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ABSTRACT Some q-rung orthopair fuzzy Bonferroni mean Dombi aggregation operators have been devel-
oped based on the Bonferroni mean, Dombi T-norm and T-conorm in q-rung orthopair fuzzy environment.
The q-rung orthopair fuzzy Bonferroni mean Dombi averaging (q-ROFBMDA) operator and the q-rung
orthopair fuzzy geometric Bonferroni mean Dombi averaging (q-ROFGBMDA) operator are first developed.
Then the q-rung orthopair fuzzy weighted Bonferroni mean Dombi averaging (q-ROFWBMDA) operator
and the q-rung orthopair fuzzy weighted geometric Bonferroni mean Dombi averaging (q-ROFWGBMDA)
operator have been developed. Based on the partitioned operation, the q-rung orthopair fuzzy partitioned
Bonferroni mean Dombi averaging (q-ROFPBMDA) operator and the q-rung orthopair fuzzy partitioned
geometric Bonferroni mean Dombi averaging (q-ROFPGBMDA) operator have been presented. Some
desirable properties of the new aggregation operators have been studied. A new multiple attribute decision
making method based on the q-ROFWBMDA (q-ROFWGBMDA) operator is proposed. Finally, a numerical
example of new campus site selection has been presented to illustrate the new method.

INDEX TERMS q-rung orthopair fuzzy sets, Dombi, Bonferroni mean, aggregation operator.

I. INTRODUCTION
Q-rung orthopair fuzzy set is the extension of intuitionistic
fuzzy set and Pythagorean fuzzy set [1], which was first
developed by Yager [2]. In q-rung orthopair fuzzy set, the
sum of the qth power of the membership and the qth power
of the nonmembership is not more than 1. Hence, the q-rung
fuzzy set is more flexible, which has more applica-
tions than intuitionistic fuzzy set and Pythagorean fuzzy
set. The q-rung fuzzy set has attracted broad attentions.
Some aggregation operators have been developed [3]–[14].
Considering correlation of the q-rung orthopair fuzzy values,
Liang et al. [5] developed q-rung orthopair fuzzy Choquet
integral operator. By using the power mean operator, some
q-rung orthopair fuzzy power mean operators have been
developed [6], [7]. Q-rung orthopair fuzzy Maclaurin sym-
metric mean operator has been presented by Wei et al. [8].
Some q-rung orthopair fuzzy Bonferroni mean operators

The associate editor coordinating the review of this manuscript and

approving it for publication was Ching-Ter Chang .

have been presented in [9] and [10]. By using the Hero-
nian mean operator, Wei et al. [11] presented some q-rung
orthopair fuzzy Heronian mean operator. Based on Dombi
aggregation, Jana et al. [14] developed q-rung orthopair fuzzy
Dombi weighted averaging operator and q-rung orthopair
fuzzy Dombi order weighted averaging operator. Some
distance measures in q-rung orthopair fuzzy environment
have been investigated [15]–[18]. Peng et al. [18] proposed
q-rung orthopair fuzzy weighted distance-based approxima-
tion method. Q-rung fuzzy set has been further extended
to accommodate uncertain linguistic arguments [19]–[21],
interval values [22]. Q-rung orthopair fuzzy set has been
applied in evaluation of renewable energy problem [23],
teaching quality [24], etc. Since q-rung orthopair fuzzy set
has advantages over existing fuzzy sets, q-rung orthopair
fuzzy values are taken as evaluation values in this paper.

Aggregation operators are very important in decision mak-
ing process [25]–[28]. The Bonferroni mean (BM) was first
proposed by Bonferroni [29], which is interpreted as the
product of each argument with the average of the other
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arguments by Yager [30]. BM operator has been further
studied and applied extensively [31]–[37]. Geometric BM
was developed by Xia et al. [31] and generalized BM was
proposed by Xia et al. [32] by considering correlation of three
aggregated arguments rather than two. Chen et al. [33] gen-
eralized extended BM by a composite aggregation function.
Blanco-Mesa and Merigó [34] proposed Bonferroni-
Hamming weighted distance operator. Different views of
weighted BM operations have been studied by Mesiarova-
Zemankova et al. [35]. Some intuitionistic fuzzy Dombi
BM operators have been developed by Liu et al. [36].
Some intuitionistic fuzzy interaction partitioned BM oper-
ators have been proposed by Liu et al. [37]. The BM
has been extended to accommodate interval type-2 fuzzy
values [38], Pythagorean fuzzy values [39]–[41], 2-tuple intu-
itionistic fuzzy values [42], hesitant 2-tuple linguistic argu-
ment [43], neutrosophic fuzzy values [44], etc. Dombi [45]
developedDombi t-norm andDombi t-conorm,which ismore
flexible by a parameter in aggregation process. Dombi aggre-
gation has been studied and applied extensively [46]–[48].
Some aggregation operators based on the Dombi t-norm
and Dombi t-conorm have been studied. Some picture
fuzzy Dombi aggregation operators been developed includ-
ing Picture fuzzy Dombi weighted average operator and
picture fuzzy Dombi weighted geometric average opera-
tor [49], picture fuzzy Dombi Heronian mean operator [50].
Some intuitionistic fuzzy Dombi aggregation operators and
interval-valued intuitionistic fuzzy Dombi aggregation oper-
ators have been presented [51]–[53]. Some bipolar fuzzy
Dombi weighted averaging operator has been proposed by
Jana et al. [54]. Dombi operation has been further extended
to the neutrosophic fuzzy environment [55]–[57], 2-tuple
linguistic neutrosophic fuzzy environment [58], [59], pic-
ture fuzzy environment [60], q-rung picture fuzzy environ-
ment [61], etc. Since q-rung orthopair fuzzy set is more
flexible in evaluation process and Dombi is more flexible
in aggregation, BM operator can consider the correlation
of the arguments to be aggregated, then we develop new
aggregation operators based on the Dombi and BM operator
in q-rung orthopair fuzzy environments to give some more
powerful and flexible aggregation operators. To the best
of our knowledge, Dombi aggregation operation based on
the BM in q-rung orthopair fuzzy environment is yet to be
studied. Hence, the aim of this paper is to develop some
q-rung orthopair fuzzy BM Dombi aggregation operators.
We first developed q-rung orthopair fuzzy BM Dombi aver-
aging (q-ROFBMDA) operator and q-rung orthopair fuzzy
geometric BM Dombi averaging (q-ROFGBMDA) operator.
Then we presented the q-rung orthopair fuzzy weighted BM
Dombi averaging (q-ROFWBMDA) operator and q-rung
orthopair fuzzy weighted geometric BM Dombi averaging
(q-ROFWGBMDA) operator. Considering the partitioned
aggregation operation, we developed the q-rung orthopair
fuzzy partitioned BM Dombi averaging (q-ROFPBMDA)
operator, the q-rung orthopair fuzzy partitioned weighted BM
Dombi averaging (q-ROFPWBMDA) operator, the q-rung

orthopair fuzzy partitioned geometric BM Dombi averag-
ing (q-ROFPGBMDA) operator and the q-rung orthopair
fuzzy partitioned weighted geometric BM Dombi averaging
(q-ROFPWGBMDA) operator. The new aggregation opera-
tors can provide us a very useful means to deal with MADM
problems in q-rung orthopair fuzzy environments.

The rest of the paper is organized as follows. Some basic
concepts about q-rung orthopair fuzzy set, Dombi T-norm
and Dombi T-conorm have been reviewed in Section 2. Some
q-rung orthopair fuzzy BM Dombi aggregation operators
have been developed including the q-ROFBMDA operator,
the q-ROFGBMDA operator, the q-ROFWBMDA operator,
the q-ROFWGBMDA operator, the q-ROFPBMDA oper-
ator, the q-ROFPWBMDA operator, the q-ROFPGBMDA
operator and the q-ROFPWGBMDA operator in Section 3.
Some properties have been studied. A new multiple attribute
decision making method based on the q-ROFWBMDA
(q-ROFWGBMDA) has been developed in Section 4. Numer-
ical example is presented in Section 5 to illustrate the new
method. Conclusions are given in the last Section.

II. PRELIMINARIES
Definition 1 [2]: Let X be a fixed set. A q-rung orthopair

fuzzy set (q-ROFS) A on X can be represented as

P = {< x, µA(x), νA(x) >| x ∈ X}, (1)

where µA(x) : X → [0, 1] is the degree of membership and
νA(x) : X → [0, 1] is the degree of non-membership of
x ∈ X to the setA, respectively. For each x ∈ X , it satisfies the
following condition 0 ≤ (µA(x))q + (νA(x))q ≤ 1, (q ≥ 1).
πA(x) = (1 − (µA(x))q − (νA(x))2)1/q is the indeterminacy
degree of x to X .
Definition 2 [4]: Let α̂ =< µα̂, να̂ > be a q-rung orthopair

fuzzy number. The score function of α̂ can be defined as

S(α̂) = µq
α̂
− ν

q
α̂
. (2)

The accuracy function of α̂ can be defined as

H (α̂) = µq
α̂
+ ν

q
α̂
. (3)

Let α̂ =< µα̂, να̂ > and β̂ =< µ
β̂
, ν
β̂
> be two q-rung

orthopair fuzzy numbers, then
If S(α̂) > S(β̂), then α̂ > β̂,
If S(α̂) = S(β̂), then

If H (α̂) > H (β̂), then α̂ > β̂,
If H (α̂) = H (β̂), then α̂ = β̂.

Definition 3 [45]: Let (x, y) ∈ (0, 1) × (0, 1) and γ ≥ 0.
The Dombi T-norm TD,γ and Dombi T-conorm SD,γ are
defined as follows

TD,γ (x, y) =
1

1+ (( 1−xx )γ + ( 1−yy )γ )1/γ
, (4)

SD,γ (x, y) = 1−
1

1+ (( x
1−x )

γ + ( y
1−y )

γ )1/γ
. (5)

Definition 4 [14]: Let α̂ =< µα̂, να̂ > and
β̂ =< µ

β̂
, ν
β̂
> be two q-rung orthopair fuzzy numbers.
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The operational laws of q-rung orthopair fuzzy numbers
based on the Dombi T-norm and Dombi T-conorm can be
defined as

(1)

α̂ ⊕ β̂ =
〈(
1−

1

1+
(( µ

q
α̂

1−µq
α̂

)γ
+
( µ

q
β̂

1−µq
β̂

)γ )1/γ
)1/q

,

( 1

1+
(( 1−νq

α̂

ν
q
α̂

)γ
+
( 1−νq

β̂

ν
q
β̂

)γ )1/γ
)1/q〉

,

(2)

α̂ ⊗ β̂ =
〈( 1

1+
(( 1−µq

α̂

µ
q
α̂

)γ
+
( 1−µq

β̂

µ
q
β̂

)γ )1/γ
)1/q

,

(
1−

1

1+
(( ν

q
α̂

1−νq
α̂

)γ
+
( ν

q
β̂

1−νq
β̂

)γ )1/γ
)1/q〉

,

(3)

λα̂ =
〈(
1−

1

1+
(
λ
( µ

q
α̂

1−µq
α̂

)γ )1/γ )1/q,
( 1

1+
(
λ
( 1−νq

α̂

ν
q
α̂

)γ )1/γ )1/q〉,
(4)

α̂λ =
〈( 1

1+
(
λ
( 1−µq

α̂

µ
q
α̂

)γ )1/γ )1/q,
(
1−

1

1+
(
λ
( ν

q
α̂

1−νq
α̂

)γ )1/γ )1/q〉.
III. SOME NEW q-RUNG ORTHOPAIR FUZZY DOMBI
BONFERRONI MEAN OPERATOR
Definition 5 [29]: The BM aggregation operator of dimen-

sion n is a mapping (R+)n→ R+:

BMr,s(β1, β2, . . . , βn) =
( 1
n(n− 1)

n∑
i,j=1,i 6=j

βri β
s
j
) 1
r+s , (6)

where r, s ≥ 0, βj (j = 1, 2, . . . , n) is a collection of
nonnegative real numbers.
Definition 6: Let α̂k (k = 1, 2, . . . , n) be a collection of

q-rung orthopair fuzzy numbers. The q-rung orthopair fuzzy
BM Dombi averaging (q-ROFBMDA) operator is defined as

q-ROFBMDA(α̂1, α̂2, . . . , α̂n)

=
( 1
n(n− 1)

⊕
n
i,j=1,i 6=j (α̂

r
i ⊗ α̂

s
j )
) 1
r+s , (7)

where r, s > 0.
Theorem 1: Let α̂k =< µα̂k , να̂k > (i = 1, 2, . . . , n) be

a collection of q-rung orthopair fuzzy numbers, q, γ > 0.

The aggregated result of q-ROFBMDA operator is still a
q-rung orthopair fuzzy number and

q-ROFBMDA(α̂1, α̂2, . . . , α̂n)

=

( 1
n(n− 1)

⊕
n
i,j=1,i 6=j (α̂

r
i ⊗ α̂

s
j )
) 1
r+s

=

〈( 1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i 6=j uα̂ij

))1/γ )1/q,
(
1−

1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i 6=j vα̂ij

))1/γ )1/q〉, (8)

where

uα̂ij =
1

r
( 1−µq

α̂i
µ
q
α̂i

)γ
+ s

( 1−µqα̂j
µ
q
α̂j

)γ ,
vα̂ij =

1

r
( ν

q
α̂i

1−νq
α̂i

)γ
+ s

( ν
q
α̂j

1−νq
α̂j

)γ .
Proof:

α̂ri =
〈( 1

1+
(
r
( 1−µq

α̂i
µ
q
α̂i

)γ )1/γ
)1/q

,

(
1−

1

1+
(
r
( ν

q
α̂i

1−νq
α̂i

)γ )1/γ
)1/q〉

.

