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ABSTRACT Feature extraction is an essential part of automatic speech recognition (ASR) to compress raw
speech data and enhance features, where conventional implementation methods based on the digital domain
have encountered energy consumption and processing speed bottlenecks. Thus, we propose a Mixed-Signal
Processing (MSP) architecture to efficiently extract Mel-Frequency Cepstrum Coefficients (MFCC) features.
We design MSP-MFCC to pre-process speech signals in the analog domain, which significantly reduces the
cost of the analog-to-digital converter (ADC), as well as the computational complexity of the digital back-
end. Moreover, MSP-MFCC eliminates the time-consuming Fourier transform in the conventional digital
realization by improving processing flow. We fabricated the analog part based on 180nm CMOS mixed-
signal technology, then measured the chip. The measured results show the energy consumption of MSP-
MFCC is 0.72 pJ/frame, and the processing speed is up to 45.79 us/frame. MSP-MFCC achieves 95%
energy saving and about 6.4x speedup than state of the art. Further, by using the features extracted by
MSP-MFCC, speech recognition simulation reaches the accuracy of 98.2%, which also keeps the leading
performance to its current counterparts. The proposed MFCC extractor is competitive for integration in the
ultra-low-power always-on wearable speech recognition applications.

INDEX TERMS Mixed signal processing architecture, energy-efficient feature extraction, mel-frequency

cepstrum coefficients (MFCC), wearable speech recognition application.

I. INTRODUCTION

Speech interaction has become an essential way of human-
machine interaction [1], [2], in which, automatic speech
recognition (ASR) plays a vital role in perceiving speech
signals. In scenarios such as energy-constrained, network
restricted wearable devices, energy-efficient speech recog-
nition is important for the working and standby time of
the devices. However, always-on ultra-low-power wearable
speech recognition is still a challenge for these devices.
Thus, the energy-efficient fast-processing ASR system has
always been widely concerned [3]-[7]. As shown in Fig. 1(a),
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the current ASR system is composed of feature extraction
and recognition modules. The feature extraction costs the
most energy consumption in specific tasks [3], [8], [9] and
determines the recognition performance even in the end-to-
end speech recognition system [10]. In addition, the feature
extraction part is always-on in the recognition or wake-up
tasks, which is energy-consuming. Thus, we focus on the
feature extraction of the wearable speech recognition system
in this work.

Inspired by the human hearing mechanisms, Mel-
Frequency Cepstrum Coefficients (MFCC) feature is pre-
sented and becomes the most widely used feature [4] due
to its high accuracy in this field. However, in the ASR
tasks for mobile devices, the entire MFCC feature extraction
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FIGURE 1. (a) Conventional feature extraction process incurs significant
workload on the Analog-to-Digital Converter (ADC) and Fast Fourier
Transform (FFT), whereas (b) MSP-MFCC alleviates the workload of ADC
and eliminates FFT.

Recognition

process accounts for nearly 32% to 93% of system power
consumption [3]-[5]. Therefore, a lot of works have been
continuously proposed to increase the efficiency of extracting
MEFCC feature. Fully considering the arithmetic property,
Jo et al. [4] proposed an energy-efficient floating-point
MEFCC extraction architecture based on field-programmable
gate array (FPGA) with the improvement of frequency
transformation and optimization of bit-width. Some other
works [11], [12] about efficient MFCC extraction are also
proposed based on FPGA for low-cost speech recogni-
tion systems. In addition, efficient parallel implementation
of MFCC feature extraction on graphics processing units
(GPU) [13] and digital signal processor (DSP) [14] are pre-
sented showing faster extraction than CPU implementation.
It has been reported that if the front-end acoustic algorithm
executed on dedicated custom hardware, the energy con-
sumption can be reduced prohibitively, and then the battery
life can be significantly extended [15]. Therefore, there are
also some works focusing on digital application specific
integrated circuit (ASIC) [5], [6] realization to achieve higher
energy-efficiency and faster processing.

