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ABSTRACT Being limited by the node energy, the Internet of Things (IoT) is prone to data redundancy in the
process of data acquisition and collection, resulting in a large amount of packet losses in data transmission
and making it impossible to guarantee the transmission mechanism with data security. In order to study
the credibility of IoT sensing data transmission further, Edge Computing in Internet of Things: A Novel
Sensing-data Reconstruction Algorithm under Intelligent-migration strategy (RdS-ImS) is proposed in this
paper. From the beginning, this algorithm can build the packet loss model of sensing data on the link into
the form which is random and give the data packet loss predictive model based on the compressed sensing
theory. Secondly, preventing the random data packet from lossing, the predictive model is applied to recover
through the sensing data retransmission mechanism. If it is unavailable to determine random data packet
loss, time series prediction algorithm may be applied for recovery. In addition, in case of interruption of
the transmission path, such predictive model can upload the sensing data to the cloud computing platform
through an alternative path. At the same time, iterative calculation is performed on the path using intelligent
algorithms to optimize the path According to simulation results; this predictive model can improve the
network runtime quickly but reducing the sensing data packet loss rate effectively, thereby further verifying
this method, which is put forward in this paper, is of relatively strong stability and adaptability.

INDEX TERMS Internet of Things, edge computing, intelligent-migration strategy, data reconstruction.

I. INTRODUCTION
As the underlying application system of the Internet of Things
(IoT), Wireless Sensor Network (WSN) is a new form of the
network enabling the collection, transmission and processing
of related sensing data which is in the deployment area,
which generally consists of a large amount of sink nodes
(Sink) and sensing nodes [1]–[4]. Every node of sensing
sends and relays the sensing data to the Sink in a manner
which is multi-hop and self-organized. The network which
is external can obtain the information of real-time sensing of
each node within the area of sensing of the sensor network
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through the Sink [5]–[7]. The main and crucial function of
theWSN is collecting related information which is of sensing
in the deployment area. As the network which is monitoring
areas is widely and mostly is deployed in the wild, every
node which is in the network is equipped with independent
power source with the power which is limited. To guarantee
the service life of the network, the network nodes energy
consumption has become a crucial factor which is restricting
the sensor network performance. In the collection process of
WSN data, which is traditional, the nodes are supposed to
forward other node packets which are of data while trans-
mitting data packets of its own [8]–[11]. Thus, the closerthe
Sink is near the node, the more energy it can consume, and
the easier it will exhaust the energy of its own ahead of others,
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further resulting in ‘‘energy hole’’ in the network. In addition,
because of the sensor network nodes dense deployment, there
is a large spatial correlation which is spatial for the sensing
between neighboring nodes. Meanwhile, there is a large time
correlation for the sensing data which is periodic of each node
too [12]–[14]. Therefore, there’s a great redundancy in terms
of time and space of the sensing data of WSN, thereby pro-
viding relatively space which is large compressible. To enable
the data collection which is efficient and extend the service
life of WSN, research on collection strategies of new data are
needed urgently in order that not only the network balanced
energy consumption can be guaranteed and the ‘‘energy hole’’
can be avoided but also the redundancy of the data within the
network can be reduced and the consumption of the energy
of the network can be cut down.

In the procedure of WSNs data collection, the main nodes
energy consumption is the energy consumption of wireless
communication, which can be greatly cut down by reduc-
ing the amount of data transmissions [15]–[18]. Therefore,
by compressing the data and reducing the volume of data
communication in data transmission, the network energy
consumption can be lower, and the network service life can
be extended in an effective manner [19]–[22]. Traditional
data compression techniques, such as wavelet transform, KL
transform and Huffman coding, require data collection before
compression. Although such methods can reduce the redun-
dancy between data, they cannot reduce the quntity of the data
which is transmitted in the network. Though such methods
can reduce the redundancy between data, the amount of data
transmitted within the network cannot be reduced. There-
fore, the proposal of the Compressive Sensing (Compressive
Sensing, CS) theory provides a new concept to solve the
problem [23], [24].

In recent years, data collection algorithms for wireless
sensor networks based on Compressed Sensing (CS) have
gradually become a research highlight for researchers. CS
data collection can compress the data during data collection to
obtain a linear projection that is much shorter than the original
signal length. By transmitting the projection data to the Sink,
the amount of data transmission within the entire network
can be reduced. After the Sink receives the projection data,
the optimization algorithm solves an underdetermined equa-
tion to achieve high-precision reconstruction of the original
data, thereby completing the entire data collection process.
In addition, during the process of CS data collection, each
node participates in the same number of sampling projections,
and the numbers of data packets sent or received are the
same, thereby realizing the energy balance of the network
and avoiding the ‘‘energy hole’’ problem for traditional data
collection processes.

II. RELATED WORK
Featuring excellent compression performance, simple
encoder end, complicated decoder end, compressive sens-
ing (CS) technology has been applied in data collection of
WSN. The CS-based wireless sensor network data collection