α̂sj =
〈( 1

1+
(
s
( 1−µqα̂j
µ
q
α̂j

)γ )1/γ
)1/q

,

(
1−

1

1+
(
s
( ν

q
α̂j

1−νq
α̂j

)γ )1/γ
)1/q〉

.

α̂ri ⊗ α̂
s
j

=

〈( 1

1+
(
r
( 1−µq

α̂i
µ
q
α̂i

)γ
+ s

( 1−µqα̂j
µ
q
α̂j

)γ )1/γ
)1/q

,

(
1−

1

1+
(
r
( ν

q
α̂i

1−νq
α̂i

)γ
+ s

( ν
q
α̂j

1−νq
α̂j

)γ )1/γ
)1/q〉

.

⊕
n
i,j=1,i 6=j(α̂

r
i ⊗ α̂

s
j )

=

〈(
1−

1

1+
(∑n

i,j=1,i 6=j
1

r
( 1−µq

α̂i
µ
q
α̂i

)γ
+s
( 1−µqα̂j

µ
q
α̂j

)γ )1/γ
)1/q

,

( 1

1+
(∑n

i,j=1,i 6=j
1

r
( ν

q
α̂i

1−νq
α̂i

)γ
+s
( ν

q
α̂j

1−νq
α̂j

)γ )1/γ
)1/q〉

.
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Let

uα̂ij =
1

r
( 1−µq

α̂i
µ
q
α̂i

)γ
+ s

( 1−µqα̂j
µ
q
α̂j

)γ ,
vα̂ij =

1

r
( ν

q
α̂i

1−νq
α̂i

)γ
+ s

( ν
q
α̂j

1−νq
α̂j

)γ .
1

n(n− 1)
⊕
n
i,j=1,i 6=j (α̂

r
i ⊗ α̂

s
j )

=

〈(
1−

1

1+
( 1
n(n−1)

∑n
i,j=1,i 6=j uα̂ij

)1/γ )1/q,( 1

1+
( 1
n(n−1)

∑n
i,j=1,i 6=j vα̂ij

)1/γ )1/q〉,( 1
n(n− 1)

⊕
n
i,j=1,i6=j (α̂

r
i ⊗ α̂

s
j )
) 1
r+s

=

〈( 1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i6=j uα̂ij

))1/γ )1/q,
(
1−

1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i 6=j vα̂ij

))1/γ )1/q〉.
Moreover, 0 ≤ µq

α̂j
+ν

q
α̂j
≤ 1,µq

α̂j
≤ 1−νq

α̂j
, νq
α̂j
≤ 1−µq

α̂j
,

ν
q
α̂j

1−νq
α̂j

≤

1−µq
α̂j

µ
q
α̂j

,
ν
q
α̂i

1−νq
α̂i

≤
1−µq

α̂i
µ
q
α̂i

, r
( ν

q
α̂i

1−νq
α̂i

)γ
+ s

( ν
q
α̂j

1−νq
α̂j

)γ
≤

r
( 1−µq

α̂i
µ
q
α̂i

)γ
+ s

( 1−µqα̂j
µ
q
α̂j

)γ
,

1
n(n− 1)

∑n

i,j=1,i 6=j
vα̂ij

≥
1

n(n− 1)

∑n

i,j=1,i 6=j
uα̂ij ,

1
r + s

( 1
1

n(n−1)

∑n
i,j=1,i 6=j vα̂ij

)
≤

1
r + s

( 1
1

n(n−1)

∑n
i,j=1,i 6=j uα̂ij

)
,

1 ≥
1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i6=j vα̂ij

))
≥

1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i6=j uα̂ij

)) ≥ 0,

0 ≤
1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i6=j uα̂ij

))1/γ
+ 1−

1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i6=j vα̂ij

))1/γ ≤ 1.

Hence, the aggregated result of the q-ROFBMDA operator
is still a q-rung orthopair fuzzy number.
Theorem 2 (Idempotency): Let α̂k =< µα̂k , να̂k > (i = 1,

2, . . . , n) be a collection of q-rung orthopair fuzzy numbers.

If α̂k = α̂, that is < µα̂k , να̂k >=< µα̂, να̂ > (k =
1, 2, . . . , n), q, γ > 0. Then

q-ROFBMDA(α̂1, α̂2, . . . , α̂n) = α̂.

Proof: Since µα̂i = µα̂j = µα̂ , then uα̂ij =
1

r
( 1−µq

α̂i
µ
q
α̂i

)γ
+s
( 1−µqα̂j

µ
q
α̂j

)γ = 1

r
( 1−µq

α̂

µ
q
α̂

)γ
+s
( 1−µq

α̂

µ
q
α̂

)γ = 1

(r+s)
( 1−µq

α̂

µ
q
α̂

)γ ,
then ( 1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i 6=j uα̂ij

))1/γ )1/q
=

( 1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i 6=j
1

(r+s)
( 1−µq

α̂

µ
q
α̂

)γ ))1/γ
)1/q

=

( 1

1+
( 1
r+s

1
1(

(r+s)
( 1−µq

α̂

µ
q
α̂

)γ ) )1/γ
)1/q

=

( 1

1+
( 1
r+s

(
(r + s)

( 1−µq
α̂

µ
q
α̂

)γ ))1/γ )1/q
=

( 1

1+
(( 1−µq

α̂

µ
q
α̂

)γ )1/γ )1/q
=

( 1

1+
1−µq

α̂

µ
q
α̂

)1/q
= µα̂.

να̂i = να̂j = να̂ , vα̂ij =
1

r
( ν

q
α̂i

1−νq
α̂i

)γ
+s
( ν

q
α̂j

1−νq
α̂j

)γ =

1

r
( ν

q
α̂

1−νq
α̂

)γ
+s
( ν

q
α̂

1−νq
α̂

)γ = 1

(r+s)
( ν

q
α̂

1−νq
α̂

)γ ,
(
1−

1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i6=j vα̂ij

))1/γ )1/q
=

(
1−

1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i 6=j
1

(r+s)
( ν

q
α̂

1−νq
α̂

)γ ))1/γ
)1/q

=

(
1−

1

1+
( 1
r+s

( 1
1(

(r+s)
( ν

q
α̂

1−νq
α̂

)γ ) ))1/γ
)1/q

=

(
1−

1

1+
( 1
r+s

(
(r + s)

( ν
q
α̂

1−νq
α̂

)γ ))1/γ )1/q
=

(
1−

1

1+
(( ν

q
α̂

1−νq
α̂

)γ )1/γ )1/q
=

(
1−

1

1+
ν
q
α̂

1−νq
α̂

)1/q
= να̂.
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Hence, q-ROFBMDA(α̂1, α̂2, . . . , α̂n) = α̂.
Theorem 3: (Monotonicity) Let (α̂1, α̂2, . . . , α̂n) and

(β̂1, β̂2, . . . , β̂n) be two collections of q-rung orthopair fuzzy
numbers. If α̂k =< µα̂k , να̂k >, β̂k =< µ

β̂k
, ν
β̂k
> (k = 1,

2, . . . , n) and µα̂k ≤ µβ̂k , να̂k ≥ νβ̂k , then

q-ROFBMDA(α̂1, α̂2, . . . , α̂n)

≤ q-ROFBMDA(β̂1, β̂2, . . . , β̂n).

Proof: Since µα̂i ≤ µβ̂i , µα̂j ≤ µβ̂j , µ
p
α̂i
≤ µ

p
β̂i
, µp

α̂j
≤

µ
p
β̂j
, ( 1−xx )′ = 1

x2
< 0.

1−µp
α̂i

µ
p
α̂i

≥

1−µp
β̂i

µ
p
β̂i

and
1−µp

α̂j

µ
p
α̂j

≥

1−µp
β̂j

µ
p
β̂j

.

r
( 1−µp

α̂i
µ
p
α̂i

)γ
+s
( 1−µpα̂j
µ
p
α̂j

)γ
≥ r

( 1−µp
β̂i

µ
p
β̂i

)γ
+s
( 1−µpβ̂j
µ
p
β̂j

)γ . Let uα̂ij =
r
( 1−µp

α̂i
µ
p
α̂i

)γ
+ s

( 1−µpα̂j
µ
p
α̂j

)γ , u
β̂ij
= r

( 1−µp
β̂i

µ
p
β̂i

)γ
+ s

( 1−µpβ̂j
µ
p
β̂j

)γ
,

( 1
n(n− 1)

∑n

i,j=1,i 6=j

1
uα̂ij

)
≤
( 1
n(n− 1)

∑n

i,j=1,i 6=j

1
u
β̂ij

)
,

1
r + s

( 1( 1
n(n−1)

∑n
i,j=1,i6=j

1
uα̂ij

))
≥

1
r + s

( 1( 1
n(n−1)

∑n
i,j=1,i 6=j

1
u
β̂ij

)),
( 1

1+
( 1
r+s

( 1(
1

n(n−1)
∑n

i,j=1,i 6=j
1

uα̂ij

)))1/γ
)1/q

≤

( 1

1+
( 1
r+s

( 1(
1

n(n−1)
∑n

i,j=1,i 6=j
1

u
β̂ij

)))1/γ
)1/q

.

να̂i ≥ ν
β̂i
, να̂j ≥ ν

β̂j
, νp

α̂i
≥ ν

p
β̂i
, νp

α̂j
≥ ν

p
β̂j
, ( x

1−x )
′
=

1
(1−x)2

> 0.
ν
p
α̂i

1−νp
α̂i

≥

ν
p
β̂i

1−νp
β̂i

,
ν
p
α̂j

1−νp
α̂j

≥

ν
p
β̂j

1−νp
β̂j

, r
( ν

p
α̂i

1−νp
α̂i

)γ
+

s
( ν

p
α̂j

1−νp
α̂j

)γ
≥ r

( ν
p
β̂i

1−νp
β̂i

)γ
+ s

( ν
p
β̂j

1−νp
β̂j

)γ . Let vα̂ij = r
( ν

p
α̂i

1−νp
α̂i

)γ
+

s
( ν

p
α̂j

1−νp
α̂j

)γ , v
β̂ij
= r

( ν
p
β̂i

1−νp
β̂i

)γ
+ s

( ν
p
β̂j

1−νp
β̂j

)γ
.

1
n(n− 1)

∑n

i,j=1,i 6=j

1
vα̂ij

≤
1

n(n− 1)

∑n

i,j=1,i6=j

1
v
β̂ij

,

( 1
r + s

( 1
1

n(n−1)

∑n
i,j=1,i6=j

1
vα̂ij

))1/γ
≥
( 1
r + s

( 1
1

n(n−1)

∑n
i,j=1,i 6=j

1
v
β̂ij

))1/γ
,

1−
1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i 6=j
1

vα̂ij

))1/γ
≥ 1−

1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i6=j
1

v
β̂ij

))1/γ .
By using the score function, we can get

q-ROFBMDA(α̂1, α̂2, . . . , α̂n)

≤ q-ROFBMDA(β̂1, β̂2, . . . , β̂n).

Theorem 4 (Boundedness): Let α̂k =< µα̂k , να̂k > (k =
1, 2, . . . , n) be a collection of q-rung orthopair fuzzy num-
bers. α̂− =< µ−, ν+ >=< mink µα̂k ,maxk να̂k >, α̂

+
=<

µ+, ν− >=< maxµα̂k , min να̂k >, then

α̂− ≤ q-ROFBMDA(α̂1, α̂2, . . . , α̂n) ≤ α̂+.

Proof: The property of boundedness can be proved
easily by using the property of monotonicity.
Theorem 5: (Commutativity) Let α̂k =< µα̂k , να̂k > and

α̂′k =< µ′
α̂k
, ν′
α̂k
> (k = 1, 2, . . . , n) be two collection of

q-rung orthopair fuzzy numbers. If α̂′k =< µ′
α̂k
, ν′
α̂k
> is any

permutation of α̂k =< µα̂k , να̂k >, then

q-ROFBMDA(α̂1, α̂2, . . . , α̂n)

= q-ROFBMDA(α̂′1, α̂
′

2, . . . , α̂
′
n).

Proof:

q-ROFBMDA(α̂1, α̂2, . . . , α̂n)

=

( 1
n(n− 1)

⊕
n
i,j=1,i 6=j (α̂

r
i ⊗ α̂

s
j )
) 1
r+s

=

( 1
n(n− 1)

⊕
n
i,j=1,i 6=j ((α̂

′
i)
r
⊗ (α̂′j)

s)
) 1
r+s

= q-ROFBMDA(α̂′1, α̂
′

2, . . . , α̂
′
n).