However, all the previous works are implemented in
the digital signal domain, where analog-to-digital con-
verter (ADC) would consume much energy to process a large
amount of redundant raw data from the microphone [3]-[8].
Besides, the indispensable Fast Fourier Transform (FFT) in
conventional digital signal processing realization costs most
processing time [13]. Some work [16]-[18] proposed the
analog feature extraction method to avoid A/D conversion.
Nevertheless, in their work, the simple features extracted in
the analog domain are only suitable for simple tasks such
as voice activity detection. These simple features also lead
to poor recognition accuracy when it comes to the auto-
matic speech recognition application. In summary, ADC and
the FFT operation have been the energy consumption and
processing speed bottleneck of the entire MFCC feature
extraction process.

To achieve more energy-efficient and faster feature extrac-
tion for wearable automatic speech recognition, a novel
mixed-signal processing architecture to extract MFCC
features (MSP-MFCC) is proposed here. As shown
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in Fig. 1(b), we maintain that it is more natural and faster to
remove unnecessary frequency domain transform operations
in acoustic features extraction. Moreover, without sampling
and quantization, the acoustic features extracted in the analog
domain are lossless and free of sampling noise. In this paper,
MSP-MFCC is investigated, improved and implemented
from the disciplines of architecture, algorithm, and silicon
proven:

1) Architecture Techniques: Proposed mixed-signal pro-
cessing architecture achieves higher efficiency and
faster speed than state of the art. Moreover, the ADC
bottleneck problem that has been neglected by con-
ventional works is investigated and eliminated in this
architecture.

2) Algorithm Techniques: The processing flow of conven-
tional MFCC realization is revised. The proposed time-
domain energy distribution extraction method avoids
time-consuming and energy-hungry FFT operation.

3) Silicon Verifications: These techniques include the
area-saving stair-stepping high-pass filter operation
and the framing operation designed for mixed-signal
realization. We further study the performance and
improve the flexibility of the analog processing cir-
cuit according to various real applications. The analog
processing parts of MSP-MFCC are fabricated and
measured to evaluate the feasibility. According to the
experiment results, MSP-MFCC achieves the best per-
formance so far, with 95% energy saving and about
6.4x speedup than state of the art, as well as the
comparable recognition accuracy.

The rest of this paper is organized as follows. We introduce
the basic theory of the commonly used MFCC algorithm and
hardware implementation analysis in Section 2. The detailed
description of the MSP-MFCC is presented in Section 3.
Section 4 shows the measured performance of MSP-MFCC
and the performance comparison with conventional archi-
tecture. Section 4 also shows the fabricating results of the
essential components in the MSP-MFCC. The conclusion is
drawn in the final part of Section 5.

Il. MFCC ALGORITHM INTRODUCTION AND HARDWARE
IMPLEMENTATION ANALYSIS

A. CONVENTIONAL MFCC EXTRACTING METHOD

The commonly used MFCC extraction process is shown
in Fig. 2 [19], including a microphone in the front-end,
analog-to-digital converter, and feature extraction in the back-
end. The following sections detail the MFCC algorithm
and the conventional implementation process. The working
mechanism of the human auditory system resembles a set of
filters, which could process the acoustic signal at different
frequencies. As a kind of feature, the MFCC takes the con-
cern of that property and could describe the signals’ energy
distribution in the Mel-frequency domain [20].

1) FRONT-END AND DATA CONVERSION
Conventionally, due to processing in the digital domain,
an ADC with at least the sampling rate of 16 kHz and the
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precision of 16-bit [3]-[7] [11]-[14] is required to convert
the analog speech signals to the digital signals. In the conver-
sion, the continuous input speech signal v(t) is sampled and
quantized into the discrete signal v[n].

2) PRE-EMPHASIS AND FRAMING MODULE

In order to compensate the high-frequency damping caused
by the blurring effect of the lip, the quantized input voice
is then pre-emphasized by a High-Pass Filter (HPF) to bal-
ance the amplitudes of low frequency and high frequency.
As shown in Fig. 3, the spectral amplitude of the speech
signal is well balanced after pre-emphasis. Then the framing
operation with the half overlap [4] is performed to keep the
invariance of features and the smoothness of the signal in
each frame. All subsequent operations are performed frame
by frame.