algorithm can compress the network data and balance the con-
sumption of the network energy and even extend the service
life of the network. Paper [25] firstly realized the combination
of CS and WSN data collection, and then proposed the
algorithm of compressed sensing data collection. To further
decrease the number of the data which is transmitted on
the network, researchers have worked on improvement of
the rate of data compression and reduction of the consump-
tion of the energy by changing the network routing and
observation matrix, and using the temporal and correlation
which is spatial of the data in the network. However, all such
researches have assumed ideal links of WSNs, that is, there
are no bit errors on the links. In practice, as impacted by
complex deployment environments and constrained by wire-
less transceiver power consumption and node hardware cost,
package losses and errors are quite common in wireless links
on sensor networks and currently there are few studies on
compressed sensing data collection algorithms on lossy links.
Paper [26] points out when there is a little number of Gaussian
independent loss of node data, which is random, within the
whole network, the algorithm of the CS reconstruction can
utilize the correlation between the data which will reconstruct
the lost information. However, the packet loss reasons of the
link of WSN in actual practices are complicated. Therefore,
it is not impossible to simply describe the reasons by a
Gaussian random packet loss model which is independent.
Paper [27] analyzes the sensor data collected by the IoT
system, indicates that there is a time correlation which is
strong between the data of sensor, and proposes a joint
optimization algorithm combining CS and spatio-temporal
correlation to recover lost node data. However, such algo-
rithm is only applicable to the lost data recovery of the sink
end database without considering the packet loss problem
recovery during collection of the data. Paper [28] proposes
the Distributed and Morphological Operation-based Data
Collection Algorithm (DMOA), where it randomly selects
some nodes in each round in order to participate in data
collection, sparse observationmatrix extremely is constructed
just based on the node number of the received data in order
to reconstruct the raw data of the entire network at the sink
end. Though this method aims to solve the CS data collection
problem which is under unreliable links, as the extremely
sparse assumption is adopted, it is not applicable for envi-
ronment with weak spatial data correlation across the whole
network. In addition, essentially, this algorithm still uses a
data collection method which is traditional for data collection
of the node, which would result in the problem of imbalanced
energy consumption of nodes near the sink that are exhausted
prematurely. From the paper [29], the author has proved that
distributed compressed sensing can save about 30% of the
observed data volume when performing two related signal
processing based on experiment. The joint sparse model of
the signal group forms the theoretical basis of distributed
compressed sensing. In this model, if multiple groups of
signals in the signal cluster are sparsely sparse in a certain
sparse domain, and such signals are correlated, distributed
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compressed sensing can be applied to observe such signals
with an observation matrix that is not related to the sparse
domain. The observation data so obtained can be accurately
restored and reconstructed at the receiving end. Based on
a comprehensive analysis of the theoretical knowledge and
application background of distributed compressed sensing,
Paper [30] has proposed a variety of different joint sparse
models for different application scenarios and provided cor-
responding signal compression schemes and reconstruction
methods thereof. It has also discussed the selection principle
of distributed compressed sensing observation matrix and
applied a simple random sparse projection matrix as the
observation matrix. Paper [31] makes focused analysis on
the problem of restoring and reconstructing the signal group
by distributed compressed sensing method and adopts recon-
struction error estimation method to improve the existing
distributed compressed sensing method. Paper [32] gives the
relationship between sparse recovery and the coherence of
redundant dictionaries. Presently, the measurement matri-
ces mainly include two types. One is random measurement
matrix, which mainly includes the Gaussian random matrix,
Bernoulli random sensing matrix, etc. Matrices of such type
are usually not related to a vast majority of sparse bases and
can meet the high probability Restricted Isometry Property
(RIP) characteristics. However, as such matrices are random,
the calculation complexity is great. The other is the determin-
istic matrix. Matrices of such type have superiorities of fast
calculation speed and high reconstruction accuracy. However,
they’re generally designed for a specific type of signals.
Paper [33] proposes Mobile Intelligent Computing Based on
Compressive Sensing Data Gathering (MIC-CSDG), which
applies compressed sensing and processing to reduce the
timing signals collected in target tracking, thereby reduc-
ing the calculation load. Presently, there have been many
research results available on the application of compressed
sensing of WSNs. Such results mainly consider approaches
to decrease sensor nodes the energy consumption in order to
obtain longer network service life mainly in terms of power
control, information processing, data collection, routing, etc.
Paper [34] proposes A Data Gathering Algorithm Based on
Compressive Sensing in Loss Wireless Sensor Networks,
(CS-RTSC). In the process of data collection of the wireless
sensor network, collected information is observed at the
cluster head node. Then the observations are delivered to the
sink node. The aggregation node recovers the original data
through a reconstruction algorithm. Compared with the leaf
nodes far from the cluster head, the leaf nodes near the cluster
head are required to transmit more data packets, resulting
in the problem of imbalanced energy consumption in the
network. Paper [35] proposes a communication mechanism,
which compensates for lost data through retransmission. The
principle is that if the receiving node cannot receive all the
data within the set time, the sending nodes send the data
again. If the number of retransmissions exceeds the set range,
the sending node does not resend the part of the data. The
retransmission mechanism increases the reliability of data

transmission. However, this retransmission strategy does not
eliminate the possibility of data loss. Paper [36] applies
node computing performance to embed specific function
algorithms in nodes to complete data analysis. This aims to
reduce the number of wireless communications, and thereby
reducing the data transmission during the communication
process. However, the disadvantages of this method are also
obvious. First, the length of time a node works is limited
by the energy of the node; second, the analysis capability
of a single node is limited during data transmission among
multiple nodes.

Based on the analysis mentioned above, this paper mainly
analyzes and summarizes the characteristics of the loss of
the link packet in the procedure of CS data collection, then
proposes a smart data reconstruction method based on such
characteristics. This method applies a hybrid compression
sensing data collection strategy to divide the whole network
nodes into forwarding nodes which are traditional and CS
nodes and designs a sparse observation matrix which is based
on the identification of the packet loss in order to observe
and sample node data across the network. For traditional
forwarding nodes, packet loss is not relevant, and only a
sparse observation matrix which is based on identification of
packet loss is applied to observe the projection can overcome
the impact of packet loss. It is required to apply sparse obser-
vation matrix observation which is based on identification of
packet loss. In addition, amulti-path transmissionmechanism
is designed to avoid the occurrence of associated packet
loss and ensure the transmission of the reliable link. Finally,
corresponding analysis is proposed for three factors affecting
the performance of the algorithm.