Definition 7: Let α̂k (k = 1, 2, . . . , n) be a collection of
q-rung orthopair fuzzy numbers. The q-rung orthopair fuzzy
geometric BM Dombi averaging (q-ROFGBMDA) operator
is defined as

q-ROFGBMDAr,s(α̂1, α̂2, . . . , α̂n)

=
1

r + s

(
⊗
n
i,j=1,i 6=j (rα̂i ⊕ sα̂j)

1
n(n−1)

)
, (9)

where r, s > 0.
Theorem 6: Let α̂k =< µα̂k , να̂k > (i = 1, 2, . . . , n) be a

collection of q-rung orthopair fuzzy numbers, q, γ > 0. The
aggregated result of q-ROFGBMDA operator is still q-rung
orthopair fuzzy number and

q-ROFGBMDA(α̂1, α̂2, . . . , α̂n)

=

〈(
1−

1

1+
( 1
r+s

( 1(
1

n(n−1)
∑n

i,j=1,i 6=j uα̂ij

)))1/γ
)1/q

,

( 1

1+
( 1
r+s

( 1(
1

n(n−1)
∑n

i,j=1,i 6=j vα̂ij

)))1/γ
)1/q〉

, (10)
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where

uα̂ij =
( 1

r
( µ

q
α̂i

1−µq
α̂i

)γ
+ s

( µ
q
α̂j

1−µq
α̂j

)γ ),
vα̂ij =

( 1

r
( 1−νq

α̂i
ν
q
α̂i

)γ
+ s

( 1−νqα̂j
ν
q
α̂j

)γ ).
Theorem 7 (Idempotency): Let α̂k =< µα̂k , να̂k > (i =

1, 2, . . . , n) be a collection of q-rung orthopair fuzzy num-
bers. If α̂k = α̂, that is < µα̂k , να̂k >=< µα̂, να̂ > (k =
1, 2, . . . , n), q, γ > 0. Then

q-ROFGBMDA(α̂1, α̂2, . . . , α̂n) = α̂.

Theorem 8 (Monotonicity): Let (α̂1, α̂2, . . . , α̂n) and
(β̂1, β̂2, . . . , β̂n) be two collections of q-rung orthopair fuzzy
numbers. If α̂k =< µα̂k , να̂k >, β̂k =< µ

β̂k
, ν
β̂k
> (k =

1, 2, . . . , n) and µα̂k ≤ µβ̂k , να̂k ≥ νβ̂k , then

q-ROFGBMDA(α̂1, α̂2, . . . , α̂n)

≤ q-ROFGBMDA(β̂1, β̂2, . . . , β̂n).

Theorem 9 (Boundedness): Let α̂k =< µα̂k , να̂k > (k =
1, 2, . . . , n) be a collection of q-rung orthopair fuzzy num-
bers. α̂− =< µ−, ν+ >=< mink µα̂k ,maxk να̂k >, α̂

+
=<

µ+, ν− >=< maxµα̂k , min να̂k >, then

α̂− ≤ q-ROFGBMDA(α̂1, α̂2, . . . , α̂n) ≤ α̂+.

Theorem 10 (Commutativity): Let α̂k =< µα̂k , να̂k > (k =
1, 2, . . . , n) and α̂′k =< µ′

α̂k
, ν′
α̂k
> (k = 1, 2, . . . , n) be

two collection of q-rung orthopair fuzzy numbers. If α̂′k =<
µ′
α̂k
, ν′
α̂k
> is any permutation of α̂k =< µα̂k , να̂k >, then

q-ROFGBMDA(α̂1, α̂2, . . . , α̂n)

= q-ROFGBMDA(α̂′1, α̂
′

2, . . . , α̂
′
n).

Definition 8: Let α̂k (k = 1, 2, . . . , n) be a collection of
q-rung orthopair fuzzy numbers and (w1,w2, . . . ,wn) be the
weight vector of α̂k . The q-rung orthopair fuzzyweighted BM
Dombi averaging (q-ROFWBMDA) operator is defined as

q-ROFWBMDA(α̂1, α̂2, . . . , α̂n)

=
( 1
n(n− 1)

⊕
n
i,j=1,i 6=j ((wiα̂i)

r
⊗ (wjα̂j)s)

) 1
r+s , (11)

where r, s > 0.
Theorem 11: Let α̂k (k = 1, 2, . . . , n) be a collection of

q-rung orthopair fuzzy numbers. The aggregated result of q-
ROFWBMDAoperator is still q-rung orthopair fuzzy number
and

q-ROFWBMDA(α̂1, α̂2, . . . , α̂n)

=

〈( 1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i 6=j uα̂ij

))1/γ )1/q,
(
1−

1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

i,j=1,i 6=j vα̂ij

))1/γ )1/q〉, (12)

where

uα̂ij =
1

r 1

wi
( µ

q
α̂i

1−µq
α̂i

)γ + s 1

wj
( µ

q
α̂j

1−µq
α̂j

)γ ,

vα̂ij =
1

r 1

wi
( 1−νq

α̂i
ν
q
α̂i

)γ + s 1

wj
( 1−νqα̂j

ν
q
α̂j

)γ .

Theorem 12 (Commutativity): Let α̂k (k = 1, 2, . . . , n)
be a collection of q-rung orthopair fuzzy numbers. If
(α̂′1, α̂

′

2, . . . , α̂
′
n) is any permutation of (α̂1, α̂2, . . . , α̂n),

then

q-ROFWBMDA(α̂1, α̂2, . . . , α̂n)

= q-ROFWBMDA(α̂′1, α̂
′

2, . . . , α̂
′
n).

Definition 9: Let α̂k (k = 1, 2, . . . , n) be a collection of
q-rung orthopair fuzzy numbers and (w1,w2, . . . ,wn) be the
weight vector of α̂k . The q-rung orthopair fuzzy weighted
geometric BM Dombi averaging (q-ROFWGBMDA) oper-
ator is defined as

q-ROFWGBMDA(α̂1, α̂2, . . . , α̂n)

=
1

r + s

(
⊗
n
i,j=1,i 6=j (rα̂

wi
i ⊕ sα̂

wj
j )

1
n(n−1)

)
, (13)

where r, s > 0.
Theorem 13: Let α̂k (k = 1, 2, . . . , n) be a collection

of q-rung orthopair fuzzy numbers. The aggregated result
of q-ROFWGBMDA operator is still q-rung orthopair fuzzy
number and

q-ROFWGBMDA(α̂1, α̂2, . . . , α̂n)

=

〈(
1−

1

1+
( 1
r+s

( 1(∑n
i,j=1,i 6=j

1
n(n−1) uα̂ij

)))1/γ
)1/q

,

( 1

1+
( 1
r+s

( 1(∑n
i,j=1,i 6=j

1
n(n−1) vα̂ij

))1/γ )
)1/q〉

, (14)

where uα̂ij =
1

r
(

1(
wi

1−µq
α̂i

µ
q
α̂i

)γ )+s( 1(
wj

1−µq
α̂j

µ
q
α̂j

)γ ) , vα̂ij =

1
r
(

1(
wi

ν
q
α̂i

1−νq
α̂i

)γ )+s( 1(
wj

ν
q
α̂j

1−νq
α̂j

)γ ) .
Theorem 14 (Commutativity): Let α̂k (k = 1, 2, . . . , n)

be a collection of q-rung orthopair fuzzy numbers. If
(α̂′1, α̂

′

2, . . . , α̂
′
n) is any permutation of (α̂1, α̂2, . . . , α̂n),

then

q-ROFWGBMDA(α̂1, α̂2, . . . , α̂n)

= q-ROFWGBMDA(α̂′1, α̂
′

2, . . . , α̂
′
n).

Definition 10: Let α̂k (k = 1, 2, . . . , n) be a collection
of q-rung orthopair fuzzy numbers, which is partitioned into
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m distinct sorts P1,P2, . . . ,Pm. The q-rung orthopair fuzzy
partitioned BM Dombi averaging (q-ROFPBMDA) operator
is defined as

q-ROFPBMDA(α̂1, α̂2, . . . , α̂n)

=
1
m

(
⊕
m
i=1

( 1
| Ph |

⊕i∈Ph
(
α̂ri ⊗

( 1
|Ph| − 1

⊕j∈Ph,j 6=iα̂
s
j
))) 1

r+s
)
, (15)

where r, s ≥ 0 and r + s > 0. | Ph | is the cardi-
nality of Ph and m is the number of partitioned sorts and∑m

h=1 |Ph| = n.
Theorem 15: Let α̂k (k = 1, 2, . . . , n) be a collection of

q-rung orthopair fuzzy numbers. The aggregated result of the
q-ROFPBMDA operator is still of a q-rung orthopair fuzzy
number and we have

q-ROFPBMDA(α̂1, α̂2, . . . , α̂n)

=

〈(
1−

1

1+
( 1
m

(∑m
i=1

1(
1
r+s

1
1
|Ph|

∑
i∈Ph

1
uα̂ij

)))1/γ
)1/q

,

( 1

1+
( 1
m

∑m
i=1

1(
1
r+s

1
1
|Ph|

∑
i∈Ph

1
vα̂ij

))1/γ
)1/q〉

. (16)

where uα̂ij = r
( 1−µq

α̂i
µ
q
α̂i

)γ
+

1
1

|Ph|−1
∑

j∈Ph,j 6=i

(
1

s
( 1−µq

α̂j
µ
q
α̂j

)γ ) , vα̂ij =
r
( ν

q
α̂i

1−νq
α̂i

)γ
+

1
1

|Ph|−1
∑

j∈Ph,j 6=i

(
1

s
( ν

q
α̂j

1−νq
α̂j

)γ ) , r, s ≥ 0

and r + s > 0. | Ph | is the cardinality of Ph and m is the
number of partitioned sorts and

∑m
h=1 |Ph| = n.

Proof:

α̂sj =
〈( 1

1+
(
s
( 1−µqα̂j
µ
q
α̂j

)γ )1/γ
)1/q

,

(
1−

1

1+
(
s
( ν

q
α̂j

1−νq
α̂j

)γ )1/γ
)1/q〉

,

⊕j∈Ph,j 6=iα̂
s
j

=

〈(
1−

1

1+
(∑

j∈Ph,j 6=i
( 1(
s
( 1−µqα̂j

µ
q
α̂j

)γ )))1/γ
)1/q

,

( 1

1+
(∑

j∈Ph,j 6=i
( 1(
s
( ν

q
α̂j

1−νq
α̂j

)γ )))1/γ
)1/q〉

,

1
|Ph| − 1

⊕j∈Ph,j 6=i α̂
s
j

=

〈(
1−

1

1+
( 1
|Ph|−1

∑
j∈Ph,j 6=i

( 1(
s
( 1−µqα̂j

µ
q
α̂j

)γ )))1/γ
)1/q

,

( 1

1+
( 1
|Ph|−1

∑
j∈Ph,j 6=i

( 1(
s
( ν

q
α̂j

1−νq
α̂j

)γ )))1/γ
)1/q〉

,

α̂ri =
〈( 1

1+
(
r
( 1−µq

α̂i
µ
q
α̂i

)γ )1/γ
)1/q

,

(
1−

1

1+
(
r
( ν

q
α̂i

1−νq
α̂i

)γ )1/γ
)1/q〉

.

Let

uα̂ij = r
(1− µqα̂i
µ
q
α̂i

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j 6=i

( 1

s
( 1−µqα̂j

µ
q
α̂j

)γ ) ,

vα̂ij = r
( ν

q
α̂i

1− νq
α̂i

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j 6=i

( 1

s
( ν

q
α̂j

1−νq
α̂j

)γ ) ,

α̂ri ⊗
( 1
|Ph| − 1

⊕j∈Ph,j 6=i α̂
s
j

)
=

〈( 1

1+
(
uα̂ij
)1/γ )1/q, (1− 1

1+
(
r
(
vα̂ij
)1/γ )1/q〉,

⊕i∈Ph

(
α̂ri ⊗

( 1
|Ph| − 1

⊕j∈Ph,j 6=i α̂
s
j

))
=

〈(
1−

1

1+
(∑

i∈Ph
1
uα̂ij

)1/γ )1/q,
( 1

1+
(∑

i∈Ph
1
vα̂ij

)1/γ )1/q〉,
1
| Ph |

⊕i∈Ph

(
α̂ri ⊗

( 1
|Ph| − 1

⊕j∈Ph,j 6=i α̂
s
j

))
=

〈(
1−

1

1+
( 1
|Ph|

∑
i∈Ph

1
uα̂ij

)1/γ )1/q,
( 1

1+
( 1
|Ph|

∑
i∈Ph

1
vα̂ij

)1/γ )1/q〉,
( 1
| Ph |

⊕i∈Ph
(
α̂ri ⊗

( 1
|Ph| − 1

⊕j∈Ph,j 6=i α̂
s
j
))) 1

r+s

=

〈( 1

1+
( 1
r+s

1
1
|Ph|

∑
i∈Ph

1
uα̂ij

)1/γ )1/q,
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(
1−

1

1+
( 1
r+s

1
1
|Ph|

∑
i∈Ph

1
vα̂ij

)1/γ )1/q〉,
⊕
m
i=1

( 1
| Ph |

⊕i∈Ph
(
α̂ri ⊗

( 1
|Ph| − 1

⊕j∈Ph,j 6=i α̂
s
j
))) 1

r+s

=

〈(
1−

1

1+
(∑m

i=1
1(

1
r+s

1
1
|Ph|

∑
i∈Ph

1
uα̂ij

))1/γ
)1/q

,

( 1

1+
(∑m

i=1
1(

1
r+s

1
1
|Ph|

∑
i∈Ph

1
vα̂ij

))1/γ
)1/q〉

,

1
m

(
⊕
m
i=1

( 1
| Ph |

⊕i∈Ph
(
α̂ri ⊗

( 1
|Ph| − 1

⊕j∈Ph,j 6=iα̂
s
j
))) 1

r+s
)

=

〈(
1−

1

1+
( 1
m

(∑m
i=1

1(
1
r+s

1
1
|Ph|

∑
i∈Ph

1
uα̂ij

)))1/γ
)1/q

,

( 1

1+
( 1
m

∑m
i=1

1(
1
r+s

1
1
|Ph|

∑
i∈Ph

1
vα̂ij

))1/γ
)1/q〉

.

