple, spark.executor.memory and spark.default.parallelism are
two common parameters of Spark: spark.executor.memory is
used to set the memory of the executor, and spark.default.
parallelism is used to set the number of tasks. If spark.
executor.memory is set to a small value while spark.default.
parallelism is large, the performance of Spark does not
significantly improve, or even decreases, because there is
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TABLE 1. Time cost of collecting training data.

FIGURE 1. Machine learning (ML)-based Model.

not enough memory to run many tasks while the program
is running. Also, every big data application requires a spe-
cific subset of hardware resources [6]. For example, Word-
Count requires a subset of resources based on CPU [7],
and TeraSort requires a subset of resources based on CPU
and memory [5], [7], so the optimal configuration of differ-
ent workloads (e.g., WordCount, TeraSort) is nonconformity.
Therefore, it is difficult for users to select the optimal con-
figuration parameters in such a large parameter space. As a
result, they often accept the default configurations, which are
inefficient or even unavailable.

Generally, users want to explore a set of optimal configu-
rations for applications, which requires rich experience and
in-depth knowledge of both frameworks and applications.
Manual tuning of parameters is time-consuming and labor-
intensive. It is thus urgent to explore an efficient and accurate
auto-tuning method for general big data processing frame-
works.

Current, parameter auto-tuning methods fall into three
classifications: Program Analysis (PA)-based, Machine
Learning (ML)-based, and Search-based [8]. The ML-based
approach has received significant attention recently, such
as DAC [5] and CBM [8]. Fig. 1 illustrates the ML-based
approach consisting of three components: a collecting model,
a predicting model, and a searching model. The collect-
ing data component is used to collect the execution time
of different workloads with different configurations. The
predicting model component uses various machine learning
algorithms to predict the performance (execution time) of any
set of configurations on a given workload. The searching
model component uses a heuristic algorithm [9] (e.g., GA or
RRS) to explore the optimum configuration in the parameter
space. The process of the ML-based approach is to train
the performance-prediction model using the training data
collected by the collecting model; then, the searching model

can search for optimum configurations based on the predic-
tion result of the predicting model.

However, using the ML-based approach for parameter
tuning for general big data frameworks faces several chal-
lenges. First, training an accurate performance prediction
model requires significant time to collect training data; the
accuracy is poor when the amount of training data is small.
Table 1 reports the time cost of collecting training data,
with four workloads, each having three different input sizes.
We find that it requires up to 55.96 hours to collect 500 sets
of PageRank training data, and most of the other workloads
take more than 20 hours. If the input data size increases,
more time is required. A job occasionally requires hours or
more, so collecting training data is time-consuming. Second,
it is difficult to explore a machine learning algorithm to
build a performance prediction model that shows sufficient
predictive performance on most workloads.

To overcome the challenges, we propose an auto-tuning
configuration parameters system (ATCS) based on Genera-
tive Adversarial Nets (GAN) [10] that can build a perfor-
mance prediction model with less training data and without
sacrificing model accuracy. ATCS consists of three compo-
nents: aRandomParameterGenerator (RPG), aPerformance
Prediction Generative Adversarial Nets (PPGAN) model,
and a Searching model. The function of the RPG is to ran-
domly generate configurations within the scope allowed by
cluster resources and big data frameworks. These configura-
tions will be configured on different workloads to collect data
for training PPGAN. PPGAN is a performance prediction
model based on GAN. Compared to other machine learning
algorithms (DNN, SVM, and DT ), GAN is superior at fitting
data distributions. GAN uses confrontation training to reduce
the complexity of the model, thus reducing the amount of
data required for training. Moreover, because of the huge
parameter space and complex interaction between parame-
ters, the exhaustive method is inefficient. Instead, an opti-
mized Genetic Algorithm (GA) [11] is used in the searching
model to search the parameter space for optimum solutions.

To prove the effectiveness of ATCS, we select five
frequently-used workloads in Spark, each of which runs
on five different sized data sets. The results demonstrate
that ATCS improves the performance of five frequently-used
Spark workloads compared with the default configurations.
We achieved a performance increase of 3.5× on average, with
a maximum of 6.9 ×. To obtain a similar model accuracy,
experimental results find that the quantity of training data
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required by ATCS is only 6% of DNN [12] data, 13% of
SVM [13] data, and 18% of DT [14] data. Moreover, com-
pared to other machine learning models, the average perfor-
mance increase of ATCS is 1.7× that of DNN, 1.6× that
of SVM, and 1.7× that of DT on the five typical Spark
programs.