III. DATA PACKET LOSS MODEL
Compressed sensing is a signal acquisition which is effective
and compressionmethod applicable to synchronous sampling
and compression of data [37], [38]. Suppose X is a dimen-
sional signal N , 8 is the measurement matrix of M × N
(M < N ) and the signal Y = 8× X , and while X is a linear
combination of k basis vectors (k � N ), the signal can be
recovered with great probability with Y and 8, to improve
the probability of accurately recovering the original signal,
the number of lines of M of the matrix 8 should satisfy
M ≥ c·k, of which k is the sparseness of the signal but c is
the function of the sampling rate. If CS technology is applied,
sparse basis of the signal X is 9, when X = 9 · 2, where
||2||0 = k , it is expressed as the l0 normal form, and such
signal is called k-spare signal.
Suppose there is a wireless sensor network containing N

nodes denoted as s1, s2, s3, . . . , sn, and their sample values
at a certain time are denoted as x1, x2, x3, . . . , xn. In the
process of data collection based on compressed sensing, each
node multiplies its own value of sampling byM weights and
then sends the result to its next hop node. The last pooling
point (Sink) receivesM measurements (a linear combination
of the perceptual data). The data collection process based on
compressive sensing can be expressed in the mathematical
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form as follows:
y1
y2
...

ym

 =

φ11 φ12 · · · φ1n
φ21 φ22 · · · φ2n
...

...
. . .

...

φm1 φm2 · · · φmn



x1
x2
...

xn

 (1)

y = 8 × x, where y = [y1, y2, . . . , ym]T is measure-
ment vector collected by the sink, x = [x1, x2, . . . , xn]T

is the sampled values of the N nodes, 8 generally is
Gaussian random matrix or equal probability Bernoulli
matrix.

To explain the process of data collection based on com-
pressed sensing under the topology of multi-hop transmission
in sensor network further, a schematic diagram of data collec-
tion in a chain structure is shown in Figure 1.

FIGURE 1. CS data collection process based on tree routing.

The set of sensor nodes is s1, s2, s3, . . . , sn, and the data
sampling value so generated is x1, x2, . . . , xn, the data infor-
mation is, in multi-hop form, transmitted to the sink node.
Providing that the traditional mechanism of the tranmission
is applied, each node is required to transmit all sample values
generated by itself and its downstream nodes,N uncoded data
packets can be gotten by the sink node, a total of N (N + 1)/2
data packets are used for data transmission in the sensor
network. In addition, the node is to the convergent node
closer, the greater the consumption of the energy is. After
applying compressed sensing theory, the most popular N
packets can be represented by M (M � N ) encoded packets.
The convergence node will then reconstruct the original data
with a higher probability. φNI = {φ1i, φ2i, . . . , φmi} performs
a weighting operation on each sample value xi, where φi is
an element in the observation matrix 8M×N . Thus, M data
packets are received by the sink node. Then, it requiresM×N
data packets to be transmitted by the network in the process
of transmission.

Suppose the N nodes are randomly deployed by the
sensor network, and the data collection is noted as d =
(d1, d2, . . . dN )T , of which d is sparse under sparse basis
9N×N , the observation matrix is 8 = (φij)M×N , in wich
the vector of the observation of M × N is Y = (yi)M×1 =
8 · 9T

· d . Then the Sink node can reconstruct the orig-
inal data under certain accuracy constraints by solving the

optimization problems shown in Formulas (2) and (3).

Y = 8× S = 8×9T
×d = 2× d (2)

d̂ = argmin ‖d‖1 s.t. Y = 8 · S (3)

Figure 1 shows the CS data collection process under the
tree route. Assuming at the number i observation of CS data

collection on a lossy link (1≤ i ≤ M ), data
3∑
j=1
φi,jdj sent by

node S3 to S5 is lost, the sampling data of child nodes S1,
S2, S3 and S4 of S5 are all lost. The observation value of the
number i observation yi is changed as:

yi =
[
φi,1φi,2 φi,3 · · · φi,N

] d5...
dN

 (4)

We can see that one packet losses during the CS data
collection process will cause the collected data of multiple
nodes to be lost. Such packet loss ‘‘Association Effect’’ is
given rise to by the superimposing of data collected at each
not of themulti-hop link during the CS compression sampling
process. The closer the node Sk where the packet loss occurs
to the Sink, the greater the ‘‘Association Effect’’ of the loss
of the packet, especially, of the Sink’s one-hop neighbor
node packet is lost, the association influence will cause the
collected data of all nodes in the network to be lost [39], [40].
After that, according to Formula (4), every round of CS
data collection is divided intoM observations and performed
separately. The intra-network links are lossy links in each
observation. If y′i is used to represent the observation with
errors obtained from the number i observation on the lossy
link, and i = 1, 2, . . . ,M , the vector of the observation
obtained by every round is Y ′M×1 = (y′1, y

′

2, · · · , y
′
M )T, and

M observations have different degrees of error. Therefore,
the accuracy of the data obtained by Sink after optimal recon-
struction according to Y ′M×1 will be greatly reduced.
Definition 1: Define the random variable z as the ratio of

the numbert of packets which are lost in the sliding window
to the window length. It is as this.

z =

L∑
i=1

(1− Xi)

L
(5)

where L is the length of the window, which is sliding, the size
of L will affect the timeliness of the judgment on one hand
and the distribution of the random variable z on the other.
The sliding window length L = 20 is selected in this paper
not only satisfies the requirements of timeliness. In addi-
tion, the distribution of the variable z which is random has
relatively excellent regularity. Generate 10000 packets of
ERL and BRL packets respectively with the simulation tools;
because of two types of sequence samples, the Jarque-Bera
test is performed on a sample z which is random at a sig-
nificant level of 5%, respectively, to find their distributions
obey the normal distribution law. Note the probability den-
sity distribution functions as f1(z) and f2(z), as shown in
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Formulas (6) and (7).

f1(z) =
1

√
2πσ1

exp

(
−
(z− µ1)2

2σ 2
1

)
(6)

f2(z) =
1

√
2πσ2

exp

(
−
(z− µ2)2

2σ 2
2

)
(7)

Definition 2: External noise, packet conflicts, etc. usually
causes random packet loss, and happens randomly and inde-
pendently. If the bit error wireless channel rate is Pb and
length of the the data packet is B bytes, the Element Random
Loss (ERL) model packet loss probability of the node is:

PERL = 1− (1− Pb)B (8)

Definition 3: Block packet loss is usually caused by net-
work congestion, link-related bursts, etc., and there is corre-
lation between packet losses. To be specific, if the loss of the
packet occurs on the link, there will be ‘‘continuous packet
loss’’ and the probability of the packet loss decays with time.
The packet loss probability of block packet loss is shown in
Formulas (9) and (10), where PB(i) is the number i packet
loss probability, and c ∈ [0, 1] is the attenuation constant.
The greater the value, the greater the packet loss probability
decay rate corresponding to the blocky packet loss. PBRL is
the packet loss probability of the Block Random Loss (BRL)
model.