Moreover, 0 ≤ µq
α̂j
+ ν

q
α̂j
≤ 1, µq

α̂j
≤ 1 − νq

α̂j
, νq
α̂j
≤ 1 −

µ
q
α̂j
,

ν
q
α̂j

1−νq
α̂j

≤

1−µq
α̂j

µ
q
α̂j

, s
( ν

q
α̂j

1−νq
α̂j

)γ
≤ s

( 1−µqα̂j
µ
q
α̂j

)γ , ν
q
α̂i

1−νq
α̂i

≤
1−µq

α̂i
µ
q
α̂i

,

r
( ν

q
α̂i

1−νq
α̂i

)γ
≤ r

( 1−µq
α̂i

µ
q
α̂i

)γ
.

1
|Ph| − 1

∑
j∈Ph,j 6=i

( 1

s
( ν

q
α̂j

1−νq
α̂j

)γ )

≥
1

|Ph| − 1

∑
j∈Ph,j 6=i

( 1

s
( 1−µqα̂j
µ
q
α̂j

)γ ),

r
( ν

q
α̂i

1− νq
α̂i

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j 6=i

( 1

s
( ν

q
α̂j

1−νq
α̂j

)γ )

≤ r
(1− µqα̂i
µ
q
α̂i

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j6=i

( 1

s
( 1−µqα̂j

µ
q
α̂j

)γ ) ,

that is vα̂ij ≤ uα̂ij , then

1
|Ph|

∑
j∈Ph,j 6=i

1
vα̂ij

≥
1
|Ph|

∑
j∈Ph,j6=i

1
uα̂ij

,

1
r + s

1
1
|Ph|

∑
j∈Ph,j 6=i

1
vα̂ij

≤
1

r + s
1

1
|Ph|

∑
j∈Ph,j 6=i

1
uα̂ij

,

( 1
m

∑m

i=1

1
1
r+s

1
1

|Ph|−1
∑

j∈Ph,j 6=i
1

vα̂ij

)1/γ
≥
( 1
m

∑m

i=1

1
1
r+s

1
1

|Ph|−1
∑

j∈Ph,j6=i
1

uα̂ij

)1/γ
,

1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|−1
∑
j∈Ph,j 6=i

1
vα̂ij

)1/γ
≤

1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|−1
∑
j∈Ph,j 6=i

1
uα̂ij

)1/γ ,
0 ≤ 1−

1

1+
( 1
m

(∑m
i=1

1(
1
r+s

1
1
|Ph|

∑
i∈Ph

1
uα̂ij

)))1/γ
+

1

1+
( 1
m

∑m
i=1

1(
1
r+s

1
1
|Ph|

∑
i∈Ph

1
vα̂ij

))1/γ ≤ 1.

Hence, by using the score function, we can get the aggre-
gated result of the q-ROFPBMDA operator is still a q-rung
orthopair fuzzy number.
Theorem 16 (Idempotency): Let α̂k =< µα̂k , να̂k > (k =

1, 2, . . . , n) be a collection of q-rung orthopair fuzzy num-
bers. If α̂k = α̂, that is < µα̂k , να̂k >=< µα̂, να̂ > (k =
1, 2, . . . , n). Then

q-ROFPBMDA(α̂1, α̂2, . . . , α̂n) = α̂.

Proof: Since µα̂i = µα̂j = µα̂ , να̂i = να̂j = να̂ , we have

uα̂ij = r
(1− µqα̂i
µ
q
α̂i

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j 6=i

( 1

s
( 1−µqα̂j

µ
q
α̂j

)γ )

= r
(1− µq

α̂

µ
q
α̂

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j 6=i

( 1

s
( 1−µq

α̂

µ
q
α̂

)γ )
= r

(1− µq
α̂

µ
q
α̂

)γ
+ s

(1− µq
α̂

µ
q
α̂

)γ
= (r + s)

(1− µq
α̂

µ
q
α̂

)γ
,(

1−
1

1+
( 1
m

(∑m
i=1

1(
1
r+s

1
1
|Ph|

∑
i∈Ph

1
uα̂ij

)))1/γ
)1/q

=

(
1−

1

1+
(1
m

(∑m
i=1

1(
1
r+s

1
1
|Ph|

∑
i∈Ph

1

(r+s)
( 1−µq

α̂

µ
q
α̂

)γ )
))1/γ )1/q
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=

(
1−

1

1+
( 1
m

(∑m
i=1

1(
1
r+s

1
1

(r+s)
( 1−µq

α̂

µ
q
α̂

)γ )
))1/γ )1/q

=

(
1−

1

1+
( 1
m

(∑m
i=1

1(
1
r+s (r+s)

( 1−µq
α̂

µ
q
α̂

)γ )))1/γ
)1/q

=

(
1−

1

1+
( 1
m

(∑m
i=1

1(( 1−µq
α̂

µ
q
α̂

)γ )))1/γ
)1/q

=

(
1−

1

1+
( 1( 1−µq

α̂

µ
q
α̂

)γ )1/γ
)1/q

=

(
1−

1

1+ 1
1−µq

α̂

µ
q
α̂

)1/q
=

(
1−

1

1+
µ
q
α̂

1−µq
α̂

)1/q
= µα̂,

vα̂ij = r
( ν

q
α̂i

1− νq
α̂i

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j 6=i

( 1

s
( ν

q
α̂j

1−νq
α̂j

)γ )

= r
( ν

q
α̂

1− νq
α̂

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j 6=i

( 1

s
( ν

q
α̂

1−νq
α̂

)γ )
= r

( ν
q
α̂

1− νq
α̂

)γ
+ s

( ν
q
α̂

1− νq
α̂

)γ
= (r + s)

( ν
q
α̂

1− νq
α̂

)γ
.

Since να̂i = να̂j = να̂ ,( 1

1+
( 1
m

∑m
i=1

1(
1
r+s

1
1
|Ph|

∑
i∈Ph

1
vα̂ij

))1/γ
)1/q

=

( 1

1+
( 1
m

∑m
i=1

1(
1
r+s

1
1
|Ph|

∑
i∈Ph

1

(r+s)
( ν

q
α̂

1−νq
α̂

)γ )
)1/γ )1/q

=

( 1

1+
( 1
m

∑m
i=1

1(
1
r+s

1
1

(r+s)
( ν

q
α̂

1−νq
α̂

)γ )
)1/γ )1/q

=

( 1

1+
( 1
m

∑m
i=1

1(
1
r+s (r+s)

( ν
q
α̂

1−νq
α̂

)γ ))1/γ
)1/q

=

( 1

1+
( 1
m

∑m
i=1

1(( ν
q
α̂

1−νq
α̂

)γ ))1/γ
)1/q

=

( 1

1+
( 1(( ν

q
α̂

1−νq
α̂

)γ ))1/γ
)1/q
=

( 1

1+ 1
ν
q
α̂

1−νq
α̂

)1/q
= να̂.

Hence, q-ROFPBMDA(α̂1, α̂2, . . . , α̂n) = α̂.

Theorem 17 (Commutativity): Let α̂k =< µα̂k , να̂k > and
α̂′k =< µ′

α̂k
, ν′
α̂k
> (k = 1, 2, . . . , n) be two collections

of q-rung orthopair fuzzy numbers. If (α̂1, α̂2, . . . , α̂n) is
any permutation of (α̂′1, α̂

′

2, . . . , α̂
′
n) and they have the same

partitioned sorts, then

q-ROFPBMDA(α̂1, α̂2, . . . , α̂n)

= q-ROFPBMDA(α̂′1, α̂
′

2, . . . , α̂
′
n).

Proof:

q-ROFPBMDA(α̂1, α̂2, . . . , α̂n)

=
1
m

(
⊕
m
i=1

( 1
| Ph |

⊕i∈Ph
(
α̂ri ⊗( 1

|Ph| − 1
⊕j∈Ph,j 6=i α̂

s
j
))) 1

r+s
)

=
1
m

(
⊕
m
i=1

( 1
| Ph |

⊕i∈Ph
(
(α̂′i)

r
⊗( 1

|Ph| − 1
⊕j∈Ph,j 6=i (α̂

′
j)
s))) 1

r+s
)

= q-ROFPBMDA(α̂′1, α̂
′

2, . . . , α̂
′
n).

Theorem 18 (Monotonicity): Let α̂k =< µα̂k , να̂k > and
β̂k =< µ

β̂k
, ν
β̂k

> be two collection of q-rung orthopair
fuzzy numbers. If µα̂k ≥ µ

β̂k
and να̂k ≤ ν

β̂k
for all

k = 1, 2, . . . , n, then

q-ROFPBMDA(α̂1, α̂2, . . . , α̂n)

≥ q-ROFPBMDA(β̂1, β̂2, . . . , β̂n).

Proof: Since µα̂k ≥ µ
β̂k
, µq

α̂k
≥ µ

q
β̂k
, ( 1−xx )′ = − 1

x2
,

1−µq
α̂k

µ
q
α̂k

≤
1−µq

α̂k
µ
q
α̂k

, r
( 1−µq

α̂i
µ
q
α̂i

)γ
≤ r

( 1−µq
β̂i

µ
q
β̂i

)γ ,
1

|Ph| − 1

∑
j∈Ph,j 6=i

1

s
( 1−µqα̂j
µ
q
α̂j

)γ
≥

1
|Ph| − 1

∑
j∈Ph,j 6=i

1

s
( 1−µqβ̂j
µ
q
β̂j

)γ ,
1

1
|Ph|−1

∑
j∈Ph,j 6=i

1

s
( 1−µqα̂j

µ
q
α̂j

)γ
≤

1
1

|Ph|−1

∑
j∈Ph,j 6=i

1

s
( 1−µqβ̂j

µ
q
β̂j

)γ ,

r
(1− µqα̂i
µ
q
α̂i

)γ
+

1

1
|Ph|−1

∑
j∈Ph,j 6=i

1
1 s
( 1−µqα̂j
µ
q
α̂j

)γ
≤ r

(1− µqβ̂i
µ
q
β̂i

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j 6=i

1

s
( 1−µqβ̂j

µ
q
β̂j

)γ .
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Let

uα̂ij = r
(1− µqα̂i
µ
q
α̂i

)γ
+

1

1
|Ph|−1

∑
j∈Ph,j6=i

1
1 s
( 1−µqα̂j
µ
q
α̂j

)γ ,
u
β̂ij
= r

(1− µqβ̂i
µ
q
β̂i

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j6=i

1

s
( 1−µqβ̂j

µ
q
β̂j

)γ .

Then 1
|Ph|

∑
i∈Ph

1
uαα̂ij
≥

1
|Ph|

∑
i∈Ph

1
uβα̂ij

.

1
r + s

1
1
|Ph|

∑
i∈Ph

1
uα̂ij

≤
1

r + s
1

1
|Ph|

∑
i∈Ph

1
u
β̂ij

,

1
m

∑m

i=1

1
1
r+s

1
1
|Ph|

∑
i∈Ph

1
uα̂ij

≥
1
m

m∑
i=1

1
1
r+s

1
1
|Ph|

∑
i∈Ph

1
u
β̂ij

,

1

1+ 1
m

∑m
i=1

1
1
r+s

1
1
|Ph|

∑
i∈Ph

1
uα̂ij

≤
1

1+ 1
m

∑m
i=1

1
1
r+s

1
1
|Ph|

∑
i∈Ph

1
u
β̂ij

,

(
1−

1

1+
( 1
m

(∑m
i=1

1(
1
r+s

1
1
|Ph|

∑
i∈Ph

1
uα̂ij

)))1/γ )1/q

≥
(
1−

1

1+
( 1
m

(∑m
i=1

1(
1
r+s

1
1
|Ph|

∑
i∈Ph

1
u
β̂ij

)))1/γ )1/q.

να̂k ≤ ν
β̂k
, νq

α̂k
≤ ν

q
β̂k
, ( x

1−x )
′
=

1
(1−x)2

> 0,
ν
q
α̂k

1−νq
α̂k

≤

ν
q
β̂k

1−νq
β̂k

, s
( ν

q
α̂k

1−νq
α̂k

)γ
≤ s

( ν
q
β̂k

1−νq
β̂k

)γ , r( ν
q
α̂k

1−νq
α̂k

)γ
≤ r

( ν
q
β̂k

1−νq
β̂k

)γ ,
1

|Ph| − 1

∑
j∈Ph,j 6=i

( 1

s
( ν

q
α̂j

1−νq
α̂j

)γ )

≥
1

|Ph| − 1

∑
j∈Ph,j 6=i

( 1

s
( ν

q
β̂j

1−νq
β̂j

)γ
)
,

r
( ν

q
α̂i

1− νq
α̂i

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j 6=i

( 1

s
( ν

q
α̂j

1−νq
α̂j

)γ )

≤ r
( ν

q
β̂i

1− νq
β̂i

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j6=i

( 1

s
( ν

q
β̂j

1−νq
β̂j

)γ ) .