In this paper, our contributions are as follows:
1) We design and implement a parameter auto-tuning sys-

tem on Spark to automatically configure Spark parameters.
2) We propose PPGAN, which can obtain a robust and

high-precision performance prediction model with minimal
training data compared to other machine learning models.

3) An optimized GA is used in ATCS to explore the opti-
mum settings of big data frameworks.

We conducted extensive experiments on the challenges of
auto-tuning parameters. The results demonstrates that quan-
tity of training data required by ATCS is significantly less,
and the performancemore stable for different workloads, than
other machine learning models, such as DNN, SVM, and DT.

The rest of this paper is organized as follows. Section II
introduces important related research. Section III describes
related background knowledge. Section IV explains the
design details of ATCS. Section V illustrates the implemen-
tation details of ATCS. Section VI presents the experimental
results. Section VII concludes the paper. Section VIII discuss
some issues and future works in the paper.

II. RELATED WORK
Automatically tuning configurations for big data frameworks
have attracted significant research in recent years. Previous
studies fall into three categories: Search-based [8] methods,
PA-based methods, and ML-based methods.

Search-based methods consider parameter tuning a
black-box optimization problem and search for parameter
spaces based on specific rules (e.g., high-probability, gra-
dient) to explore the optimal solutions. A recent related
study of the search-based method is BestConfig [15],
which uses the divide-and-diverge sampling method and the
recursive bound-and-search algorithm to automatically tune
configurations with limited resources for general systems.
Kumar et al. [16] propose a noise-gradient algorithm, called
simultaneous perturbation stochastic approximation (SPSA),
to optimize Hadoop’s performance.Moreover, several studies
explore the search-based method, such as ACTS [17] and
MRONLINE [18]. The search-based method is applicable
to parameter optimization problems of multiple frameworks,
without the need for corresponding high-level framework
knowledge, but requires significant time to statistically ana-
lyze samples and iteratively search the parameter space.

The PA-based method captures performance character-
istics using a fine-grained analysis of the run-time state
of the program, and creates a simulator to simulate the
job-execution process and predict performance. The perfor-
mance prediction model created by this method is also called
a cost-based model. MRTuner [19] proposes a PTC model
to evaluate the cost of parallel execution between different

tasks and designs an efficient search algorithm to identify
the optimal execution plan. RFHOC [20] proposes to divide
the map and reduce phases of the Hadoop jobs into multiple
elementary operations, and then a Random Forest is used to
assess the cost of each elementary operations. Herodotou and
Babu [21] propose a Profiler to analyze Hadoop programs
and design a What-if engine to predict the execution time
of these programs. MR-COF [22] generates a cost file by
monitoring and analyzing run-time behavior, and the PPM
assesses the performance of Hadoop jobs based on the cost
file. The PA-based method requires a fine-grained analysis
of the run-time state of each stage within the job to build
the simulator, which requires determining all factors that
may affect performance. However, as the big data process-
ing framework becomes more complex, this methods may
not capture highly-complex run-time characteristics. Conse-
quently, the PA-based method makes it difficult to model
complex systems or migrate between different systems.

The ML-based method is used to train the performance
prediction model using training data collected by the collect-
ing model. The searching model can then explore optimum
settings based on the prediction results from the prediction
model, which is related to our work. For example, Yu et al. [5]
propose a DAC composed of Hierarchical Modeling (HM)
and a GA. HM is a prediction model built using regres-
sion trees, and GA is responsible for searching for opti-
mal configurations in parameter space. ALOJA-ML [23]
uses multiple machine learning models (eg, Regression Tree,
Nearest Neighbors) to predict Hadoop program performance.
Bao et al. [8] propose a novel comparison-based prediction
model called CBM, built by a machine learning algorithm,
and use Latin hypercube sampling (LHS) [24] to gener-
ate and search for optimal parameter configurations of dis-
tributed message systems. Bei et al. [25] built a Spark pro-
gram performance prediction model by random forests and
explore the optimum configurations using a genetic algo-
rithm. Yigitbasi et al. [26] propose a SVM based method to
automatically tune the configurations of Hadoop programs.
Wang et al. [27] built a Spark program performance predic-
tion model by binary classification and multi-classification.
In the ML-based approach, we only need to consider the
configuration and execution time of the workload, ignoring
the details of the internal running processes. Therefore, this
method can be used for parameter-tuning for several frame-
works. However, to obtain an accurate performance predic-
tion model, a significant amount of training data needs to be
collected to train the model, which is very time-consuming.
ATCS differs from these studies because it can obtain a
high-precision performance prediction model with a small
amount of training data. Moreover, ATCS facilitates migrat-
ing between different systems.