PB(i) = exp(−
i 2

2c2
) (9)

PBRL =

{
PB(i), PB(i) ≥ PERL
PERL, PB(i) < PERL

(10)

where, µ1, σ1 and µ2, σ2 are the mean and variance of the
variable z which is random under the BRLmodel and the ERL
model. When the bit error rate Pb and the packet length B of
the wireless channel are determined, the values of distribution
parametersµ1, σ1 andµ2, σ2 will be determined accordingly.
For example, suppose the bit error rate of the current wireless
channel is Pb = 10−3, and the length of the the data packet
in the network is 50 bytes, the parameter density can be
applied to obtain the probability density distribution function
of random packet loss and block packet loss under the current
link conditions, of which the distribution parameter of z under
random packet loss is µ1 = 0.3, σ1 = 0.2 respectively,
the distribution parameter of z under blocky packet loss is
µ2 = 0.6, σ1 = 0.25. Therefore, before the operation of
the network runs, f1(z) and f2(z) can be transmitted to the
nodes within the network in advance as a prior information
for determining the type of packet loss.

As the sliding window observation z is a random variable,
which has different probability density distribution functions
under different packet loss types, the problem of judging the
current link packet loss type could be transformed into a
hypothesis test problem, that is, there are two assumptions
recorded respectively as: the current packet loss state is ran-
dom packet lossH0 and the current packet loss state is blocky

packet loss H1. Under these two assumptions, the probability
density distribution function of the random variable z is:

f (z|H0) =
1

√
2πσ1

exp

(
−
(z− µ1)2

2σ 2
1

)
(11)

f (z|H1) =
1

√
2πσ2

exp

(
−
(z− µ2)2

2σ 2
2

)
(12)

Definition 4:Matrix A satisfies the k-order RIP condition.
If a constant δk ∈ (0, 1) exists so that:

(1− δk) ‖k‖22 ≤ ‖Ax‖
2
2 ≤ (1+ δk) ‖x‖

2
2 (13)

If a matrix A satisfies the RIP condition of order 2k ,
Formula (13) can be understood as A maintaining a distance
between any k-order vectors.
Definition 5: Set A: Rn → Rm as a sensing matrix and B:

Rm → Rn is expressed as a reconstruction algorithm, and
(A, B) is called the stable state of C . If for random x ∈ 6k
and random e ∈ Rm:

‖B (Ax + e)− x‖2 ≤ C ‖e‖2 (14)

From the above analysis, the retransmission can overcome
the impact of random packet loss at a small cost. If a very
small ε ≤ 10−5 interference constant is added to the observa-
tion matrix, the reconstruction algorithm will not be greatly
affected. We consider the fact that the collected data of the
sensor network has strong time correlation, in this paper,
the temporal data correlation method is applied to improve
the the compressed sensing data collection algorithm perfor-
mance during blocky packet loss. In the process of network
operation, the node with lost packet can determine the type
of the current packet loss on the link by means of trusted
calculation.

IV. RELIABILITY DATA RECONSRUCTION
A. DATA RETRANSMISSION METHOD
The direct idea of addressing link packet loss is to retransmit
when packet loss occurs. For a CS data collection algorithm
that is highly sensitive to packet loss, can a limited quantiy
of retransmissions improve the data reconstruction accuracy?
In order to answer this question, this paper models the packet
loss of a lossy link and analyzes the impact of retransmis-
sion on the performance of CS data collection algorithms
which are under models of different packet loss based on
experiments. With reference to the Papers [28], [33], [34] and
in combination with the actual situation of WSNs, the link
packet losses can be divided into three types of element ran-
dom loss (ERL), block random loss (BRL) and combinational
loss (CL).

IfDi is applied to indicate ‘‘DecisionHi is true’’, (i = 0, 1),
there are two kinds of errors in the result of this hypothesis
test: Virtual Alarm Probability (VAP), Pf = P(D1|H0),
where ERL is judged as BRL; Missing Alarm Probability
(MAP) Pm = P(D0|H1), where BRL is judged as ERL. For
the application scenario of the paper, the MAP Pm cost is
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greater than VAP Pf . This is because that in the decision
process, if random packet loss is judged as block packet loss,
the corresponding cost is only a small loss in the accuracy
of packet loss recovery, while block loss is judged as random
packet loss, it may result in packet loss under the ‘‘association
effect’’. Therefore, the cost function Cij is introduced. When
Hi is assumed to be true, the judgment Hj is true. The values
are: C10 = α1, C01 = α2, where α1 > α2 > 0, C00 =

C11 = 0; The minimum risk Bayes decision is selected as the
likelihood ratio decision criterion for hypothesis testing.