Let

vα̂ij = r
( ν

q
α̂i

1− νq
α̂i

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j 6=i

( 1

s
( ν

q
α̂j

1−νq
α̂j

)γ ) ,

v
β̂ij
= r

( ν
q
β̂i

1− νq
β̂i

)γ
+

1
1

|Ph|−1

∑
j∈Ph,j 6=i

( 1

s
( ν

q
β̂j

1−νq
β̂j

)γ ) .
1
|Ph|

∑
i∈Ph

1
vα̂ij
≥

1
|Ph|

∑
i∈Ph

1
v
β̂ij

,

1
r + s

1
1
|Ph|

∑
i∈Ph

1
vα̂ij

≥
1

r + s
1

1
|Ph|

∑
i∈Ph

1
v
β̂ij

,

1
m

∑m

i=1

1
1
r+s

1
1
|Ph|

∑
i∈Ph

1
vα̂ij

≤
1
m

m∑
i=1

1
1
r+s

1
1
|Ph|

∑
i∈Ph

1
v
β̂ij

,

( 1

1+ 1
m

∑m
i=1

1
1
r+s

1
1
|Ph|

∑
i∈Ph

1
vα̂ij

)1/q

≤

( 1

1+ 1
m

∑m
i=1

1
1
r+s

1
1
|Ph|

∑
i∈Ph

1
v
β̂ij

)1/q
.

By using the score function, we can get

q-ROFPBMDA(α̂1, α̂2, . . . , α̂n)

≥ q-ROFPBMDA(β̂1, β̂2, . . . , β̂n).

Theorem 19 (Boundedness): Let α̂k =< µα̂k , να̂k > (k =
1, 2, . . . , n) be a collection of q-rung orthopair fuzzy num-
bers. α̂− =< µ−, ν+ >=< mink µα̂k ,maxk να̂k >, α̂

+
=<

µ+, ν− >=< maxµα̂k , min να̂k >, then

α̂− ≤ q-ROFPBMDA(α̂1, α̂2, . . . , α̂n) ≤ α̂+.

Proof: The property of boundedness can be proved by
using the property of monotonicity.
Definition 11: Let α̂k =< µα̂k , να̂k > (k = 1, 2, . . . , n)

be a collection of q-rung orthopair fuzzy numbers, which
are partitioned into m distinct sorts P1,P2, . . . ,Pm,∑m

j=1 |Pj| = n. The q-rung orthopair fuzzy partitioned
weighted BM Dombi averaging (q-ROFPWBMDA) operator
is defined as

q-ROFPWBMDA(α̂1, α̂2, . . . , α̂n)

=
1
m

(
⊕
m
i=1

(
⊕i,j∈Ph

(
wiwj

(
α̂ri ⊗ α̂

s
j

))) 1
r+s
)
, (17)

where (w1,w2, . . . ,wn) is the weight vector of (α̂1, α̂2, . . . ,
α̂n) satisfying wj ≥ 0 (j = 1, 2, . . . , n) and

∑n
j=1 wj = 1.
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Theorem 20: Let α̂k =< µα̂k , να̂k > (k = 1, 2, . . . , n)
be a collection of q-rung orthopair fuzzy numbers, which are
partitioned into m distinct sorts P1,P2, . . . ,Pm,

∑m
j=1 |Pj| =

n. The aggregated result of the q-ROFPWBMDA operator is
still a q-rung orthopair fuzzy number, which has the following
form

q-ROFPWBMDA(α̂1, α̂2, . . . , α̂n)

=

〈(
1−

1

1+
( 1
m

∑m
i=1

1
1
r+s

1∑
i,j∈Ph

wiwj

(
1

uα̂ij

) )1/γ
)1/q

,

( 1

1+
( 1
m

∑m
i=1

1
1
r+s

1∑
i,j∈Ph

wiwj

(
1

vα̂ij

) )1/γ
)1/q〉

, (18)

where uα̂ij = r
( 1−µq

α̂i
µ
q
α̂i

)γ
+ s

( 1−µqα̂j
µ
q
α̂j

)γ , vα̂ij = r
( ν

q
α̂i

1−νq
α̂i

)γ
+

s
( ν

q
α̂j

1−νq
α̂j

)γ , r, s > 0 and r + s > 0. (w1,w2, . . . ,wn) is

the weight vector of (α̂1, α̂2, . . . , α̂n) and wj ≥ 0 (j =
1, 2, . . . , n),

∑n
j=1 wj = 1.

Theorem 21 (Idempotency): Let α̂k = α̂,< µα̂k , να̂k >=<

µα̂, να̂ > (i = 1, 2, . . . , n). Then

q-ROFPWBMDA(α̂1, α̂2, . . . , α̂n) = α̂.

Theorem 22 (Monotonicity): Let α̂k =< µα̂k , να̂k > and
β̂k =< µ

β̂k
, ν
β̂k
> (k = 1, 2, . . . , n) be two collections of

q-rung orthopair fuzzy numbers, which have the same parti-
tioned sortsP1,P2, . . . ,Pm,

∑m
j=1 |Pj| = n. (w1,w2, . . . ,wn)

is the weight vector of (α̂1, α̂2, . . . , α̂n) satisfying wj ≥ 0,
j = 1, 2, . . . , n, and

∑n
j=1 wj = 1. If µα̂k ≤ µ

β̂k
and

να̂k ≥ νβ̂k
, then

q-ROFPWBMDA(α̂1, α̂2, . . . , α̂n)

≤ q-ROFPWBMDA(β̂1, β̂2, . . . , β̂n).

Theorem 23 (Boundedness): Let α̂k =< µα̂k , να̂k > (k =
1, 2, . . . , n) be a collection of q-rung orthopair fuzzy num-
bers. α̂− =< µ−, ν+ >=< mink µα̂k ,maxk να̂k >, α̂

+
=<

µ+, ν− >=< maxµα̂k , min να̂k >, then

α̂− ≤ q-ROFPWBMDA(α̂1, α̂2, . . . , α̂n) ≤ α̂+.

The Boundedness property of q-ROFPWBMDA operator
can be proved easily by using the property of monotonicity.
Definition 12: Let α̂k =< µα̂k , να̂k > (k = 1, 2, . . . , n)

be a collection of q-rung orthopair fuzzy numbers, which are
partitioned into m distinct sorts P1,P2, . . . ,Pm. The q-rung
orthopair fuzzy partitioned geometric BM Dombi averaging
(q-ROFPGBMDA) operator is defined as

q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n)

=
(
⊗
m
i=1

( 1
r + s

(
⊗i,j∈Ph,i 6=j ((rα̂i)⊕ (sα̂j))

) 1
|Ph|(|Ph|−1)

)) 1
m ,

(19)

where r, s ≥ 0 and r + s > 0. | Ph | is the cardinality of Ph
and m is the number of partitioned sorts and

∑m
h=1 |Ph| = n.

Theorem 24: Let α̂k =< µα̂k , να̂k > (k = 1, 2, . . . , n) be
a collection of q-rung orthopair fuzzy numbers. The aggre-
gated result of the q-ROFPGBMDA operator is still a q-rung
orthopair fuzzy number and

q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n)

=
(
⊗
m
i=1

( 1
r + s

(
⊗i,j∈Ph,i 6=j ((rα̂i)⊕

(sα̂j))
) 1
|Ph|(|Ph|−1)

)) 1
m

=

〈( 1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i6=j

1
uα̂ij

) )1/γ
)1/q

,

(
1−

1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i6=j

1
vα̂ij

) )1/γ
)1/q〉

,

(20)

where uα̂ij = r
( µ

q
α̂i

1−µq
α̂i

)γ
+ s

( µ
q
α̂j

1−µq
α̂j

)γ , vα̂ij = r
( 1−νq

α̂i
ν
q
α̂i

)γ
+

s
( 1−νqα̂j
ν
q
α̂j

)γ .
Theorem 25 (Idempotency): Let α̂k (k = 1, 2, . . . , n) be a

collection of q-rung orthopair fuzzy numbers. If α̂k = α̂, that
is < µα̂k , να̂k >=< µα̂, να̂ > (i = 1, 2, . . . , n). Then

q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n) = α̂.

Theorem 26: (Commutativity) Let α̂k (k = 1, 2, . . . , n)
be a collection of q-rung orthopair fuzzy numbers. If
(α̂′1, α̂

′

2, . . . ., α̂
′
n) is any permutation of (α̂1, α̂2, . . . ., α̂n),

then

q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n)

= q-ROFPGBMDA(α̂′1, α̂
′

2, . . . ., α̂
′
n).

Theorem 27 (Monotonicity): Let α̂k =< µα̂k , να̂k >

and β̂k =< µ
β̂k
, ν
β̂k

> (i = 1, 2, . . . , n) be two col-
lections of q-rung orthopair fuzzy numbers, which have
the same partitioned sorts P1,P2, . . . ,Pm,

∑m
j=1 |Pj| = n.

If µα̂k ≤ µβ̂k and να̂k ≥ νβ̂k , then

q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n)

≤ q-ROFPGBMDA(β̂1, β̂2, . . . , β̂n).

Theorem 28 (Boundedness): Let α̂k =< µα̂k , να̂k > (k =
1, 2, . . . , n) be a collection of q-rung orthopair fuzzy num-
bers. α̂− =< µ−, ν+ >=< mink µα̂k ,maxk να̂k >, α̂

+
=<

µ+, ν− >=< maxµα̂k , min να̂k >, then

α̂− ≤ q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n) ≤ α̂+.

Some special cases of the q-ROFPGBMDA operator are
considered by considering some special r, s.
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(1) If s→ 0, the the q-ROFPGBMDA operator reduces to
the following operator

q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n)

=

(
⊗
m
i=1

(1
r

(
⊗i∈Ph (rα̂i)

) 1
|Ph|
)) 1

m

=

〈( 1

1+
( 1
m

∑m
i=1

1
1
r

1
1
|Ph|

(∑
i∈Ph

1

r
( µ

q
α̂i

1−µq
α̂i

)γ )
)1/γ )1/q,

(
1−

1

1+
( 1
m

∑m
i=1

1
1
r

1
1
|Ph|

(∑
i∈Ph

1

r
( 1−νq

α̂i
ν
q
α̂i

)γ )
)1/γ )1/q〉.

(21)

(2) If s→ 0 and all the q-rung orthopair fuzzy numbers are
partitioned into one sort, then the q-ROFPGBMDA operator
reduces to the following operator

q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n) =
1
r

(
⊗
n
i=1 (rα̂i)

) 1
n

=

〈(
1−

1

1+
( 1

1
n
∑n

i=1
1( µ
q
α̂i

1−µq
α̂i

)γ
)1/γ )1/q,

( 1

1+
( 1

1
n
∑n

i=1
1( 1−νq
α̂i

ν
q
α̂i

)γ
)1/γ )1/q〉. (22)

(3) If s → 0 and r = 1, the q-ROFPGBMDA operator
reduces to the following operator

q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n)

=

(
⊗
m
i=1

(
⊗i∈Ph α̂i

) 1
|Ph|
) 1
m

=

〈( 1

1+
( 1
m

∑m
i=1

1
|Ph|

∑
i∈Ph

( 1−µq
α̂i

µ
q
α̂i

)γ )1/γ
)1/q

,

(
1−

1

1+
( 1
m

∑m
i=1

1
|Ph|

∑
i∈Ph

( ν
q
α̂i

1−νq
α̂i

)γ )1/γ
)1/q〉

.

(23)

(4) If s→ 0, r = 1 and all the q-rung orthopair fuzzy num-
bers are partitioned into one sort, then the q-ROFPGBMDA
operator reduces to the following operator(
⊗
n
i=1 α̂i

) 1
n =

〈( 1

1+
∑n

i=1
( 1−µq

α̂i
µ
q
α̂i

)γ )1/γ
)1/q

,

(
1−

1

1+
( 1
n

∑n
i=1

( ν
q
α̂i

1−νq
α̂i

)γ )1/γ
)1/q〉

. (24)

(5) If r = 1 and s = 1, the q-ROFPGBMDA operator
reduces to the following operator

q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n)

=

(
⊗
m
i=1

(1
2

(
⊗i,j∈Ph,i 6=j (α̂i ⊕ α̂j)

) 1
|Ph|(|Ph|−1)

)) 1
m

=

〈( 1

1+
( 1
m

∑m
i=1

1
1
2

1
1

|Ph|(|Ph|−1)
∑
i,j∈Ph,i 6=j

1
uα̂ij

)1/γ )1/q,
(
1−

1

1+
( 1
m

∑m
i=1

1
1
2

1
1

|Ph|(|Ph|−1)
∑
i,j∈Ph,i 6=j

1
v
α̂ij

)1/γ )1/q〉,
(25)

where uα̂ij =
( µ

q
α̂i

1−µq
α̂i

)γ
+
( µ

q
β̂j

1−µq
β̂j

)γ , vα̂ij = ( µ
q
α̂i

1−µq
α̂i

)γ
+

( µ
q
β̂j

1−µq
β̂j

)γ .
Definition 13: Let α̂k =< µα̂k , να̂k > (k = 1, 2, . . . , n)

be a collection of q-rung orthopair fuzzy numbers, which
are partitioned into m distinct sorts P1,P2, . . . ,Pm,∑m

j=1 |Pj| = n. The q-rung orthopair fuzzy partitioned geo-
metric weighted BM Dombi averaging (q-ROFPGWBMDA)
operator is defined as follows:

q-ROFPGWBMDA(α̂1, α̂2, . . . , α̂n)

=
(
⊗
m
i=1

( 1
r + s

(
⊗i,j∈Ph,i 6=j (rα̂

wi
i ⊕

sα̂
wj
j )
) 1
|Ph|(|Ph|−1)

)) 1
m . (26)

Theorem 29: Let α̂k =< µα̂k , να̂k > (k = 1, 2, . . . , n)
be a collection of q-rung orthopair fuzzy numbers. The
aggregated result of the q-ROFPGWBMDA operator is still a
q-rung orthopair fuzzy number, which has the following form

q-ROFPGWBMDA(α̂1, α̂2, . . . , α̂n)

=
〈( 1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)
∑
i,j∈Ph,i6=j

1
uα̂ij

)1/γ )1/q,
(
1−

1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)
∑
i,j∈Ph,i 6=j

1
vα̂ij

)1/γ )1/q〉,
(27)

where uα̂ij = r 1

wi
( 1−µq

α̂i
µ
q
α̂i

)γ +s 1

wj
( 1−µqα̂j

µ
q
α̂j

)γ , vα̂ij = r 1

wi
( ν

q
α̂i

1−νq
α̂i

)γ +
s 1

wj
( ν

q
α̂j

1−νq
α̂j

)γ .
Theorem 30: (Commutativity) Let (α̂1, α̂2, . . . , α̂n)

be a collection of q-rung orthopair fuzzy numbers.
If (α̂′1, α̂

′

2, . . . , α̂
′
n) is any permutation of (α̂1, α̂2, . . . , α̂n).