3) FREQUENCY-DOMAIN TRANSFORMATION

In order to extract the energy distribution on the spectrum,
FFT is performed to transform the time domain signal into the
frequency domain, and square process (1) is applied here to
transform the amplitude spectrum of the signal to the energy
spectrum.

X [K] = |FFT (x [n]) |*. (0

4) MEL-FILTERS AND POST-PROCESSING

The spectrum of Mel-filters is shown in Fig. 4. According
to the character that the human ear is more sensitive to low-
frequency voice than the high one, the bandwidth of Mel-
filters widens gradually with the increase of frequency to
extract sufficient energy information in the low-frequency
bands. The bounds of each filter are calculated by the fixed
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FIGURE 4. Spectrum of Mel-filters with gradually widened bandwidth
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equation between the frequency and Mel-frequency [21]. The
post-processing operations including logarithmic multiplying
and Discrete Cosine Transformation (DCT) are performed
next to transform the filtered signals to MFCC features. as
follows:

K
Ciml =3 LogX keosZEE D)y g
k=1

K
where m = 1,..., M is the length of MFCC of each frame,
X[k] is the output energy of the Kth band, and C[m] is the
output feature.

B. HARDWARE IMPLEMENTATION ANALYSIS
The energy-efficient feature extraction process, e.g. the
human auditory system, does not have an ADC for speech
sampling and quantizing. Obviously, not all raw speech sig-
nals from the microphone are equally significant. It is energy-
hungry to indiscriminately convert the raw redundant analog
speech into a digital signal through a high sampling rate and
high precision ADC. More than that, depending on the over-
sampling characteristic of the sigma-delta ADC [5], a sam-
pling frequency well above the maximum input frequency is
required, which results in more energy consumption.
Conventional work rarely pays attention to the energy con-
sumption of the microphone and ADC front end. However,
an ADC with the high sampling rate and the high preci-
sion introduces not only significant energy consumption but
also redundant data [19]. As shown in Fig. 5(a), it is the
comparison of power consumption among modules in the

VOLUME 8, 2020



Q. Li et al.: MSP-MFCC: Energy-Efficient MFCC Feature Extraction Method With MSP Architecture

IEEE Access

Micro MFCC
ADC phone Back-end
o 560uW 1250W  110pW
. 70% 16% 14%
consumption
Post- Pre-
FFT processing  processing
» ®) 89.55us 19.325 14.36us
rocessing 73% 16% 1%
Time

FIGURE 5. (a) Power consumption of the entire MFCC extraction including
Microphone [9], ADC [8] and MFCC back-end [5]; (b) Processing time of
each part in conventional MFCC extraction back-end [13].

entire feature extraction process, where the values of each
module refer to state of the art [5], [8], [9]. It can be seen
that the ADC occupies most of the power consumption in the
conventional feature extraction process. Unfortunately, as the
process advances and the CMOS size shrinks, the Sigma-
delta ADC will consume more energy to achieve the same
performance [22], [23]. In other words, the ADC bottleneck
problem will become increasingly serious.

Besides, as shown in Fig. 5(b), computationally expen-
sive FFT costs almost 73% of the total processing time in
MECC extraction back-end [13]. The physical meaning of
MEFCC is the energy distribution of the input signal in differ-
ent frequency bands. For conventional systems, this means
performing FFT to convert the time-domain signal to the
frequency domain and then squaring the spectrum amplitude.
Therefore, the time-consuming FFT is indispensable for con-
ventional realization. That is, in the back end of the traditional
MEFCC extraction process, FFT transformation becomes the
bottleneck. In summary, the key to achieving energy-efficient
and fast MFCC feature extraction is eliminating the FFT
operation while reducing the processing cost of the ADC.