According to the minimum risk Bayes judgment criterion,
we can conclude this.

l(z) =
f (z|H1)
f (z|H0)

>
C10 − C00

C01 − C11
·
P(H0)
P(H1)

(15)

H1 is judged as true, or H0 is judged as true. Assume that
the probability ratio of block loss to random packet loss on the
link is R, that is, P(H1)/P(H0) = R. By substituting Formulas
(6) and (7) into (15), the following result can be obtained:

z>
µ1σ

2
2 −µ2σ

2
1 +σ1σ2

√
(µ1−µ2)2+2(σ 2

2 − σ
2
1 ) ln

α1σ2
α2σ1R

σ 2
2 −σ

2
1

(16)

In which the inequality right side is a constant, which
is recorded as the decision threshold ξ . Thus, during the
operation of the network, the random value of the variable
z is calculated in the sliding window, and the current packet
loss status of the link could be determined by judging the
z value and the threshold ξ . If z > ξ , it is judged that the
current packet loss state is block packet loss, otherwise it is
random packet loss. If the packet loss status of the current
link is determined, the type of packet loss of the next packet
loss can be predicted based on the current status, as shown
in Fig. 2.

FIGURE 2. Continuous coverage model for mobile nodes.

Take Figure 2 as an example for calculation and analysis.
If 1t → 0, the node energy of sj is attenuated by 1E → 0,
at this time node sj is to fall into dA = dγ dα, and the

Euclidean distance between node si and node sj could be
expressed as:

d (i, j) = d (D, γ, α) =
√
γ 2 + D2 − 2γD cosα (17)

In Formulation (17), D is the distance between the aggre-
gation node and node si, γ is the distance between tbe aggre-
gation node and node sj, and angle α is the angle between the
the aggregation node and node sj.
Theorem 1: Under the above conditions, the expected hop

count is:

E (dh) = ρδ
∫ γ

γmin

∫ αγ

−αγ

γ d(i,j)Q
(
β

σ

)
e−M(γ )(1−pk (γ ))dαdγ

(18)

where ρ is the density of nodes of the sensor network; δ is the
dimension which is proportional of the parameter; γmin is the
distance which is the minimum between the the aggregation
node and node si.

Proof: From the analysis above, if 1t → 0, the node sj
energy is attenuated by1E → 0, at this time node sj is to fall
into dA = dγ dα, and dA→ 0. Because of the node sj energy
consumption, the signal-to-noise ratio of node sj is greater
than the signal-to-noise ratio threshold, that is, 9j > 9th.
The signal-to-noise ratio of any node sk that is closer to the
sink node than the node sj is less than 9th, that is, 9k < 9th.
Therefore, the probability of node sj to be selected as the next
hop is:

dP {Ni = j}=P {NA (dγ )=1}P
{
9j > 9th

}
P
{
d(j,s) ≥ γ

}
(19)

In Formulation (10), NA(dγ ) is the quantity of range nodes
whose its own area is dAγ from the convergence node.
P{NA(dγ ) = 1} is expressed as the probability of having a
node. P{9j > 9th} indicates that the signal-to-noise ratio
of the receiving node sj is greater than the 9th threshold.
P{d(j,s) ≥ γ } indicates the probability of the minimum
distance of γ of the next hop sj to the aggregation node.
If dγ → 0, NA(dγ ) = 1 can be approximated as:

P {NA (dγ ) = 1} ∼= 1− e−ρδγ dγ dα (20)

where, ρ is the sensor network node density; δ is the propor-
tional dimension of the parameter. As dγ → 0, dα→ 0, that
is, ρδγ dγ dα→ 0, the above formula may be simplified as:

P {NA(dγ ) = 1} ∼= ρδγ dγ dα (21)

According to formula (21), if the distance between any
node and the sink node is set as d , the received power is:

Pr (d) = Pt − PL (d0)− 10ηlg
(
d
/
d0
)
+ Xσ (22)

where, Pt is the transmit power; PL(d0) is the loss on the path
with the reference distance d0; η is the path loss index; Xσ is
the energy attenuation parameter and satisfies Xσ ∼ N (0, σ )
distribution. Pn is the noise power, and the signal-to-noise
ratio of the sink node is:

9 (d) = Pr (d)− Pn (23)
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P{9j > 9th} indicates that the probability of signal-to-
noise ratio of the receiving node sj is greater than the 9th
threshold is:

P
{
9j > 9th

}
=P

{
Xσ >β

(
d(i,j),9th

)}
=Q

(
β
(
d(i,j),9th

)
/σ
)

(24)

β
(
d(i,j),9th

)
=9th+Pn=Pt+PL (d0)+10ηlg (d (i, j)/d0)

(25)

Q (x) =
1
√
2π

∫
∞

x
e−
(
t2
/
2
)
dt (26)

Q(x) indicates the probability of the distribution function.
As the energy decay is a log-normal random variable, it is
based on the probability of the function of the cumulative
distribution of the normal random variable.
P{d(j,s) ≥ γ } indicates that the signal-to-noise ratio of any

node sk that is closer to the sink node than the node sj is less
than the9th probability value. A(γ ) is applied to indicate that
the node sk which is arbitrary is closer to the area of the area
composed of the convergent nodes than the node sj, that is:

P
{
d(i,j) ≥ γ

}
=

∞∑
i=0

P
{
NA(γ ) = i

}
pk (γ )i

=

∞∑
i=0

e−M(γ )M (γ )i

i!
pk (γ )i=e−M(γ )(1−pk (γ ))

(27)

where, A(γ ) is the overlapping areas of two circles of D with
the radius of Rint and γ .Thus, NA(γ ) is the quantity of nodes
in A(γ ),M (γ ) = ρδA(γ ) is the nodes average number within
the area. In addition, pk (γ ) = P{9k ≤ 9th, k ∈ A(γ )} is
the probability of node sk in A(γ ), and the received signal-
noise ratio is lower than the threshold signal-noise ratio, that
is 9k ≤ 9th, therefore:

pk (γ ) =
∫ γ

γmin

∫ αγ

−αγ

[
1− Q

(
β

σ

)]
1

A (γ )
dαdγ (28)

where γmin = D-Rint , by substituting Formulas (20),
(22)-(28) into Formula (19) to obtain the expected number
of hops:

E (dh) = ρδ
∫ γ

γmin

∫ αγ

−αγ

γ d(i,j)Q
(
β

σ

)
e−M(γ )(1−pk (γ ))dαdγ

(29)

Therefore, the proof is comleted.