Then

q-ROFPGWBMDA(α̂1, α̂2, . . . , α̂n)
= q-ROFPGWBMDA(α̂′1, α̂

′

2, . . . , α̂
′
n).
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Theorem 31 (Monotonicity): Let α̂ =< µα̂k , να̂k > and
β̂ =< µ

β̂k
, ν
β̂k
> (k = 1, 2, . . . , n) be two collection of

q-rung orthopair fuzzy numbers. If µα̂k ≥ µβ̂k and να̂k ≤ νβ̂k
for i = 1, 2, . . . , n, then

q-ROFPGWBMDA(α̂1, α̂2, . . . , α̂n)

≥ q-ROFPGWBMDA(β̂1, β̂2, . . . , β̂n).

Theorem 32 (Boundedness): Let α̂k =< µα̂k , να̂k > (k =
1, 2, . . . , n) be a collection of q-rung orthopair fuzzy num-
bers. α̂− =< µ−, ν+ >=< mink µα̂k ,maxk να̂k >, α̂

+
=<

µ+, ν− >=< maxµα̂k , min να̂k >, then

α̂− ≤ q-ROFPGWBMDA(α̂1, α̂2, . . . , α̂n) ≤ α̂+.

Some special cases of the q-ROFPGWBMDA operator are
discussed as follows.

(1) If s → 0, the q-ROFPGWBMDA operator reduces to
the following operator

q-ROFPGWBMDAr,0(α̂1, α̂2, . . . , α̂n)

=

(
⊗
m
i=1

(1
r

(
⊗i∈Ph (rα̂

wi
i )
) 1
|Ph|
)) 1

m

=
〈( 1

1+
( 1
m

∑m
i=1

1
1
r

1
1
|Ph|

∑
i∈Ph

1
r 1
ui

)1/γ )1/q, (1−
1

1+
( 1
m

∑m
i=1

1
1
r

1
1

|Ph|(|Ph|−1)
∑
i,j∈Ph,i6=j

1
r 1
vi

)1/γ )1/q〉, (28)

where ui = wi
( 1−µq

α̂i
µ
q
α̂i

)γ , vi = wi
( ν

q
α̂i

1−νq
α̂i

)γ .
(2) If s → 0 and all the q-rung orthopair fuzzy numbers

are partitioned into one sort, the q-ROFPGWBMDA operator
reduces to the following operator

q-ROFPGWBMDAr,0(α̂1, α̂2, . . . , α̂n)

=
1
r

(
⊗
n
i=1 (rα̂

wi
i )
) 1
n

=
〈(
1−

1

1+
( 1
r

1
1
n
∑n

i=1
1

r 1

wi

( 1−µq
α̂i

µ
q
α̂i

)γ
)1/γ )1/q,

( 1

1+
( 1
r

1
1
n
∑n

i=1
1

r 1

wi

( ν
q
α̂i

1−νq
α̂i

)γ
)1/γ )1/q〉. (29)

(3) If s → 0 and r = 1, the q-ROFPGWBMDA operator
reduces to the following operator

q-ROFPGWBMDA1,0(α̂1, α̂2, . . . , α̂n)

=
(
⊗
m
i=1

(
⊗i∈Ph α̂

wi
i

) 1
|Ph|
) 1
m

=
〈( 1

1+
( 1
m

∑m
i=1

1
|Ph|

∑
i∈Ph wi

( 1−µq
α̂i

µ
q
α̂i

)γ )1/γ )1/q,

(
1−

1

1+
( 1
m

∑m
i=1

1
|Ph|

∑
i∈Ph wi

( ν
q
α̂i

1−νq
α̂i

)γ )1/γ )1/q〉.
(30)

(4) If s→ 0 and r = 1, and all the q-rung orthopair fuzzy
numbers are partitioned into one sort, the q-ROFPGWBMDA
operator reduces to the following operator

q-ROFPGWBMDA1,0(α̂1, α̂2, . . . , α̂n)

=

(
⊗
n
i=1 α̂

wi
i

) 1
n

=

〈( 1

1+
( 1
n

∑n
i=1 wi

( 1−µq
α̂i

µ
q
α̂i

)γ )1/γ
)1/q

,

(
1−

1

1+
( 1
n

∑n
i=1 wi

( ν
q
α̂i

1−νq
α̂i

)γ )1/γ
)1/q〉

. (31)

(5) If r = 1 and s = 1, the q-ROFPGWBMDA operator
reduces to the following operator

q-ROFPGWBMDA(α̂1, α̂2, . . . , α̂n)

=

(
⊗
m
i=1

(1
2

(
⊗i,j∈Ph,i 6=j (α̂

wi
i ⊕ α̂

wj
j )
) 1
|Ph|(|Ph|−1)

)) 1
m

=

〈( 1

1+
( 1
m

∑m
i=1

1
1
2

1
1

|Ph|(|Ph|−1)
∑
i,j∈Ph,i 6=j

1
uα̂ij

)1/γ )1/q,
(
1−

1

1+
( 1
m

∑m
i=1

1
1
2

1
1

|Ph|(|Ph|−1)
∑
i,j∈Ph,i 6=j

1
vα̂ij

)1/γ )1/q〉,
(32)

where uα̂ij =
1

wi
( 1−µq

α̂i
µ
q
α̂i

)γ + 1

wi
( 1−µqα̂j

µ
q
α̂j

)γ , vα̂ij = 1

wi
( ν

q
α̂i

1−νq
α̂i

)γ +
1

wj
( ν

q
α̂j

1−νq
α̂j

)γ .
IV. NEW MULTIPLE ATTRIBUTE DECISION MAKING
METHOD BASED ON THE NEW q-RUNG ORTHOPAIR
FUZZY DOMBI BONFERRONI MEAN OPERATORS
In this section, we propose a new multiple attribute decision
making method based on the new q-rung orthopair fuzzy
Bonferroni mean Dombi aggregation operators.

Consider a multiple attribute decision making problem,
which is composed of m alternatives {A1,A2, . . . ,Am} and n
attributes {C1,C2, . . . ,Cn}. The weight vector of attributes
is (w1,w2, . . . ,wn) with wi ≥ 0 and

∑n
i=1 wi = 1. The

alternatives are evaluated using the q-rung orthopair fuzzy
numbers α̂ij =< µα̂ij , να̂ij > and the decision matrix is
formed as D̂ = (α̂ij)m×n. The new method is as follows.
Step 1. The q-rung orthopair fuzzy evaluation value

α̂ij =< µα̂ij , να̂ij > is given by decision maker when evaluat-
ing alternative Ai with respect to the attribute Cj and decision
matrix is formed as D̂ = (α̂ij)m×n.
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Step 2. The collective evaluation values α̂i (i = 1,
2, . . . .,m) of alternatives Ai (i = 1, 2, . . . .,m) are
aggregated by using the q-ROFWBMDA operator or the
q-ROFWGBMDA operator.

α̂i = q-ROFWBMDA(α̂i1, α̂i2, . . . , α̂in)

=

〈( 1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

k,l=1,k 6=l

(
1
uikl

)))1/γ
)1/q

,

(
1−

1

1+
( 1
r+s

( 1
1

n(n−1)
∑n

k,l=1,k 6=l

(
1
vikl

)))1/γ
)1/q〉

,

(33)

uα̂ikl = r 1

wk
( µ

q
α̂ik

1−µq
α̂ik

)γ + s 1

wl
( µ

q
α̂il

1−µq
α̂il

)γ vα̂ikl = r 1

wk
( 1−νq

α̂ik
ν
q
α̂ik

)γ +
s 1

wl
( 1−νq

α̂il
ν
q
α̂il

)γ .
α̂i = q-ROFWGBMDA(α̂i1, α̂i2, . . . , α̂in)

=

〈(
1−

1

1+
( 1
r+s

( 1(∑n
k,l=1,k 6=l

(
1

n(n−1)

(
1
u′ikl

)))))1/γ
)1/q

,

( 1

1+
( 1
r+s

( 1(∑n
k,l=1,k 6=l

1
n(n−1)

(
1
v′ikl

)))1/γ )
)1/q〉

, (34)

u′
α̂ikl

= r
( 1(
wk

1−µq
α̂ik

µ
q
α̂ik

)γ ) + s
( 1(
wl

1−µq
α̂il

µ
q
α̂il

)γ ), v′
α̂ikl

=

r
( 1(
wk

ν
q
α̂ik

1−νq
α̂ik

)γ )+ s( 1(
wl

ν
q
α̂il

1−νq
α̂il

)γ ).

Step 3. Calculate the score degree and accuracy degree of
α̂i (i = 1, 2, . . . .,m) by using the Eq.(2)-(3). Rank α̂i (i =
1, 2, . . . .,m) by using Definition 2.
Step 4. Rank alternatives according to the ranking of the

α̂i (i = 1, 2, . . . .,m) and select the optimal alternative.

V. NUMERICAL EXAMPLE AND COMPARATIVE ANALYSIS
A. NUMERICAL EXAMPLE
In this section, we give a numerical example to illustrate
the feasibility and practical advantages of the new method.
With the development of Chinese higher education, many
universities choose to construct new campuses in suburbs of
cities. Suppose there is a university in Xi’an, which want
to construct a new campus in the suburb of Xi’an. There
are five different locations for further evaluation A1-Chanba,
A2-Caotangsi,A3-Chuangxingang,A4-Lintong,A5−Yanliang.
Four attributes are considered including: C1-development of
city, C2-price of land, C3-environment, C4−transportation.
The proposed method is used to rank alternatives.

Step 1. Decision makers give the evaluation values in the
form of q-rung orthopair fuzzy numbers, which are shown
in Table 1.

Step 2. If the q-ROFWBMDA operator is used as
Eq.(33), the aggregated results are shown in Table 2.
Here q = 2, r = s = 2 and γ = 1, 2, 3, 4, 5, 6, 8, 10,
respectively. The weight vector of the attributes are assumed
to known as (0.20, 0.30, 0.15, 0.35).

Step 3. Calculate the scores S(α̂i) (i = 1, 2, . . . , 5) of
collective evaluation values α̂i (i = 1, 2, . . . , 5) by using the
Eq.(2). The results are shown in Table 3.

Step 4. Rank α̂i (i = 1, 2, . . . , 5) according to S(α̂i) (i =
1, 2, . . . , 5) and rank alternatives Ai (i = 1, 2, . . . , 5) accord-
ing to α̂i (i = 1, 2, . . . , 5). The results are shown in Table 4.

TABLE 1. Q-rung orthopair fuzzy decision matrix D̂.

TABLE 2. The aggregated results by using the q-ROFWBMDA operator for q = 2, r = s = 2.
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TABLE 3. The scores by using the q-ROFWBMDA operator for q = 2, r = s = 2.

TABLE 4. Ranking results of the q-ROFWBMDA operator.

TABLE 5. The aggregated results by using the q-ROFWGBMDA operator for q = 2, r = s = 2.

TABLE 6. The scores by using the q-ROFWGBMDA operator for q = 2, r = s = 2.

From results we can see that, the ranking of alternatives is
A3 > A5 > A4 > A2 > A1 and the optimal alternative is A3
for λ = 1. The optimal alternative is A5 for λ = 2, 3, 4, 5, 6.
If λ = 2, the suboptimal alternative isA3, which is the same as
that for λ = 1. If λ = 3, the suboptimal alternative is A4 and
A3 is ranked third. The ranking of alternatives are the same as
A5 > A2 > A4 > A3 > A1 for λ = 4, 5, 6. In this case, A2 is
the suboptimal alternative, A4 is ranked third and A3 is ranked
the second from last. The optimal alternative becomes A4 for
λ = 8, 10. The suboptimal alternative is A2 and A5 is ranked
third for λ = 8 and the suboptimal alternative is A5 and A2 is
ranked third. The aggregated results of A4 and A5 are nearly
the same for λ = 10. The λ can be seen as the risk attitude
of decision maker. Decision maker is more risk-seeking with
the increasing of λ.