IlIl. MSP-MFCC ARCHITECTURE AND
COMPUTATION UNITS
A. ALGORITHM TECHNIQUES
Actually, instead of FFT, energy distribution can also be
extracted directly by filtering, squaring and integrating the
input signal in the time domain using a set of band-pass
filters and squarers. The FFT is necessary for traditional
signal processing considering the convenient signal analysis
in the frequency domain. However, the frequency band of the
MEFCC is fixed [4], [20], the time domain filter configuration
does not need to be analyzed and changed after design. Thus,
it is reasonable and equally convenient to obtain the energy
distribution by filtering, squaring and integrating in the time
domain. Moreover, processing the input signal in the time
domain has the same result as conventional digital realization,
which is explained as follows:

For each filtered frame Fj, its signal x;(#) and its FFT result
Xi(w) satisfy the Parseval’s theorem [24]:

—+00 1 “+o00
Ei= / i (OP df = — / X @Pdo ()
27 J_ oo

—00
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FIGURE 6. (a) Original signal, (b) energy distribution, and (c) MFCC
extraction results by frequency-domain (left) and time-domain
integration (right).

whereE; is the energy of frame F;. That is, integration in
the frequency domain is 27 times as in the time domain,
which means the energy distribution of the input signal can
be calculated by integration in the time domain without
frequency transformation. As an example shown in Fig. 6,
we extract the energy distribution for the input speech “1”
in the time domain and the frequency domain respectively.
The extraction results obtained by the two extraction methods
are identical. The constant 27 is uninfluential to the MFCC
features because DCT operation could transform the constant
into the direct-current component of coefficients.

B. ARCHITECTURE TECHNIQUES

The FFT bottleneck has been eliminated by time-domain
energy distribution extraction. In order to solve ADC bottle-
neck problems at the same time, we propose the mixed-signal
processing architecture for MFCC feature extraction. The
detailed processing flow of MSP-MFCC is shown in Fig. 7,
where the operations, including Mel-filters, squaring, and
low-pass filter, are put into analog front-end. The principle
of architecture is as follows.

1) PRE-EMPHASIS MODULE

After the low noise amplifier, pre-emphasis is necessary to
enhance the energy in high frequency. Conventional works
perform the pre-emphasis by passing through a high-pass
filter, the spectrum of which is shown in Fig. 8(a). As shown
in Fig. 8(b), in order to simplify the filtering operation, the
stair-stepping high-pass filter operation with increasing gain
from low frequency to high frequency is considered here.
This modification results in almost no degradation of the
recognition accuracy, but greatly simplifies the pre-emphasis
implementation in the analog domain.

2) ANALOG MEL-FILTERS MODULE

According to the conventional realization method [20],
twenty passbands are chosen here to filter the signal at differ-
ent frequency bands. That is, twenty band-pass filters (BPFs)
should be performed next. Five BPFs with the same gain
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(a) Original signal after pre-emphasis; (b1) Passing through band-pass
filters with center frequency of 170Hz then (b2) through squarer;

(c1) Passing through band-pass filters with center frequency of 3.6kHz
then (c2) through squarer; After the squaring operation, the average
energy of the signal is transferred to DC value.

are used here to form a group. Such the four groups with
different gain can perform both the band-pass filtering and
the stair-stepping high-pass filtering. Thus, no extra circuits
are needed in this stair-stepping filter, which will be explained
in Section III.C.

3) ENERGY DISTRIBUTION EXTRACTION

As shown in Fig. 9(bl), 9(cl), after passing through the
band-pass filters with the center frequency of 170Hz and
3.6kHz, the signals in the corresponding frequency bands are
filtered out. For each passband, the filtered signal is then
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sent to squarer to extract the energy density. Any signal can
be decomposed into the sum of multiple single-frequency
signals [24]. Therefore, in order to explain the principle of
squarer clearly, we analyze the squaring process of a single-
frequency signal Asin(wt), where A and w are the amplitude
and frequency of the signal. The squaring process is defined
as:

(Asin(wt))> = A%(1 — cos Qwt))/2 )

where A%/2 represent the energy density of the signal. The
value of DC is the energy density of the signal. That is,
the energy density of the signal is extracted by squaring the
signal in the form of direct-current (DC) valueA? /2. In this
way, the average energy value of the signal in this frequency
can be extracted simply by low-pass filtering. As shown
in Fig. 9(b2), 9(c2), after the squaring operation, original
spectrums are moved to the DC and the double frequency
positions.