III. BACKGROUND
A. OVERVIEW OF APACHE SPARK
Apache Spark [28] is a fast and versatile computing
engine designed by UC Berkeley AMP Lab for big
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data processing. It is an open-source general parallel frame-
work that resembles Hadoop. In Spark, Resilient Distributed
Dataset (RDD) [29] has been proposed, that can reduce a
large number of disk IO operations using iterative computa-
tions. Spark implements a fault-tolerant mechanism based on
lineage. The transformation relationship of RDDs constitutes
a Directed Acyclic Graph (DAG) [29], which is the lineage
that evolves between RDDs. If part of the calculation result
is lost, users only need to recalculate based on this lineage.
Spark is more suitable for data mining, machine learning and
other iterative intensive MapReduce algorithms. To support
more big data applications and take full advantage of the
resources of the cluster, Spark provides high-dimensional
configurable parameters.

In Spark, since most of the calculations are done in
memory, the bottlenecks of the program may be any
resource in the cluster, such as CPU, network bandwidth,
or memory. Therefore, the parameter tuning for Spark
is mainly for configuration parameters that are playing
important roles in the performance. Generally, parameters
playing important roles in the performance of Spark pro-
grams are shuffle-related, storage-related, schedule-related,
compression-related, or serialization-related.

For example, shuffle is an operation that has a large
impact on Spark performance: spark.shuffle.spill and
spark.shuffle.memoryFraction are two shuffle-related param-
eters. In the process of shuffle, if there are operations such
as sorting and aggregation, several data structures need to be
maintained in memory, which will use additional memory.
If the memory is not sufficient, some data needs to be
temporarily written to the external storage device and merged
into the final shuffle output file; otherwise, a JVMOOMerror
occurs. The parameter spark.shuffle.spill determines whether
to spill to an external storage device. If spark.shuffle.spill
is true, when the proportion of memory used in the shuf-
fle process out of the total memory exceeds the value of
spark.shuffle.memoryFraction, the data in the memory begins
to spill to the disk. Spill provides additional disk operations,
and the value of spark.shuffle.memoryFraction can adjust the
frequency of spill and the behavior of the GC.

Spark supports several big data applications, providing
powerful libraries including SparkSQL, MLlib, GraphX,
Spark Streaming, and so on. However, different applications
have different requirements for cluster resources. Therefore,
developers can only provide configurable parameters from
which users can select. For example, the Spark Streaming
program requires the job to be processed in seconds or mil-
liseconds. It requires less memory but more CPU processing.
We can set spark.executor.cores to increase the number of
CPU cores. We can also adjust spark.default.parallelism to
ensure that the number of parallel tasks is sufficient to fully
use cluster resources. In contrast, many machine learning
applications do not consider the time span of the job but
require lots of memory to hold the intermediate results of
the iterative calculations, thus requiring alternative parameter
tuning strategies.

In Spark, different applications have different requirements
for parameter configuration. Even in the same application,
if the size of processed data is different, then the required
parameter configuration is different.

B. GENERATIVE ADVERSARIAL NET
GAN [10] was proposed by Ian Goodfellow in 2014. The idea
of GAN comes from game theory, which is jointly improved
in the mutual game process and finally reaches the Nash equi-
librium [31]. As shown in Fig. 3, GAN consists of two com-
ponents: the generator G, which is responsible for generating
samples, and the discriminator D, which is responsible for
identifying whether the sample is a fake sample (generated by
the generator) or a real sample. The optimized target function
of a GAN is shown in Equation 1 [10], where D(x) is the
probability that x derived from the real samples rather than
from G, z represents a random noise variable, and G(z) is a
differentiable function represented by the generator.