If the q-ROFWGBMDA operator is used in step 3 in the
aggregation process, results are shown in Table 5, where
q = 2, r = s = 2. The scores are calculated by using the
Eq.(2) and results are shown in Table 6. The ranking results
are shown in Table 7. If γ = 1, the optimal alternative
is A3 and suboptimal alternative is A4. If γ = 2, the opti-
mal alternative is A4 and suboptimal alternative is A3. For
γ = 3, 4, 5, 6, the optimal alternative is A2. The suboptimal
alternative is A4 if γ = 3, 4 and suboptimal alternative is A2
if γ = 5, 6.When γ ≥ 7, the optimal alternative becomes A2.
In order to consider influence of parameter q, we consider

q = 2, 3, 4, 5 for γ = 2 and γ = 3 in q-ROFWBMDA
operator, respectively. If γ = 2, A5 is the optimal alternative
for q = 3 and q = 5 and A4 is the optimal alternative for
q = 8 and q = 10. If γ = 3, A5 is the optimal alternative
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TABLE 7. Ranking results of the q-ROFWGBMDA operator for q = 2, r = s = 2.

TABLE 8. The aggregated results by using the q-ROFWBMDA operator for different q, γ .

TABLE 9. The scores by using the q-ROFWBMDA operator for different q, γ .

TABLE 10. Ranking results of the q-ROFWBMDA operator for different q, γ .

for q = 3 and A4 becomes the optimal alternative for q =
5, 8, 10. Moreover, the aggregated results and the scores are
more close with the increasing of q.
In order to consider influence of parameter r, s, we con-

sider r = 1, . . . , 4, s = 1, . . . , 4 for q = γ = 2 in
q-ROFWBMDA operator. The ranking of alternatives is as
A5 > A3 > A2 > A4 > A1 for r = s = 1, r = 1, s = 2 and
r = 1, s = 3. The optimal alternative is A5 and suboptimal
alternative is A3 in other cases. The ranking of alternatives
is A5 > A3 > A4 > A2 > A1. The optimal alternative and
suboptimal alternative are the same as above. But the rankings
of A2 and A4 have changed.

B. COMPARATIVE ANALYSIS
If we aggregate the alternative evaluation values by using
the q-rung orthopair fuzzy weighted averaging (q-ROFWA)
operator as q-ROFWA(α̂1, α̂2, . . . , α̂n) =

∑n
j=1 wjα̂j =

〈
(1−∏n

j=1(1 − µ
q
j )
wj )1/q,

∏n
j=1 ν

wj
j

〉
, we can get α̂1 =< 0.5654,

0.3811 >, α̂2 =< 0.5948, 0.3617 >, α̂3 =< 0.6704,
0.2961 >, α̂4 =< 0.6135, 0.3139 >, α̂5 =< 0.6798,
0.2301 >, where q = 2. The scores of α̂i(i = 1,
2, . . . , 5) can be calculated as S(α̂1) = 0.1744, S(α̂2) =
0.2230, S(α̂3) = 0.3617, S(α̂4) = 0.2778, S(α̂5) = 0.4092.
The alternatives can be ranked as A5 > A3 > A4 > A2 > A1.
The optimal alternative is A5. If the q-rung orthopair fuzzy
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TABLE 11. The aggregated results by using the operator for different r , s.

TABLE 12. The scores by using the q-ROFWBMDA operator for different r , s.

TABLE 13. Ranking results of the q-ROFWBMDA operator for different r , s.

TABLE 14. The scores by using the q-ROFWA operator and the q-ROFWGA operator.

weighted geometric averaging (q-ROFWGA) operator is
used in aggregation process as q-ROFWGA(α̂1, α̂2, . . . ,
α̂n) =

∏n
j=1 α̂

wj
j =

〈∏n
j=1 µ

wj
j , (1−

∏n
j=1(1− ν

q
j )
wj )1/q

〉
, we

can get α̂1 =< 0.5328, 0.5031 >, α̂2 =< 0.5085, 0.4469 >,
α̂3 =< 0.6148, 0.4120 >, α̂4 =< 0.5103, 0.3945 >, α̂5 =
< 0.6194, 0.3636 > and S(α̂1) = 0.0308, S(α̂2) = 0.0588,
S(α̂3) = 0.2082, S(α̂4) = 0.1048, S(α̂5) = 0.2515. The
ranking of alternatives is A5 > A3 > A2 > A4 > A1,
which is similar to that of the q-ROFWA operator. We also
consider q = 3, 5, 8, 10 in the q-ROFWA operator and the
q-ROFWGA operator. The results are shown in Table 14.

If the TOPSIS method is used to rank alternatives, we first
determine the q-rung orthopair fuzzy positive ideal solution
α̂+ and q-rung orthopair fuzzy negative ideal solution α̂− as

α̂+ = (α̂+1 , α̂
+

2 , α̂
+

3 , α̂
+

4 ) = (< 0.8, 0.1 >,< 0.8, 0.1 >,
< 0.9, 0.2 >,< 0.7, 0.2 >), α̂− = (α̂−1 , α̂

−

2 , α̂
−

3 , α̂
−

4 ) =
(< 0.4, 0.5 >,< 0.6, 0.4 >,< 0.5, 0.6 >,< 0.3, 0.6 >).
Calculate the distance of each alternative evaluation values
to α̂+ and α̂− by using the distance measure d(α̂i, α̂j) =√
(|µ2

i − µ
2
j | + |ν

2
i − ν

2
j |)/2. The weighted distances can

be calculated by using d(α̂i, α̂+) =
∑4

j=1 wjd(α̂ij, α̂
+

j ),

d(α̂i, α̂−) =
∑4

j=1 wjd(α̂ij, α̂
−

j ) to get d(α̂1, α̂+) = 0.4851,
d(α̂2, α̂+) = 0.4573, d(α̂3, α̂+) = 0.3550, d(α̂4, α̂+) =
0.3969, d(α̂5, α̂+) = 0.2195, d(α̂1, α̂−) = 0.3936,
d(α̂2, α̂−) = 0.3634, d(α̂3, α̂−) = 0.3964, d(α̂4, α̂−) =
0.3357, d(α̂5, α̂−) = 0.3158. The relative closeness coeffi-
cients can be calculated by CCi =

d(α̂i,α̂+)
d(α̂i,α̂+)+d(α̂i,α̂+)

to get
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TABLE 15. The characteristic comparisons of different methods.

CC1 = 0.4479,CC2 = 0.4428,CC3 = 0.5275,CC4 =

0.4583,CC5 = 0.5900. The alternatives can be ranked as
A5 > A3 > A4 > A1 > A2.
The main differences of the proposed method from the

existing methods have been summarized in Table 15. The
evaluation values of decision maker are given in the form of
q-rung fuzzy numbers, which are more accurate and flexible
in modeling fuzzy and uncertain information. The Bonferroni
mean have been used to model interrelationship between any
two aggregating arguments and Dombi mean has been used to
make aggregation process more flexible by using a parameter.
The decision makers’ risk attitudes can be reflected by using
the parameters in the proposed method. The existing methods
don’t have all these characteristics.

VI. CONCLUSION
In this paper, we develop some q-rung orthopair fuzzy
Bonferroni mean Dombi aggregation operators based
on the Bonferroni mean, Dombi t-norm and Dombi
t-conorm.We have developed the q-ROFBMDA operator, the
q-ROFGBMDA operator based on the arithmetic averaging
and geometric averaging operation. Then we have devel-
oped the q-ROFWBMDAoperator and the q-ROFWGBMDA
operator based on the weighted arithmetic averaging and
weighted geometric averaging operation. Considering parti-
tioned operation, we have developed q-ROFPBMDA oper-
ator and q-ROFPWBMDA operator. The new aggregation
operators are more flexible comparing with the existing
aggregation operators. We have developed a new multiple
attribute decision making method based on the proposed
operators and presented a realistic example to illustrate the
new method. We also have conducted some comparisons of
the new methods with some existing methods to demonstrate
its applicability and advantages. In the future, we will apply
our newmethods to solve some other large-scale complicated
decision problems including the evaluation of sharing econ-
omy, environment, energy, logistics, etc.

APPENDIX
Proof of Theorem 6:

rα̂i =
〈(
1−

1

1+
(
r
( µ

q
α̂i

1−µq
α̂i

)γ )1/γ
)1/q

,

( 1

1+
(
r
( 1−νq

α̂i
ν
q
α̂i

)γ )1/γ
)1/q〉

.

sα̂i =
〈(
1−

1

1+
(
s
( µ

q
α̂j

1−µq
α̂j

)γ )1/γ
)1/q

,

( 1

1+
(
s
( 1−νqα̂j
ν
q
α̂j

)γ )1/γ
)1/q〉

.

rα̂i ⊕ sα̂i =
〈(
1−

1

1+
(
r
( µ

q
α̂i

1−µq
α̂i

)γ
+
(
s
( µ

q
α̂j

1−µq
α̂j

)γ )1/γ
)1/q

,

( 1

1+
(
r
( 1−νq

α̂i
ν
q
α̂i

)γ
+ s

( 1−νqα̂j
ν
q
α̂j

)γ )1/γ
)1/q〉

.

Let

uα̂ij =
1

r
( µ

q
α̂i

1−µq
α̂i

)γ
+ s

( µ
q
α̂j

1−µq
α̂j

)γ ,
vα̂ij =

1(
r
( 1−νq

α̂i
ν
q
α̂i

)γ
+ s

( 1−νqα̂j
ν
q
α̂j

)γ ) ,
(
rα̂i ⊕ sα̂i

) 1
n(n−1)

=

〈( 1

1+
( 1
n(n−1)uα̂ij

)1/γ )1/q,(
1−

1

1+
( 1
n(n−1)vα̂ij

)1/γ )1/q〉,
⊗
n
i,j=1,i 6=j

(
rα̂i ⊕ sα̂i

) 1
n(n−1)

=

〈( 1

1+
( 1
n(n−1)

∑n
i,j=1,i6=j uα̂ij

)1/γ )1/q,(
1−

1

1+
( 1
n(n−1)

∑n
i,j=1,i 6=j vα̂ij

)1/γ )1/q〉,
1

r + s

(
⊗
n
i,j=1,i 6=j (rα̂i ⊕ sα̂j)

1
n(n−1)

)
=

〈(
1−

1

1+
( 1
r+s

1
1

n(n−1)
∑n

i,j=1,i 6=j uα̂ij

)1/γ )1/q,
( 1

1+
( 1
r+s

1
1

n(n−1)
∑n

i,j=1,i 6=j vα̂ij

)1/γ )1/q〉.
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Since 0 ≤ µ
q
α̂j
+ ν

q
α̂j
≤ 1, µq

α̂j
≤ 1 − ν

q
α̂j
, νq

α̂j
≤

1 − µq
α̂j
,

µ
q
α̂j

1−µq
α̂j

≤

1−νq
α̂j

ν
q
α̂j

. Similarly, we have
µ
q
α̂i

1−µq
α̂i

≤
1−νq

α̂i
ν
q
α̂i

.

Then
( µ

q
α̂i

1−µq
α̂i

)γ
≤

( 1−νq
α̂i

ν
q
α̂i

)γ and
( µ

q
α̂j

1−µq
α̂j

)γ
≤

( 1−νqα̂j
ν
q
α̂j

)γ .
r
( µ

q
α̂i

1−µq
α̂i

)γ
+ s

( µ
q
α̂j

1−µq
α̂j

)γ
≤ r

( 1−νq
α̂i

ν
q
α̂i

)γ
+ s

( 1−νqα̂j
ν
q
α̂j

)γ ,
1

n(n− 1)

n∑
i,j=1,i 6=j

1

r
( µ

q
α̂i

1−µq
α̂i

)γ
+ s

( µ
q
α̂j

1−µq
α̂j

)γ
≥

1
n(n− 1)

n∑
i,j=1,i 6=j

1

r
( 1−νq

α̂i
ν
q
α̂i

)γ
+ s

( 1−νqα̂j
ν
q
α̂j

)γ ,
By using uα̂ij and vα̂ij , we can get

1
n(n− 1)

∑n

i,j=1,i 6=j
uα̂ij

≥
1

n(n− 1)

∑n

i,j=1,i 6=j
vα̂ij ,( 1

r + s
1

1
n(n−1)

∑n
i,j=1,i 6=j uα̂ij

)1/γ
≤
( 1
r + s

1
1

n(n−1)

∑n
i,j=1,i 6=j vα̂ij

)1/γ
,

1

1+
( 1
r+s

1
1

n(n−1)
∑n

i,j=1,i6=j uα̂ij

)1/γ
≤

1

1+
( 1
r+s

1
1

n(n−1)
∑n

i,j=1,i6=j vα̂ij

)1/γ ,
0 ≤ 1−

1

1+
( 1
r+s

1
1

n(n−1)
∑n

i,j=1,i 6=j uα̂ij

)1/γ
+

1

1+
( 1
r+s

1
1

n(n−1)
∑n

i,j=1,i6=j vα̂ij

)1/γ ≤ 1.