4) DATA CONVERSION

After identical signal processing, twenty energy values of
different bands for each frame are extracted without time-
consuming FFT operation. In order to realize real-time speech
recognition, it is necessary to extract the energy value in
a half-frame time. So that the outputs’ rate of change is
80Hz because half of the frame duration is 12.5ms. Thus,
an ultra-low sampling rate ADC could be adopted here with
lower energy consumption compared with the conventional
16 kHz, 16-bit ADC. Besides, compared with conventional
400 samples per frame, the data size here is only 20 samples
per frame, which means a significant reduction for the latency
of ADC in MSP-MFCC. In summary, extracting the energy
distribution on the time-domain signal in the analog domain
is a natural, low-cost, and fast way to process the voice signal.

5) POST-PROCESSING

As described in Section II, the input voice signal is pre-
emphasized and framed first before being sent into filters.
There is half overlap between every two frames, whereas
framing operation is hard to do in the analog domain for the
lack of analog memory to store continuous overlap. There-
fore, a new framing method designed specifically for mixed-
signal MFCC feature extraction is proposed. By extracting
the energy distribution of the half-frame signal and splic-
ing the distributions of the adjacent half frame, the framing
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operation is implemented in the digital domain. For the back-
end, Log and DCT operations that are more appropriate for
discrete processing are still calculated in the digital domain.
The implementation of these operations is the same as the
conventional works.

In summary, the preprocessing in the analog domain
reduces the dimensionality of the data, which greatly reduces
the processing cost and energy consumption of the ADC.
At the same time, the analog filter and the squarer are per-
formed to extract the energy spectrum distribution of the sig-
nal directly in the time domain, avoiding the time-consuming
FFT operation. Thus, the energy distribution extraction in
the analog domain is a more natural and efficient way with
higher speed and lower cost for its absence of data con-
version and frequency-domain transformation. Operations
that are difficult to implement in the analog domain, such
as framing, logarithmic, and DCT, still run in the digi-
tal domain. The MSP-MFCC solves bottleneck problems
including energy-hungry ADC and time-consuming FFT in
the conventional architecture, and achieves more energy-
efficient feature extraction. The proposed architecture is more
advantageous in resource-constrained scenarios such as small
mobile devices. The detailed implementation of the analog
part will be introduced as follows. Besides, another advan-
tage of this architecture is that any part of the frequency
band can be turned off according to the actual scene to
save energy for processing these frequency bands. It demon-
strates flexibility while further reducing energy for a given
assignment.

In summary, the preprocessing in the analog domain
reduces the dimensionality of the data, which greatly reduces
the processing cost and energy consumption of the ADC.
At the same time, the analog filter and the squarer are per-
formed to extract the energy spectrum distribution of the sig-
nal directly in the time domain, avoiding the time-consuming
FFT operation. Thus, the energy distribution extraction in
the analog domain is a more natural and efficient way with
higher speed and lower cost for its absence of data conversion
and frequency-domain transformation. Operations that are
difficult to implement in the analog domain, such as framing,
logarithmic, and DCT, still run in the digital domain. The
MSP-MFCC solves bottleneck problems including
energy-hungry ADC and time-consuming FFT in the con-
ventional architecture, and achieves more energy-efficient
feature extraction. The proposed architecture is more advan-
tageous in resource-constrained scenarios such as small
mobile devices. The detailed implementation of the analog
part will be introduced as follows.

C. ANALOG MEL-FILTER GROUP

The structure of the analog Mel-filter group element,
which is a compact, energy-efficient, electronically tunable
continuous-time BPF, is based on the Capacitively Cou-
pled Current Conveyor (C*) [25]. All the transistors operate
in the sub-threshold region with low-voltage power supply
and high current efficiency. As shown in Fig. 10(a), twenty
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FIGURE 10. (a) The schematic diagram of the Mel-filter group with
stair-stepping gain. The center frequency can be electronically tuned by
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FIGURE 11. The spectrums of 20 tunable filter elements, whose center
frequency are exponentially distributed from 170 Hz to 3.6 kHz. The filter
elements are divided into 4 groups with gradually increasing gain to
simulate the behavior of a stair-stepping high-pass filter.