B. COLLECTION AND COMPRESSION OF
SPATIAL CORRELATION DATA
For the compressed sensing theory, a special method of signal
reconstruction is applied to enable a signal8 to be accurately
recovered from data with fewer sample points than required
by the Nyquist criterion. The signal here must be sparse, to be
specific, a signal X of length N is k-sparse on an orthog-
onal basis (that is, it contains k non-zero values, k � N ).
Every data element in8 independently meets the normal dis-
tribution of (0,1/N ). The function p of the probability density

is calculated by Formula (27). Apply an observation matrix
that is not related to the transformation basis to project the
transformed high-dimensional signal onto a low-dimensional
one. Then, by solving an optimization problem, the original
signal can be reconstructed with a high probability from these
few projections.

Data collected by the member nodes in the cluster gener-
ally have correlations in time domain and space domain, and
related processing is required to make such data distributed
in a sparse manner. First remove the common parts and only
keep the private part, then compress the part which is private
and add the public part after reconstruction. This can reduce
errors of the reconstruction, improve the data processing
speed by nodes, and reduce communication costs.

Then, discrete cosine transformation (DCT) is applied to
sparsely transform the data. DCT is selected as it can concen-
trate most of the key signal information in the low-frequency
part after signal transformation. The DCT transformation
function is as follows:

fk =
n∑
i=1

x[i] cos
[
π

n
k
(
i+

1
2

)]
m = 1, 2, . . . , n. (30)

The cluster head node delivers the required observation
vector obtained by the DCT function transformation to the
base station node. In order to reconstruct the data which
is original quickly, the control vector size of shall be no
greater than 1,000. This chapter applies the mechanism of
network clustering, and the quantity of nodes in each cluster
is controlled within 20. Therefore, the scale of the observation
vector is relatively small, and the base station nodes can
reconstruct the data which is original relatively easily.
Theorem 2: For matrix 8s = (ξ1, ξ2, . . . ξM )T , ξi is a

sequence which is discrete random with the same and inde-
pendent distribution, and the variables ξn which is random
constituting the sequence all obey the distribution law shown
in Formula (30), after that, the matrix 8s is in full rank
tending to ‘‘1’’.

Proof: Assume that the matrix 8s which is satisfying
the above conditions is not full rank, that is, there is a set of
coefficients for the number i row in the matrix, which makes
the following formulation.

ξi=a1ξ1 + a2ξ2 + · · · + ai−1ξi−1 + ai+1ξi+1+· · ·+aM ξM
(31)

The formulation is established, and coefficients a1,
a2 . . . , aM are not all zero.
Let the random process {X (n), n = 0, 1, . . . ,N} represent

the row vector ξi, the mean function and variance function
are:

EX (n) = (+1)
1− p
2
+ (−1)

1− p
2
+ 0× p = 0 (32)

DX (n) = E [X (n)− EX (n)]2 = E [X (n)]2

=
1− p
2
+

1− p
2
= 1− p (33)
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Let the random process {Y (n), n = 0, 1, . . . ,N} be a1ξ1+
a2ξ2+ . . .+ai−1ξi−1+aiξi+ . . .+aM ξM , the mean function
and variance function are:

EY (n) = E

 ∑
j∈[1,M ],j 6=i

ajξj(n)

 = ∑
j∈[1,M ],j 6=i

ajEξj(n) = 0

(34)

Thus, Y (n) and X (n) respectively describe random pro-
cesses which are different. For the discrete random pro-
cess X (n), with the value of X (i) random variable x(i) ∈
{−1, 0, 1}, then the length of the state space Ix is 3N ; For
the process Y (n) which is discrete random, the value of the
variable Y (i) which is random is 1−M ≤ y(i) ≤ M − 1, and
the state space Iy length is (2M − 1)N .
If event A is defined as the establishment of Formula (31),

the coefficients of Event B, a1, a2 . . . ai−1, ai, ai+1, . . . aM ,
which are all non-zero values; The coefficients of event C,
a1, a2 . . . ai−1, ai, ai+1, . . . aM have only one non-zero value;
Then we get the following conclusion.

P (A|B) < P (A|C) (35)

Solution of probability P(A|C) could be transformed into
solution of probability of independent and identically dis-
tributed stochastic processes X2(n) and X1(n) with the state
which is the same at the same time. In the state space of the
random process X (n), different states have different proba-
bility values. To facilitate analysis without loss of generality,
parameter p = 1/3 is taken in Formula (35), and then we got
the conclusion as the following.

P (A|B) < P (A|C) =
1
3N
� 10−3 (36)

Therefore, the proof is comleted.
If weighted vector A = (a1, a2, . . . ak ) is introduced,

of which an = n

/
k∑
j=1

j , n ∈ [1, k] indicates the normalized

weight of data hiT−k+n in the sequence, then the received
prediction data ĥiT+1 of the number i observation of the node
in the T + 1 round is:

ĥiT+1 = A× Hk =
k∑

n=1

n
1+ 2+ · · · + k

hiT−k+n (37)

Assume node S experiences blocky packet loss in the i
observation of T + 1 round, the node receives data based
on the history stored in its own memory, construct a k-order
time-dependent sequence Hk ; then, the prediction data ĥiT+1
of packet loss can be obtained according to the prediction
Formula (36). Among them, the value of the prediction order
k is required, in advance, to be determined, and different
values of the prediction order k will affect the prediction
accuracy of node packet loss. This paper dynamically adjusts
the k value according to the prediction error feedback. Define
the maximum allowable prediction error as emax , set the
initial value as k0 = 3. After the time-series correlation

supplementary packet is applied for link packet loss, wait
for the real data to be received most recently in the future.
After the real transmission data hreal is received correctly,
the current k value Combination (37) is applied to predict the
data prediction value ĥreal of the corresponding round of real
data hreal again, and the prediction error e =

∣∣∣hreal − ĥreal ∣∣∣
is calculated. If the predicted error e ≤ emax , the k value is
not required to be adjusted; if the predicted error e > emax ,
respectively adjust the step size as +1k and -1k , adjust
the k value, and calculate the current predicted error e1, e2,
respectively, if |e1| < |e2|, select step size as+1k , update the
k value; otherwise, select step size−1k, and update k value.