Hence, the aggregate result of the q-ROFGBMDAoperator
is still a q-rung orthopair fuzzy number.
Proof of Theorem 7:
Proof: Since µα̂k = µα̂, (i = 1, 2, . . . , n), uα̂ij =

1

r
( µ

q
α̂i

1−µq
α̂i

)γ
+s
( µ

q
α̂j

1−µq
α̂j

)γ = 1

r
( µ

q
α̂

1−µq
α̂

)γ
+s
( µ

q
α̂

1−µq
α̂

)γ = 1

(r+s)
( µ

q
α̂

1−µq
α̂

)γ ,
(
1−

1

1+
( 1
r+s

( 1(
1

n(n−1)
∑n

i,j=1,i 6=j uα̂ij

)))1/γ
)1/q

=

(
1−

1

1+
( 1
r+s

( 1(
1

n(n−1)
∑n

i,j=1,i 6=j

(
1

(r+s)
( µ

q
α̂

1−µq
α̂

)γ ))
))1/γ )1/q

=

(
1−

1

1+
( 1
r+s

( 1
1

(r+s)
( µ

q
α̂

1−µq
α̂

)γ ))1/γ
)1/q

=

(
1−

1

1+
( 1
r+s

(
(r + s)

( µ
q
α̂

1−µq
α̂

)γ ))1/γ )1/q
=

(
1−

1

1+
(( µ

q
α̂

1−µq
α̂

)γ )1/γ )1/q
=

(
1−

1

1+
µ
q
α̂

1−µq
α̂

)1/q
=

(
1− (1− µq

α̂
)
)1/q
= µα̂.

Since να̂k = να̂ (k = 1, 2, . . . , n), vα̂ij =

1

r
( 1−νq

α̂

ν
q
α̂

)γ
+s
( 1−νq

α̂

ν
q
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ν
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ν
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= να̂.

Hence q-ROFGBMDA(α̂1, α̂2, . . . , α̂n) = α̂.
Proof of Theorem 8:
Proof: µα̂i ≤ µ

β̂i
, µα̂j ≤ µ

β̂j
, µp

α̂i
≤ µ

p
β̂i
, µp

α̂j
≤ µ

p
β̂j
,
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µ
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µ
p
α̂j
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(
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By using the score function, we can get

q-ROFGBMDA(α̂1, α̂2, . . . , α̂n)

≤ q-ROFGBMDA(β̂1, β̂2, . . . , β̂n).

Proof of Theorem 9:
Proof: The property of boundedness can be proved eas-

ily by using the property of monotonicity.
Proof of Theorem 24:
Proof:
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i,j∈Ph,i 6=j

1
uα̂ij

) )1/γ
)1/q

,

(
1−

1

1+
(∑m

i=1
1

1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
vα̂ij

) )1/γ
)1/q〉

,

(
⊗
m
i=1

( 1
r + s

(
⊗i,j∈Ph,i 6=j ((rα̂i)⊕

(sα̂j))
) 1
|Ph|(|Ph|−1)

)) 1
m
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=
〈( 1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i6=j

1
uα̂ij

) )1/γ
)1/q

,

(
1−

1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
vα̂ij

) )1/γ
)1/q〉

.

0 ≤ µq
α̂i
+ν

q
α̂i
≤ 1, 0 ≤ µq

α̂j
+ν

q
α̂j
≤ 1, µq

α̂i
≤ 1−νq

α̂i
,µq

α̂j
≤

1−νq
α̂j
, ν

q
α̂i
≤ 1−µq

α̂i
, νq
α̂j
≤ 1−µq

α̂j
,
µ
q
α̂i

1−µq
α̂i

≤
1−νq

α̂i
ν
q
α̂i

,
µ
q
α̂j

1−µq
α̂j

≤

1−νq
α̂j

ν
q
α̂j

, r
( µ

q
α̂i

1−µq
α̂i

)γ
+ s

( µ
q
α̂j

1−µq
α̂j

)γ
≤ r

( 1−νq
α̂i

ν
q
α̂i

)γ
+ s

( 1−νqα̂j
ν
q
α̂j

)γ ,
1

|Ph|(|Ph| − 1)

(∑
i,j∈Ph,i 6=j

1

r
( 1−νq

α̂i
ν
q
α̂i

)γ
+ s

( 1−νqα̂j
ν
q
α̂j

)γ
)

≤
1

|Ph|(|Ph| − 1)

(∑
i,j∈Ph,i 6=j

1

r
( µ

q
α̂i

1−µq
α̂i

)γ
+ s

( µ
q
α̂j

1−µq
α̂j

)γ
)
,

that is

1
|Ph|(|Ph| − 1)

(∑
i,j∈Ph,i 6=j

1
vα̂ij

)
≤

1
|Ph|(|Ph| − 1)

(∑
i,j∈Ph,i 6=j

1
uα̂ij

)
,

1
r + s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i6=j

1
vα̂ij

)
≥

1
r + s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
uα̂ij

) ,
( 1
m

m∑
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
vα̂ij

) )1/γ

≤

( 1
m

m∑
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
uα̂ij

) )1/γ ,
1 ≥

1

1+
(
1
m

∑m
i=1

1
1
r+s

1

1
|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
vα̂ij

) )1/γ

≥
1

1+
(
1
m

∑m
i=1

1
1
r+s

1

1
|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
uα̂ij

) )1/γ ≥ 0,

0 ≤
1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
uα̂ij

) )1/γ +

1−
1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
vα̂ij

) )1/γ ≤ 1.

By using the score function, we can get the aggregated
result of the q-ROFPGBMDA operator is still a q-rung
orthopair fuzzy number.
Proof of Theorem 25:

Proof: Since µα̂k = µα̂, uα̂ij = r
( µ

q
α̂i

1−µq
α̂i

)γ
+

s
( µ

q
α̂j

1−µq
α̂j

)γ
= r

( µ
q
α̂

1−µq
α̂

)γ
+ s
( µ

q
α̂

1−µq
α̂

)γ
= (r + s)

( µ
q
α̂

1−µq
α̂

)γ , then
1

|Ph|(|Ph| − 1)

(∑
i,j∈Ph,i 6=j

1
uα̂ij

)
=

1
|Ph|(|Ph| − 1)

(∑
i,j∈Ph,i 6=j

1

(r + s)
( µ

q
α̂

1−µq
α̂

)γ )
=

1

(r + s)
( µ

q
α̂

1−µq
α̂

)γ .
( 1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
uα̂ij

) )1/γ
)1/q

=

( 1

1+
( 1
m

∑m
i=1

1
1
r+s

1(
1

(r+s)
( µ

q
α̂

1−µq
α̂

)γ )
)1/γ )1/q

=

( 1

1+
( 1
m

∑m
i=1

1

1
r+s

( µ
q
α̂

1−µq
α̂

)γ )1/γ
)1/q

=

( 1

1+
( 1
m

∑m
i=1

1( µ
q
α̂

1−µq
α̂

)γ )1/γ
)1/q

=

( 1

1+
( 1( µ

q
α̂

1−µq
α̂

)γ )1/γ
)1/q
=

( 1

1+
( 1( µ

q
α̂

1−µq
α̂

))
)1/q
= µα̂.

vα̂ij = r
( 1−νq

α̂

ν
q
α̂

)γ
+ s

( 1−νq
α̂

ν
q
α̂

)γ
= r

( 1−νq
α̂

ν
q
α̂

)γ
+ s

( 1−νq
α̂

ν
q
α̂

)γ
=

(r + s)
( 1−νq

α̂

ν
q
α̂

)γ .
Then

1
|Ph|(|Ph| − 1)

(∑
i,j∈Ph,i 6=j

1
vα̂ij

)
=

1
|Ph|(|Ph| − 1)

(∑
i,j∈Ph,i 6=j

1

(r + s)
( 1−νq

α̂

ν
q
α̂

)γ )
=

1

(r + s)
( 1−νq

α̂

ν
q
α̂

)γ .
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(
1−

1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
vα̂ij

) )1/γ
)1/q

=

(
1−

1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

(r+s)
( 1−νq

α̂

ν
q
α̂

)γ
)1/γ )1/q

=

(
1−

1

1+
( 1
m

∑m
i=1

1

1
r+s (r+s)

( 1−νq
α̂

ν
q
α̂

)γ )1/γ
)1/q

=

(
1−

1

1+
( 1
m

∑m
i=1

1( 1−νq
α̂

ν
q
α̂

)γ )1/γ
)1/q

=

(
1−

1

1+
( 1( 1−νq

α̂

ν
q
α̂

)γ )1/γ
)1/q

=

(
1−

1

1+ 1
1−νq

α̂

ν
q
α̂

)1/q
=

(
1−

1

1+
ν
q
α̂

1−νq
α̂

)1/q
= να̂.

Hence q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n) = α̂.
Proof of Theorem 26: (Commutativity) Let α̂k (k =

1, 2, . . . , n) be a collection of q-rung orthopair fuzzy
numbers. If (α̂′1, α̂

′

2, . . . ., α̂
′
n) is any permutation of

(α̂1, α̂2, . . . ., α̂n), then

q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n)

= q-ROFPGBMDA(α̂′1, α̂
′

2, . . . ., α̂
′
n).

Proof:

q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n)

=
(
⊗
m
i=1

( 1
r + s

(
⊗i,j∈Ph,i 6=j ((rα̂i)⊕

(sα̂j))
) 1
|Ph|(|Ph|−1)

)) 1
m

=
(
⊗
m
i=1

( 1
r + s

(
⊗i,j∈Ph,i 6=j ((rα̂

′
i)⊕

(sα̂′j))
) 1
|Ph|(|Ph|−1)

)) 1
m .

Proof of Theorem 27:
Proof: Since µα̂k ≤ µ

β̂k
, µq

α̂k
≤ µ

q
β̂k
, ( x

1−x )
′
=

1
(1−x)2

> 0. Hence,
µ
q
α̂i

1−µq
α̂i

≤

µ
q
β̂i

1−µq
β̂i

,
µ
q
α̂j

1−µq
α̂j

≤

µ
q
β̂j

1−µq
β̂j

and

(
r(

µ
q
α̂i

1−µq
α̂i

)γ + s(
µ
q
α̂j

1−µq
α̂j

)γ
)
≤
(
r(

µ
q
β̂i

1−µq
β̂i

)γ + s(
µ
q
β̂j

1−µq
β̂j

)γ
)
.

1
|Ph|(|Ph| − 1)

(∑
i,j∈Ph,i 6=j

1

r
( µ

q
α̂i

1−µq
α̂i

)γ
+ s

( µ
q
α̂j

1−µq
α̂j

)γ )

≥
1

|Ph|(|Ph| − 1)

(∑
i,j∈Ph,i 6=j

1

r
( µ

q
β̂i

1−µq
β̂i

)γ
+ s

( µ
q
β̂j

1−µq
β̂j

)γ
)
,

1
r + s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1

r
( µ

q
α̂i

1−µq
α̂i

)γ
+s
( µ

q
α̂j

1−µq
α̂j

)γ )

≤
1

r + s
1

1
|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1

r
( µ

q
β̂i

1−µq
β̂i

)γ
+s
( µ

q
β̂j

1−µq
β̂j

)γ ) ,

Let uα̂ij = r
( µ

q
α̂i

1−µq
α̂i

)γ
+ s

( µ
q
α̂j

1−µq
α̂j

)γ , u
β̂ij
= r

( µ
q
β̂i

1−µq
β̂i

)γ
+

s
( µ

q
β̂j

1−µq
β̂j

)γ .
1

r + s
1

1
|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
uα̂ij

)
≤

1
r + s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
u
β̂ij

) ,
( 1
m

∑m

i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i6=j

1
u α̂ij

) )1/γ
≥
( 1
m

∑m

i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
u
β̂ij

) )1/γ ,
( 1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
uα̂ij

) )1/γ
)1/q

≤

( 1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
u
β̂ij

) )1/γ
)1/q

.

Since να̂k ≥ νβ̂k , ν
q
α̂k
≥ ν

q
β̂k
. ( 1−xx )′ = − 1

x2
,
1−νq

α̂i
ν
q
α̂i

≤

1−νq
β̂i

ν
q
β̂i

and
1−νq

α̂j

ν
q
α̂j

≤

1−νq
β̂j

ν
q
β̂j

.
(
r
( 1−νq

α̂i
ν
q
α̂i

)γ
+ s
( 1−νqα̂j
ν
q
α̂j

)γ )
≤
(
r
( 1−νq

β̂i
ν
q
β̂i

)γ
+

s
( 1−νqβ̂j
ν
q
β̂j

)γ ).
Let vα̂ij =

(
r
( 1−νq

α̂i
ν
q
α̂i

)γ
+ s

( 1−νqα̂j
ν
q
α̂j

)γ ), v
β̂ij
= r

( 1−νq
β̂i

ν
q
β̂i

)γ
+

s
( 1−νqβ̂j
ν
q
β̂j

)γ . Then
1

|Ph|(|Ph| − 1)

(∑
i,j∈Ph,i 6=j

1
vα̂ij

)
≥

1
|Ph|(|Ph| − 1)

(∑
i,j∈Ph,i 6=j

1
v
β̂ij

)
,

1
r + s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
vα̂ij

)
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≤
1

r + s
1

1
|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
v
β̂ij

) ,
( 1
m

∑m

i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
vα̂ij

) )1/γ
≥
( 1
m

∑m

i=1

1
r + s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
v
β̂ij

))1/γ ,
1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i6=j

1
vα̂ij

) )1/γ
≤

1

1+
( 1
m

∑m
i=1

1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
v
β̂ij

))1/γ ,
(
1−

1

1+
( 1
m

∑m
i=1

1
1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
vα̂ij

) )1/γ
)1/q

≥

( 1

1+
( 1
m

∑m
i=1

1
r+s

1
1

|Ph|(|Ph|−1)

(∑
i,j∈Ph,i 6=j

1
v
β̂ij

))1/γ
)1/q

.

By using the score function, we can get

q-ROFPGBMDA(α̂1, α̂2, . . . , α̂n)

≤ q-ROFPGBMDA(β̂1, β̂2, . . . , β̂n).
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