BPFs with stair-stepping gain extract the voice signal in
different bands. Due to the compact structure, both the high
and low center frequencies, can be easily tuned by the bias
voltages of Vi and V1. The simplified small-signal model of
this filter element is showed in Fig. 10(b), and the resulting
transfer function is set by

C C:
Vou _ €1 e~ e )
Vie G2 2 GCr O 4 G
" § 8m18m?2 +s (gml + gm2> +1

where C3 is the equivalent capacitance between node Vy and
Vout; Cris defined as total capacitance with Ct = C1+C,, +
C3; C, is defined as the output capacitance with C, = C +
Cr; gm1 and g, are transconductance parameters. In normal
cases, the time constant of positive zero 7y = C/gn2 is quite
small and can be neglected in the transfer function.

The passband voltage gain A,, is set by

Cy 1
AVZ_C_ gm1 Co (6)
21+ o2 Cr

The center frequency f. is set by

/ 8m18m2
Jo= = )
2 /CoCr
By scaling up or down g, and g,,» proportionally while
keeping C, and Ct same and by scaling up or down C; while
keeping Cr same, the f. and the A, of each filter can be tuned
respectively without changing the quality factor.
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4kHz 0.4Vpp sine signal. The DC value and amplitude of the output signal
is proportional to the square of the input signal amplitude.

In this paper, the Mel-filter group has 20 filter elements
that are divided into 4 groups. The f. of each element is
exponentially distributed from 170 Hz to 3.6k Hz. Each group
has a different A,, e.g., x1, x2, x4 and x8, to imitate the
behavior of stair-stepping high-pass filter and conduct pre-
emphasis on the acoustic signals of different frequencies.
Fig. 11 shows the simulated frequency response of the pro-
posed Mel-filter group. The BPFs implemented by analog
circuit are difficult to achieve ideal cutoff characteristic under
the low power consumption constraints. For a specific BPF,
this will cause the attenuated signals in other frequency bands
to be extracted. However, the center frequency skewing of
BPFs can be alleviated in this case. Even if the center fre-
quency is shifted, the undesired cutoff characteristic causes
the original band signal to be extracted with attenuation.
The influences to recognition accuracy of this effect will be
discussed in Section 4.1.

D. ANALOG SQUARE OPERATION
The structure of the analog square circuit is referred to [26].
The schematic diagram of the squarer element is shown
in Fig. 12(a), where the output current /oy is in proportion
to the square of Vi, as:
2
to =20 (2] = 5 v ®)
2 2

where Ky is the transconductance parameter of transistor.
Within the input range of the squarer, the squaring rela-
tionship between input and output has nothing to do with
the supply voltage Vpp [26]. Thus, energy consumption can
be slashed by reducing the Vpp while having a negligible
effect on squaring accuracy. Besides, the structure is free of
body effect, and the channel length modulation effect can
be degraded by using long channel devices. The squaring
result is shown in Fig. 12(b) where, as an example, a 4k Hz
sinusoidal signal A sin wt is sent to the squaring circuit and
the output signal is equal to:

2
KTN (A sin wt)? = %(1 — cos Qut)) )

48726

Test PCB

Signal

generator ; :
v : Output i

A 4

Oscilloscope <

Channel 1 i

20 Channel 20

Power supply and
measurement

20
Host PC P Data Hub [€f

FIGURE 13. Block diagram of test PCB (top) and photograph of testing
environment (bottom).

where w = 8000m rad /s in this example. That is, the average
value of output, KyA2 /4, which is also equivalent to the aver-
age energy of input, is proportional to the input amplitude.
The output current is then filtered by a current-mode low-
pass filter [27] to extract the value of average energy. It is
converted to the voltage by the resistor for the convenience
of measurement. The constant Ky /4 would be transformed
into the constant addition in the Log phase and eliminated in
the DCT operation.