During the GAN training process, we train D to maximize
D(x) to enable discriminatorD to identify fake samples gener-
ated byG as frequently as possible.We synchronously trainG
to minimize log(1−D(G(z))); the goal ofG is to generate fake
samples similar to real samples to deceive D. The process of
trainingG andD forms a dynamic ‘‘gaming process’’ and the
final equilibrium point is the Nash equilibrium point. Com-
pared with the neural network model, GAN has two different
networks instead of a single network, and the training process
adopts the confrontation training method; the gradient update
information of G in GAN comes from the discriminator D,
which provides much stronger gradients early in learning.

min
G

max
D

V (D,G) = Ex ∼ pdata(x)[logD(x)]

+Ez ∼ pz(z)[log(1− D(G(z)))] (1)

When GANs was first proposed, several challenges needed
to be solved by researchers. First, the process of trainingGAN
is too flexible and without guidance, resulting in training that
may not reach the Nash equilibrium. To solve this problem,
the most straightforward method is to provide the generator
clues that can help it achieve goals. For example, Conditional
GAN [32] was proposed based on the original GAN: for the
generator G, additional information is added in the genera-
tion process, which is equivalent to providing hints to G to
generate high-quality samples.

During the GAN training process, gradient vanishing and
mode missings issues are likely. The reason for the gradient
vanishing issue is that in the min-max game of G and D,
the optimization objective function is equivalent to optimiz-
ing the Jensen-Shannon (JS) divergence [39]. However, if the
distribution of the generated and training data differ greatly,
the JS divergence is a constant, and the optimization objective
function is also a constant, at which point gradient vanishing
occurs. Using JS and Kullback-Leibler (KL) divergence [40]
to measure the distribution of generated data and the dis-
tribution of training data will also cause a mode missing
issue. Wasserstein GAN [33] replaces the JS divergence with
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FIGURE 2. The ATCS framework.

Earth-Mover Distance and has solved the gradient vanishing
issue and mode missing issue.

The advantage of GAN is the ability to generate false
data that appears similar to real data using random noise.
If the generated fake data is close enough to the real data,
the generated data can be used instead of the real data.
In many real-world environments, collecting real data is
time-consuming and labor-intensive, and we can use GAN to
generate simulation data to save costs. For example, during
training a machine learning model, collecting and cleaning
training data will take up most of our time. At this point,
we can use GAN to create a simulator to generate training
data.

In ATCS, we modified the structure of the generator
in GAN and used it as a performance prediction model.
We replaced the random noise of the input generator with
the configuration parameters. The timewas recorded from the
generated data as a prediction result of the prediction model.

IV. DETAIL OF DESIGN
ATCS is a method for automatically tuning the parame-
ters of a general big data processing framework on a given
cluster. The framework of ATCS illustrated in Fig. 2 con-
sists of three functional components: a RPG, PPGAN, and
a searching model. The subsequent content will introduce
the detailed design and functionality of PPGAN and the
searching model, and the RPG will be introduced in the
implementation section.

A. PERFORMANCE PREDICTION USING GENERATIVE
ADVERSARIAL NETS
In this section, we will detail how to create a performance
prediction model using GANs. The model’s main function
is to predict the corresponding performance value for any

parameter configuration on a given cluster. This performance
value is usually expressed by the execution time of the job.
Equation 2 illustrates the definition of the performance value,
where r represents the hardware and software resources of
the computing platform, d represents the size of the data
set, w represents the workload, conf represents the parameter
configuration, and t represents the execution time of jobs.
In ATCS, r is a constant, and we study the effect of per-
formance on different workloads wm (m = 1, 2, . . . , n) with
different parameter configurations confi (i = 1, 2, . . . , n) and
data set sizes dj (j = 1, 2, . . . , n).

t = f (r, d, w, conf ) (2)

In the performance model, there are many selectable algo-
rithms, such as the common GAN, ANN [12], SVM [13], and
Regression Tree (RT) [14]. When training these four machine
learning models, we choose the commonly used loss function
MSE. These algorithms have advantages and disadvantages,
we primarily consider two aspects: the accuracy of the model
and the cost of training the model.

In ATCS, we use a GAN to build the performance pre-
diction model. This is determined by the elegant design
structure of GAN, which is designed to transform a com-
plex regression problem into two simple two-class problems.
Therefore, it is possible to use minimal training data while
achieving high precision. The framework of a GAN illus-
trated in Fig. 3, reveals a training method that differs from
other neural networks. The update of G is obtained from
the back-propagation gradient of D. The principle training
process of GAN was introduced in Section III.B, so here
we will introduce how to apply GAN to the performance
prediction model of the big data processing framework.