V. SIMULATION AND ANALYSIS
Assume that the scale of the deployment of sensor net-
works is medium-sized and small networks, and the network
topologies will not change easily. Each node in the network
collects data of sensing from the environment periodically,
and the amount of sensing data is relatively small. To ver-
ify the RdS-ImS algorithm effectiveness, this paper selects
1000 cycles of data collected by 600 sensor nodes, and the
data collection interval of each period is 10minutes. The envi-
ronment of the simulation is as follows: the sensor nodes are
randomly and uniformly arranged in the area of monitoring
of 200 × 200m2 and 300 × 300m2.The nodes applies MST
to construct the entire routing of network. The aggregation
node sink is in the position of the center of the network
with coordinates of (100,100) and (150,150). The sensor
nodes collect the environmental data in the monitoring and
deployment area in a periodic manner and transmit the data
to the sink end by the CS data collection method of multi-hop
routing. DTC basis is applied in the compression sampling
process, of which the sparseness of the observation matrix
can be controlled by parameters, in this paper, s ∈ [0, 1],
that is, the dense observation matrix is applied; and the OMP
algorithm is applied for the end of the sink reconstruction
algorithm.

φij =
√
s


+1, with prob.

1
2s

0, with prob.1−
1
s

−1, with prob.
1
2s

(38)

The consumption of the energy of wireless sensor net-
works adopts the energy consumption model described in
paper [20], as shown in Formula (39) and (40), whereET (d, l)
indicates the energy consumption for sending l-bit data, and
d indicates the transmission distance α1 indicates the power
consumption of transmitting and receiving circuits, α2 indi-
cates the distance attenuation coefficient, n is the path loss
factor (2 < n < 5, generally n = 2 in free space); ER(l)
indicates the energy consumption of receiving l-bit data.

ET(d, l) = (α1 + α2 × dn)× l (39)

ER(l) = α1 × l (40)
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In this paper, DMOA algorithm [28], MIC-CSDC
algorithm [33] and CS-RTSC algorithm [34] are selected as
comparison algorithms, of which, DMOA and MIC-CSDC
algorithms are classic CS data collection algorithms under
tree routing, with the difference lying in that the DMOA algo-
rithm of the entire network nodes participate in the collection
of CS data, while theMIC-CSDC algorithm only collects data
in the CSmode by nodes that satisfy the number of forwarded
data packets greater than the number of observationsM . The
CS-RTSC algorithm collects and reconstructs the data of the
entire work in a quite sparse manner. The data collection pro-
cess still uses the traditional sensor network data collection
method. Performance evaluation indicators refer to relative
reconstruction errors and network lifetime. The smaller the
relative reconstruction error and the relative reconstruction
error, the higher the accuracy of the reconstruction algorithm
will be. The simulation data selected in this paper is sourced
from the real temperature data of the GreenOrbs system.
Therefore, there is a strong spatial correlation between the
data and the threshold is set as δk ∈ [0.1, 0.5]. When
the relative reconstruction error is less than the threshold,
the reconstruction is considered successful, otherwise the
reconstruction is considered failed. The life of the network
is defined as the time from when the network starts until
the node which is the first dies. The longer the network life-
time, the better the algorithm can resist energy consumption.
Set the simulation parameters as follows: CS observations
M ∈ [0, 50], maximum number of retransmissions for packet
loss max_num=5.The packet loss applies combinational loss
composed of 70% random packet loss and 30% block packet
loss. Time series correlation prediction supplement order is
k ∈ [1, 5].

Fig 3(a) compares the performance of the CS data col-
lection algorithm on an ideal lossless link and a lossy link
with an average packet loss rate of 20%. With the increase
of the quantity of observations, the reconstruction error of
the SdR-ImS algorithm decreases sharply. After M is bigger
than 15, the reconstruction error tends to be stable and less
than 3%; for links with an average packet loss rate of 20%,
though the relative error decreases with the increase of M ,
the value is still greater than 85%. Therefore, the quality of
the data reconstruction algorithm of the CS data collection
algorithm on the actual lossy link is much lower than the
evaluation result on the ideal link. In case of a lossy link,
due to the ‘‘association effect’’ of packet loss, simply by
increasing the number of observations M cannot effectively
improve the reconstruction accuracy. Fig 3(b) is the change
of the error of the data reconstruction with the loss rate of the
link packet with the fixed number of observations ofM = 30.
Under the CS algorithm, when the average loss rate of the
packet exceeds 5%, the error of the data reconstruction has
been up to 95%; while in this paper, when the average loss
rate of the packet of SdR-ImS algorithm is 5%, the data
reconstruction rate is 2.3%. Therefore, with the increase of
the loss rate of the link packet, the relative reconstruction
error of CS data increases rapidly. When the link packet

FIGURE 3. The impact of packet loss on the performance of data gathing
based on CS in lossy link.

loss rate is 20%, the data reconstruction error is greater than
96.1%. This indicates that even a slight packet loss on the link
would seriously degrade the performance of the CS collection
algorithm.