IV. THE MEASURED PERFORMANCE AND COMPARISON
The front-end processing units of the proposed mixed-
signal domain MFCC extractor are fabricated in 180nm
CMOS mixed-signal process. To evaluate the performance
of extracted features, the speech recognition task with the
well-known dataset TI-DIGITS [28] and the Long-Short-
Term Memory (LSTM) neural network [29], [30] are adopted.
Each utterance of TI-DIGITS is a single spoken number from
“zero” to “nine’” and an extra ““Oh”’. The speech recognition
is realized on Tensorflow R1.0 deep learning development
platform.

The test setup of MSP-MFCC’s analog part is shown
in Fig. 13. The power supply and measurement module can
power one set of bandpass filters and squares and measure
their respective power consumption. The voice of each fre-
quency band is separately simulated by the signal generator,
and the output signal is converted into the digital domain by
the on-chip ADC. The output signal and the power consump-
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FIGURE 14. Energy distribution and extracted MFCC features for (a)
speech “1” and (b) speech “6". The undesired cutoff characteristic of BPFs
introduces out-of-band energy and results in the blur of the energy
distribution, which have negligible impact on recognition accuracy.

tion value of each module are sent to the host PC for back-end
digital processing verification.

A. SYSTEM FUNCTION

The energy distribution and the MFCC features of number
“1, 6 that extracted by MSP-MFCC and conventional archi-
tecture are shown in Fig. 14. The abscissa is the time while
the ordinates are amplitude and the number of frequency
passband respectively. Due to the undesired cutoff character-
istic of analog BPFs, out-of-band energy is extracted, which
introduces the difference between these two results. Never-
theless, the speech recognition system can reach the recogni-
tion accuracy of 98.9% (for the 16-bit width) when using the
extracted MFCC features. It hardly decreases compared to the
conventional implementation and proves that the difference
is uninfluential to the recognition. Some conventional works
[4], [11], [12] compare their recognition accuracy under dif-
ferent algorithms and even different datasets. It is unreason-
able because the increase in accuracy may not be caused by
feature improvement, but by better algorithms or datasets.
In order to ensure the objectivity of the results, we compare
with the work [29], [30] under the same algorithm and dataset.
The result shows that MSP-MFCC achieves a comparable
recognition accuracy with only 0.1% decrease.

The bit-width of MFCC features influences the recognition
accuracy of the speech recognition system, which also deter-
mines the precision of ADC. Thus, the relationship between
the bit-width of proposed MFCC features and the correspond-
ing recognition accuracy is given here. As shown in Fig. 15,
with the increase of bit-width, the recognition accuracy also
increases. 8-bit width with the accuracy of 98.2% is a proper
point to reach the balance between accuracy and processing
cost.

B. DETAILS OF THE FABRICATED CHIP
The main parts of the architecture are the Mel-filter group and
the analog square circuits. As the detailed description of the
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FIGURE 16. Microphotography of the Mel-filters (left) and analog squarer
(right).
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FIGURE 17. The measured results of 20 filter frequency response with
their central frequency range from170Hz to 3.6 kHz.

circuits design in Section III, we taped out the circuits design
and evaluated the frequency response and power consumption
of the Mel-filter group and the analog squarer, the micropho-
tography of which are shown in Fig. 16. The active area of
single Mel-filter and squarer are 0.05 mm? and 0.001 mm?
respectively.

Fig. 17 shows the measured spectrum of Mel-filters with
the frequency ranging from O to 5000Hz. The gains and
gradually widened bandwidth are not perfectly correspond
to the simulation results because of the non-ideal factors
in fabrication. Nevertheless, the extracted MFCC achieves
the leading performance in recognition accuracy. The mea-
sured power consumption of all filters in the different groups
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TABLE 1. Comparison with state-of-the-art MFCC extractor with ADC
considered.