First, we use RPG to automatically generate a config-
uration conf k and then place conf k into the generator G.
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FIGURE 3. Performance prediction model framework.

Algorithm 1 Mutation
Input: A population P = {conf1, conf2, . . . , confk}, muta-

tion probability threshold PM
Output: A new population P′ = {conf 1

′, conf 2
′, . . . ,

conf k
′}

1: len = length(conf );
2: define a constant C;
3: for each conf ∈ P do
4: define a random i ∈ [0, len];
5: define a random variable R;
6: if R < PM then
7: if conf [i] + C does not exceed the cluster resource

range then
8: conf[i]+ =C;
9: end if
10: end if
11: end for
12: return P

During the confrontation training process for the model,
the role of G is to continuously predict the execution time
of conf k , then join the execution time t and conf k becoming
fake samples. The role of the discriminator D is to contin-
uously identify whether the input samples are real samples
or fake samples. As the training progresses, when the GAN
reaches equilibrium, D cannot determine whether a sample is
from the real sample set or the fake sample generated by G.
At this point, the fake samples generated by G can replace
the real samples, resulting in a configuration conf k that can
be arbitrarily placed into G which can accurately predict its
execution time t . Finally, G can be used as our performance
prediction model.

B. SEARCHING MODEL
The big data processing framework has a large parameter

space; for example, Spark has more than 180 parameters.
It is impossible to enumerate configurations in the applica-
tion because of a large number of parameters and parameter
ranges that vary with the hardware environment. Therefore,
a searching model component is required that uses a heuristic
algorithm to explore the optimum solution in the parameter
space.

Common heuristic search algorithms include: the GA,
the hill climbing algorithm (HC) [34], the simulated anneal-
ing algorithm (SA) [35], the ant colony optimization
(ACO) [36], and the recursive random search (RRS) algo-
rithm [37]. The HC algorithm is simple to implement,
but it is prone to arriving at the local optimal solution.
The SA algorithm parameters are difficult to control, with
no guarantee that they will converge to the optimal value
simultaneously, generally requiring multiple attempts. The
ACO algorithm requires significant calculation and time
to solve. The RRS algorithm runs inefficiently, takes sig-
nificant time to complete, and requires a large memory
space.

In ATCS, the optimized GA is used to explore the optimum
solution in Spark parameter space. We use prior knowledge
of parameter tuning to optimize key operations in traditional
genetic algorithms, such as crossover and mutation opera-
tions, to improve efficiency of searching for optimal con-
figurations. A GA is a computational model that simulates
the ‘‘survival of the fittest’’ mechanism in the process of
biological evolution, and it is often used to search for the
global optimal solution in other fields. In GA, individuals in
a population can be calculated and compared simultaneously,
and this potential parallelism enables GA to converge rapidly.
A GA consists of three core operations: selection, crossover
and mutation. All these core operations use the probability
mechanism to perform the ‘‘survival of the fittest’’, so GA
has good randomness, and it is not easy to fall into a local
optimum. Moreover, a GA uses an evaluation function to
inspire the search, that makes GA simple and robust.

In the mutation operation, we change the random muta-
tion operation in the traditional genetic algorithm to linear
addition operation within the range of available resources.
The pseudo code of the mutation operation is presented in
Algorithm1. In lines 6 to 8, if conf [i]+C does not exceed the
cluster resource range, the mutation operation will proceed
in the direction of increasing resources. This can increase the
subset of resources contained in each configuration, thereby
improving system performance.

As presented in Algorithm 2, we will describe how to use
an optimized GA to find the optimal parameter configuration.
We randomly generate several parameter configurations and
initialize the population P = {conf1, conf2, . . . , confk}.
The performance prediction model PPGAN can calculate
the fitness value (the execution time corresponding to each
parameter configuration) of each individual (parameter con-
figuration) in the population, and then through the selection,
crossover and mutations operation in the genetic algorithm to
obtain a new population P′ = {conf 1

′, conf 2
′, . . . , conf k

′}.
We then recalculate the fitness value of each individual in
the new population P′, and continue selection, crossover, and
mutation operations again. We loop this process until the
optimal parameter configuration Ci = {ci1, ci2, . . . , cin} that
satisfies the condition is found. Throughout the execution of
the algorithm, we need to determine the size of the population
and the number of cycles based on prior knowledge and
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Algorithm 2 The Optimized Genetic Algorithm
Input: A population P = {conf1, conf2, . . . , confk},

mutation probability thresholdPM , crossover probability
threshold PC , number of cycles Count .