Figure 4 shows the comparison of data loss rate and
reconstruction error between the algorithm in this paper
and the three algorithms under different parameters (δk , sk )
under different monitoring areas. According to Fig 4(a),
the parameters applied in the SdR-ImS algorithm in this paper
{(δk = 0.3, sk = 0.4), (δk = 0.2, sk = 0.2)}. With the
increase of time, the data loss rates and reconstruction errors
of the four algorithms increase correspondingly. However, for
the SdR-ImS algorithm used in this paper, with the increase of
the data packet loss rate, the increase in reconstruction error
is relatively slow. Compared with the SdR-ImS algorithm,
the other three algorithms have larger reconstruction errors.
The main reason lies in is that this paper applies compressed
sensing technology to reconstruct the WSN data in order to
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FIGURE 4. Comparison of Effects of Different Parameters {(δk = 0.4, sk = 0.6), (δk = 0.3, sk = 0.4)} on data packet loss rates and reconstruction errors of
four Algorithms.

reduce the impact of repeated data on the transmission of the
entire network. By comparing the four algorithms, the recon-
struction error of the SdR-ImS algorithm in this paper is
smaller than the other three algorithms under the same data
packet loss rate. And the average reconstruction error thereof
is 16. 78%. The parameter in Fig 4(b) is {(δk = 0.4,
sk = 0.6), (δk = 0.3, sk = 0.4)}. Compared with Fig 4(a),
the parameter values are all increased, and the reconstruction
error are less than that of Fig 4(a). Compared with the other
three algorithms, the reconstruction error is also smaller.
Meanwhile, according to Fig 4(b), in this paper, the SdR-ImS
algorithm stabilizes as the data packet loss rate increases. This
verifies that the SdR-ImS algorithm can maintain a relatively
stable reconstruction error under the condition of high data
packet loss rate in this paper. Therefore, it is demonstrated
that the SdR-ImS algorithm has strong stability and effec-
tiveness, and its average reconstruction error is 25. 02%.

With the increase of the monitoring area, the data loss rate
and reconstruction error of the four algorithms all represent
an increasing trend, as shown in Fig 4(c) and Fig 4(d). Taking
Fig 4(c) as an example, while the data packet loss is 20%,
the reconstruction error of the SdR-ImS algorithms in this
paper is 4.7% and 11.5%. And the values for the other three
algorithms are 26%, 61%, 74%, respectively. The average
reconstruction error of the SdR-ImS algorithm in this paper
is much smaller than those of the other three algorithms,
and the average reconstruction error is 45.56%. The main
reason lies in that, in this paper, based on the application
of compressed sensing, the time series correlation predic-
tion supplement order is introduced to effectively control
the reconstruction accuracy, reduce the reconstruction error,
and improve the data fusion efficiency thereof. The other
three algorithms have not introduced related optimization
algorithms. Instead, they use compressed sensing technology
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FIGURE 5. Comparison of effects of different parameters {(δk = 0.4, sk = 0.6), (δk = 0.3, sk = 0.4)} on the number of nodes and the number of data
collection rounds.

directly to reconstruct the data, and the data reconstruction
effect is relatively poor.

Figure 5 gives the comparison of the number of nodes
and the number of data collection rounds under different
parameters. According to Fig 5(a), with the increase number
of sensor nodes in these four algorithms, the numbers of data
collection rounds increase accordingly. When the quantity
of the sensor nodes is 300, the numbers of data collection
rounds corresponding to the SdR-ImS algorithm in this paper
is 700, 490. And the values for other algorithms are 340,
290 and 245 respectively. In this paper, under the effect of
the same number of sensor nodes, the average number of
data collection rounds of the SdR-ImS algorithm is much
higher than the other three algorithms. The average value is
304, which is much higher than the values of the other three
algorithms. The main reason lies in that, with the increase
of the number of sensor nodes, the sensing ability between

nodes is strengthened accordingly. Meanwhile, in this paper,
the sensor nodes as independent and randomly distributed
discrete random sequences by SdR-ImS algorithm, and data
collection of the entire network is done by random variables
composed of sensor nodes. The MIC-CSDC algorithm and
CS-RTSC algorithm apply a tree structure to complete the
data collection. DMOA applies energy comparison to deter-
mine the sink node, and then the sink node selects themember
nodes to complete the tree-type data fusion. The above three
algorithms fail to consider the impact of network runtime on
data collection. The analysis in Fig 5(b) ismuch similar to that
in Fig 5(a). Fig 5(c) shows a comparison diagram of the num-
ber of nodes and the amount of data collection rounds in the
monitored area of 300× 300m2. According to Fig 5(c), with
the increasing of the amount of the sensor nodes, the number
of data collection rounds of the four algorithms increase
accordingly. However, the extent of the SdR-ImS algorithm
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in this paper is far greater than the other three algorithms.
When the quantity of sensor nodes is 400, the numbers of data
collection rounds corresponding to the SdR-ImS algorithm in
this paper is 900, 571. And the values for other algorithms are
370, 290 and 190 respectively. In this paper, under the effect
of the same number of sensor nodes, the average number of
data collection rounds of the SdR-ImS algorithm is much
higher than the other three algorithms. The average value
is 453, which is much higher than the values of the other
three algorithms. According to the analysis above, the data
collection efficiency of the SdR-ImS algorithm in this paper
is much higher than other three algorithms, further illustrating
that the SdR-ImS algorithm in this paper is provided with
relatively strong data fusion ability.

VI. CONCLUSION
The paper proposes Edge Computing in Internet of Things:
A Novel Sensing-data Reconstruction Algorithm under
Intelligent-migration strategy (RdS-ImS) with compressed
sensing as research background. During the data collection
process of the algorithm, in case of data packet loss on the
link, the dynamic real-time system design is completed by
means of dynamic parameter fitting. Random type packet
loss is recovered by retransmission mechanism. Meanwhile,
a time correlation sequence prediction recovery model is
designed to reduce the impact of data packet loss on the entire
wireless sensor network and ensure the normal operation of
the wireless sensor network. According to simulation results,
that the SdR-ImS algorithm in this paper can effectively
suppress reconstruction errors under different data packet loss
rates, and effectively improve the number of data collection
rounds under the action of different sensor nodes, which
further verifies the effectiveness and stability of the SdR-ImS
algorithm in this paper. In the next phase, focus should be
made on approaches to apply the compressed sensing tech-
nology to complete the calculation of characteristics such as
wireless sensor network coverage, tracking and deployment.
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