This work [4] [5] [12]
CMOS Digital
Process 180nm FPGA ASIC DSP
mixed signal 65nm
Computation . . . .
bit-width 8-bit 14-bit 16-bit 32-bit
Sampling rate 160 Hz 16kHz  16kHz  8kHz
each band
Power ADC 7.4 pw B NC* NC* NC*
consu
mption ((; (I)/Ir/e) 21.4 188.4 110 51800
Speed” (us/frame) 45.79 292 125 927.78
Accuracy 98.2% 96.1% 98.4% 93.3%

NC* Energy consumption of ADC is not considered. * Processing latency
of the digital part.

is 3.92 uW. The measured and expected transfer charac-
teristic of analog squarer is shown in Fig. 18. It consumes
0.87 uW with the input range of 300mV.

C. PERFORMANCE SUMMARY AND COMPARISON

Table 1 summarizes the performance of the MSP-MFCC and
compares it with conventional architectures. It is notable that
energy consumption here includes the data converter and
the back-end circuits, from ADC to DCT. According to the
computation cost model of conventional MFCC extraction
[13], [14], the energy consumption and efficiency of the
digital back-end are calculated, which show the improvement
of energy efficiency for eliminating expensive frequency-
domain transformation. The computation bit-width and sam-
pling rate of each system determine the type of ADC
according to the references [8], [31].

The measured results show the 21.4uW power consump-
tion of analog-part MSP-MFCC. The simulated processing
latency of the digital part is 45.79 us/frame. Considering
the ADC power consumption of 7.4uW [31], the energy
consumption of MSP-MFCC is 0.72 wJ for the frame length
of 25ms. Taking into account the 560uW power consump-
tion of the ADC [8], the total energy consumption of the
conventional feature extraction system [4] is 14.06uJ/frame.
Therefore, MSP-MFCC reaches 95% energy saving and 6.4 x
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speedup than state of the art [4]. To our best knowledge, this
is the best performance ever reported for entire MFCC feature
extraction.

Besides, the proposed MFCC extraction reaches 98.2%
accuracy when used in speech recognition, which also keeps
the leading performance to its current digital counterparts.
Proposed MSP-MFCC solves bottleneck problems including
energy-hungry ADC and time-consuming FFT, and achieves
more energy-efficient feature extraction.

V. CONCLUSION

This paper proposes an energy-efficient architecture,
MSP-MFCC, using mixed-signal domain information
processing to reduce energy consumption and improve
the processing speed of MFCC extraction. The bottleneck
problems of ADC and FFT in the entire extraction process are
solved with architecture and computing paradigm improve-
ment. MSP-MFCC achieves 95% energy saving and about
6.4 x speedup than state of the art. To our best knowledge, this
is the best performance ever reported for entire MFCC fea-
ture extraction. Fabricated results show the proposed MFCC
extraction reaches 98.2% recognition accuracy when used
in automatic speech recognition tasks. In summary, MSP-
MFCC draws techniques from the disciplines of architecture,
algorithm, and silicon proven:

A. MIXED-SIGNAL PROCESSING ARCHITECTURE
Proposed mixed-signal processing architecture investigates
and solves the ADC bottleneck problem that has been
neglected by conventional works. As a result, it achieves sig-
nificant energy saving than state of the art. This architecture
can also be applied to applications where the ADC occupies
most of the system’s energy consumption.

B. TIME-DOMAIN PROCESSING ALGORITHM

Processing flow of conventional MFCC realization is revised.
MSP-MFCC extracts energy distribution in the time-domain
without time-consuming FFT operation. This design idea can
also be applied to processes where domain transformation
takes up most of the processing time.

C. SILICON VERIFICATIONS

These techniques include the area-saving stair-stepping high-
pass filter operation and the framing operation designed for
mixed-signal realization. We further study the performance
and improve the flexibility of the analog processing circuit to
real applications.

The proposed architecture not only accelerates MFCC
extraction process but also consumes ultra-low energy. The
proposed MFCC extractor is suitable for integration in var-
ious types of ultra-low-power always-on wearable speech
recognition system. The performance is also sufficient for
the always-on speech-controlled wearable applications. The
mixed-signal processing architecture and design ideas can
be extended to other applications where sensing computing
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interface is the bottleneck of the system, which should be
watched carefully.
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