Output: The optimal configuration Ci = {ci1, ci2, . . . , cin}
1: initial population P = {conf1, conf2, . . . , confk};
2: loading performance prediction model PPGAN ;
3: calculate the fitness value of P;
4: l = 0
5: while l < Count do
6: define random variables C , M ;
7: selection;
8: if C < PC then
9: crossover;
10: end if
11: if M < PM then
12: mutation;
13: end if
14: A new population P′ = {conf 1

′, conf 2
′, . . . , conf k

′}
15: calculate the fitness value of P′;
16: l = l + 1;
17: end while
18: return Ci = {ci1, ci2, . . . , cin}

actual situations, balancinge time consumption and search
performance.

V. IMPLEMENTATION
In this section, we introduce the implementation details of
ATCS on Spark 2.2.1. To improve our code developing effi-
ciency and make full use of third-party open-source toolkits,
in ATCS, we use Python to implement functional compo-
nents. Moreover, PPGAN is implemented with Keras because
it facilitates the design and construction of neural network
models.

A. PARAMETERS SELECTION
Spark has more than 180 parameters, but not all of them
have an impact on performance, such as, spark.app.name,
which sets the application name and has no effect on the
performance of the application. There is no need to con-
sider such parameters when turning parameters. In ATCS,
by counting the frequency of each Spark parameter, we select
20 frequently-used parameters that have a large impact on
performance, as presented in Table 2. These selected parame-
ters have an impact on shuffle operations, compression oper-
ations, serialization operations, runtime behavior, network,
and scheduling.

For example, spark.executor.memory is used to set the
memory of each Executor process. The size of the Executor
memory often determines the performance of Spark jobs
and is directly related to common JVM OOM error. The
spark.reducer.maxSizeInFlight is used to set the buffer size
of the shuffle read task, and this buffer determines how much
data can be pulled each time. The spark.default.parallelism is

also an important parameter for setting the default number of
tasks for each phase. If it is not set, the performance of Spark
jobs may be affected. A common mistake made by many
Spark users is not setting this parameter. When this happens,
Spark will set the number of tasks according to the number of
blocks of the underlying HDFS. The default is that a HDFS
block corresponds to a task. Generally speaking, the default
number of Spark settings is too small. Thus, the parameters of
the Executor set previously will be discarded. No matter how
many Executor processes exist and how large the memory
and CPU are, whether one or ten tasks, 90% of the Executor
process may not be executing tasks, which is a waste of
resources.

B. RANDOM PARAMETER GENERATOR
The role of the RPG is to collect enough training data for
the performance prediction model. To accurately learn the
performance variation characteristics of the same or different
workloads under different configurations, PPGAN needs to
collect abundant training data. Collecting training data is a
time-consuming and labor-intensive process. For the same
workload, to ensure the model accuracy, it is often necessary
to collect execution times from hundreds or even thousands
of different configurations. The RPG includes the Parameter
Generator (PG) and Input Data Size.

PG: A typical big data processing framework, such as
Spark or Hadoop, has a large parameter space. It is impossible
for us to enumerate the parameters of each group. Therefore,
we can use the random sampling method to generate random
parameter configuration Ci = {ci1, ci2, . . . , cin} in the actual
range of hardware resources, with each group Ci containing
the n parameters. For each workload, each Ci can obtain a
corresponding performance value ti. To train the model, it is
necessary to generate m configurations for each workload,
as presented in Equation 3, and collect the execution time of
each workload on the given cluster with these configurations.

Pj = {C1, C2, . . . , Cm} j = 1, 2, . . . , m (3)

Input Data Size: the purpose of this component is to pro-
vide the size of each job input dataset. The input data size dose
not belong to a configurable parameter of the big data pro-
cessing framework. However, in automatic parameter tuning
the input data size has the greatest impact on the performance
of the workload. For instance, in Spark, the input dataset size
is one of the foremost factors affecting performance because
Spark is extremely sensitive to the dataset size. We define
a configuration as in Equation 4, which consists of Pk and
Sk . Pk represents the parameters generated by PG, and Sk
represents the size of the dataset.

confk = {Pk , Sk} k = 1, 2, . . . , k (4)

VI. EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT
In our experiments, we used three nodes to build a Spark
cluster environment: one master node and two slaves nodes.
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TABLE 2. 20 Spark configurable parameters we selected in ATCS and their descriptions.

Each node is equipped with an Intel Xeon CPU E5-26700
2.60GHz 16-cores processor and 64 GB memory. There are
48 cores and 192GB ofmemory in the cluster. The OS version
is Red Hat Enterprise Linux Server release 6.2 (Santiago).
In the cluster, the big data processing framework is Spark
2.2.1, which covers four common applications in the big data
domain, including machine learning, graphics computing,
SQL queries, and Spark streaming. We take the SPARK-
BENCH [38] as the benchmark of our experiment.

B. WORKLOAD AND ERROR RATE
To observe the performance of Spark, we collect execu-
tion times of different workloads in different configurations
and different input dataset sizes. As presented in Table 3,
in ATCS we collected training data for five different work-
loads, each with five different input dataset sizes. These
workloads are extensively used to assess the performance of
the Spark framework, and they are provided by the SPARK-
BENCH platform. For example, PageRank is a memory- and
CPU-intensive operation, with many shuffle operations while
running on Spark.

TABLE 3. Workloads and data size.

For the predictive performance model, we desire that the
predicted value is close to or even equal to the true value,
but this is not supported. In production practice, due to the
limitations of the algorithm model itself, the predicted value
we obtain tends to have a certain distance from the true value.
To quantify this distance, we define the error rate as presented
in Equation 5:

err =

∣∣tpre − treal ∣∣
treal

× 100% (5)
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FIGURE 4. Error rate varies comparison.

In Equation 5, tpre is the predicted execution time of a job,
treal is the actual execution time of the job, and err represents
the relative difference between the two. The smaller the value
of err , the closer the predicted execution time is to the actual
execution time, thus, the more accurate the prediction model.

C. RELATIONSHIP BETWEEN TRAINING DATA VOLUME
AND MODEL ERROR RATE
Fig. 4 illustrates the variation of the predictive model error
rate with the amount of training data. As illustrated in Fig. 4
(a), for the KMeans workload, the error rates of the per-
formance prediction models built by DNN, SVM, and DT
gradually decrease as the amount of training data increases.
When the training data reaches 4800, the error rates of these
models becoming stabilize. The error rate of the model built
with GAN is stable between 31% and 32% with training data
between 100 and 5400 sets. The performance model built by
DNN and DT uses dozens of times the amount of training
data, but the accuracy of the model obtained is lower than
the performance prediction model built by GAN. Using the
performance model built by SVM, to obtain a model with
comparable accuracy, the amount of training data is also six
times that of GAN. Comparing Fig. 4 (a) and Fig. 4 (b),
the model built by SVM in Fig. 4 (a) performs better but
is worse in Fig. 4 (b). In contrast, DT, which performs poorly
in Fig. 4 (a), performs well in Fig. 4 (b). The performance
of DNN is worse than GAN in both Fig. 4 (a) and Fig. 4 (b).
Therefore, comparing themodels built by the four algorithms,

FIGURE 5. The average prediction error of models built by GAN, ANN,
SVM, and DT.

we conclude that the performance of the model built with
GAN is excellent and relatively stable supporting our choice.

D. MODEL ACCURACY AND ROBUSTNESS
Accuracy and robustness of the performance prediction
model are important indicators to consider. As illustrated
in Fig. 5, we tested the error rate of the performance model
built by GAN, DNN, SVM, and DT for training data quan-
tities of 1000, 2000, and 3000. As illustrated in Fig. 5 (a),
the average error rate of the performance prediction model
built by GAN is 31%, which is lower than the average error
rate of 42% and 38% of the performance model built by DNN
and DT and equivalent to that of SVM. However, from the
experimental data in Fig. 5 (a), when the training data volume
is less than 600, the performance of GAN is significantly
better than that of SVM. Fig. 5 demonstrates again that using
GAN to build a performance prediction model, we can train a
higher-precision model with a small amount of training data.
As shown in Fig. 5, the prediction performance of GAN is
more stable than DNN, SVM, and DT.

E. PERFORMANCE IMPROVEMENT
Fig. 6 shows the increases of five different workloads with
ATCS over DNN, SVM, DT, and default configurations.
As illustrated in Fig. 6, ATCS dramatically improves the
performance of five different workloads (KMeans, PageR-
ank, MatrixFactorization, TriangleCount, and TeraSort)
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FIGURE 6. Increase comparison.

compared to default configurations. We achieved a perfor-
mance increase of 3.5× on average, with amaximumof 6.9×.
This indicates that the default configuration performance is
poor for common Spark applications because the resources
of the Spark cluster cannot be fully utilized. For instance,
the default value of spark.executor.cores is 1, and in our
experiment, the total number of cores for a slave node is 16.
If the default configuration is used when submitting jobs to
the cluster, the remaining 15 coreswill not be used. Therefore,
the resources of the cluster are largely wasted.

As illustrated in Fig. 6 (a), the optimal configuration found
byATCS performs best on KMeans compared to DNN, SVM,
and DT. The increase of ATCS over DNN is 1.3× on average
and up to 1.6×. The increase of ATCS over SVM is 1.2× on
average and up to 1.7×. The increase of ATCS over DT is
1.1× on average and up to 1.4×.

Fig. 6 (b) reports the performance improvements of the
four models on PageRank. As expected, we use ATCS for
parameter tuning to improve the performance of PageRank
over the other three methods. The increases of ATCS over
DNN, SVM, DT are 1.2×, 1.1×, and 1.2× on average.

Fig. 6 (c) illustrates the performance improvement of the
four models on MatrixFactorization. As expected, DNN,
SVM, and DT do not perform well. ATCS achieves an aver-
age of 3.1×, 2.1×, and 2.1× increase over DNN, SVM, and
DT. The maximum increase is 5.9 ×.

Fig. 6 (d) illustrates the performance improvement of Tri-
angleCount tuned byATCS against that tuned byDNN, SVM,
and DT. The increases of ATCS over DNN, SVM, and DT are
1.9×, 2.3×, and 3.1× on average.

As illustrated in Fig. 6 (e), on the workload TeraSort, ATCS
achieves an average of 1.2×, 1.1×, and 1.2× increases over
DNN, SVM, and DT.

Moreover, as illustrated in Fig. 6, the larger the input data
set of different workloads, the more prominent the contri-
bution of ATCS because there is a limit to the performance
optimization of the Spark framework through parameter tun-
ing. This upper limit is the theoretical minimum execution
time for processing a job on the Spark framework. This
shortest time contains the overhead of the Spark framework
itself. When the input data volume of the workload is small,
the overhead of the Spark framework itself accounts for a
large proportion, and the parameter tuning effect is not obvi-
ous. In contrast, when the input data volume of the workload
is large, the overhead of the Spark framework itself only
accounts for a small part of the total execution time, and the
parameter tuning effect is more obvious.

VII. CONCLUSION
In this paper, we present ATCS, a system for automatic tuning
of parameters in big data processing frameworks. To reduce
the training data volume and improve the accuracy of the
performance prediction model, we propose a performance
predictionmodel based onGAN.Moreover, to collect enough
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training data, we propose a RPG that can randomly generate
configurations within a given cluster resource. Finally, we use
an optimized GA to search for optimal configurations in the
parameter space. Extensive experiments over ATCS confirm
that it can reduce the amount of training data, and we achieve
on average a 3.5× and up to a 6.9× performance increase
compared to the default configurations. Finally, compared
to other machine learning models, the average performance
increase of ATCS is 1.7 × of DNN, 1.6 × of SVM, and
1.7 × of DT on the four typical Spark programs.

VIII. DISCUSSION AND FUTURE WORK
In this paper, we have only implemented ATCS on Spark.
This is because ATCS is essentially framework-independent,
and it is applicable to any big data framework that requires
parameter tuning. When implemented on other big data
frameworks, such as Hadoop, we only need to reselect the
parameters that need to be tuned, and then repeat the process
of collecting training data, training the model, and searching
for the optimal parameter configuration.

In the future, we will explore methods to promote the
accuracy of GAN prediction and aim to study themigration of
models between different workloads. This will further reduce
the overhead of collecting training data and help us build a
more lightweight automatic tuning system.
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