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ABSTRACT In this paper, a new hybrid model is proposed using Subset Selection by Maximum Dissimilar-
ity (SSMD) and adaptive neuro-fuzzy inference system (ANFIS) hybridized with the firefly algorithm (FFA)
to predict the longitudinal dispersion coefficient (Kx). The proposed framework (ANFIS-FFA), combines
the specific structures and strengths of both ANFIS and FFA approaches. The FFA is used to derive the
optimum ANFIS parameters. The Kx data set includes 503 cross-sectional data point from small to large
rivers. For pre-processing of the data set, the SSMD method is used, which is superior to the classical trial
and error method. The database covers a wide range of river width (0.2- 867m), and depths (0.034- 19.9 m).
Fifteen different combinations of river width (B), depth (H), flow velocity (U) and shear velocity (U∗) are
implemented as inputs to create fifteen estimative models. The output of the ANFIS-FFAmodel is compared
with the ANFIS and previously published equations to check the performance of the proposed model. The
results show that the highest accuracy is attained by the M1 model, with all geometric and hydrodynamic
parameters as input variables in comparisonwith ANFIS and previous equations. The R2 value, RMSE,MAE
and NSE for ANFIS-FFA model are 0.67, 113.14 m2/s, 48 m2/s, and 0.63 for proposed dimensional model,
and 0.35, 874.5, 520.8, and 0.1 in non-dimensional ANFIS-FFA model, respectively. These values were
0.37, 463.34 m2/s, 85.69 m2/s, and −5.19 for dimensional ANFIS model, and 0.11, 3269.88, 1932.09 and
−11.54 for non-dimensional ANFIS model, respectively. Overall, hybridization caused 81%, 75%, 76%
improvement in R2, RMSE and MAE. In another contribution of the paper, by using the matrix form of
developed ANFIS-FFA optimized parameters, a novel explicit calculation procedure for estimation of Kx is
derived. Based on the results, the proposed ANFIS-FFA model exhibits significant improvements than the
classical ANFIS and highlights that optimizing by nature-inspired optimization algorithms plays a critical
role in strengthening the ANFIS estimations generality.

INDEX TERMS Longitudinal dispersion coefficient, ANFIS-FFA, maximum dissimilarity method, natural
rivers, adaptive neuro-fuzzy inference system.

I. INTRODUCTION
Water is a necessary element in the world, for human life
and survival. Most rivers are polluted nowadays, and these
pollutants are transported in the river flow. River flow and
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pollutant transport studies are necessary for several applica-
tions such as analysis of water intake, sediment deposition,
contamination control, and pollutant risk assessment [1]–[4].
The fundamental law of mass diffusion in water was first
introduced by Fick (1855) [5] as q = −D ∂c

∂x , where q is
the mass flux of pollutant, D is the diffusion coefficient,
and ∂c

∂x is the gradient of the mass concentration (c) in
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x distance along the longitudinal direction [6], [7]. The
diffusion coefficient is generally referred to the longitudinal
dispersion coefficient [6], [8]. The injected pollutants are
dispersed by advection and dispersion processes in longitu-
dinal, vertical, and transverse directions [9], [10]. The lon-
gitudinal dispersion process becomes the main mechanism,
when the mixing process in the lateral direction is fully
developed [11], [12]. The longitudinal dispersion coefficient
was first presented by Taylor [13], [14] as a measure of
the one-dimensional dispersion process by the conventional
advection-dispersion equation:

∂C
∂t
+ u

∂C
∂x
= Kx

∂2C
∂2x

(1)

where C is the average of mass concentration in cross-
section, t is the time, u is the velocity, x is the longitudinal
coordinate, and Kx is longitudinal dispersion coefficient [15].
Fischer (1967) [16] developed the following integral expres-
sion [17] for Kx in rivers:

Kx = −
1
A

B∫
0

hu′
y∫

0

1
εth

y∫
0

hu′dy dy dy (2)

where A is the area of river cross-section, B is the river width,
h is the flow depth, u

′

is the differences of the depth-averaged
flow velocity at specified local y from average velocity over
the cross-section of river, y is the location in the lateral
direction, and εt is the local transverse mixing coefficient [9].

Longitudinal dispersion coefficient (Kx) has a significant
effect on contaminants and mass transport in large rives [18].
Consequently, estimation of the longitudinal dispersion coef-
ficient could be useful in the management of water quality
in rivers and optimal pollution control strategies [19], [20].
Seo and Cheong [11] stated that the Kx is affected by
three groups of factors, including hydraulic river features,
vegetation, fluid properties and geometric patterns of river
reach [21], [22]. The longitudinal dispersion coefficient mea-
surements showed that the most effective parameters are
channel width (B), flow depth (H ), bed shear velocity (U∗)
and cross-sectional average flow velocity (U ) [23]. Kx can
be expressed as the following functional expression:

Kx = f
(
H ,B,U ,U∗

)
(3)

Several researchers tried to develop empirical and mathemat-
ical equations for calculating Kx based on Equation 2. The
first researchers who investigated the theoretical method for
estimation of Kx were Taylor [13], [14] and Fischer [16].
Also, Elder [24] studied the Kx in non-uniform flow and
proposed the empirical equations. McQuivey and Keefer [25]
integrated linear one-dimensional flow with dispersion equa-
tions for estimatingKx . Fischer [26], Liu [27], Iwasa [28] and
Koussis and Rodriguez-Mirasol [29] accounted the impact of
lateral flow velocity gradient on Kx and developed simple
equations. Seo and Cheong [11] suggested a one-step regres-
sion method using hydraulic and geometric field data from

26 rivers for estimatingKx . Deng et al. [30] derived a theoreti-
cal equation ofKx for BH > 10. Kashefipour and Falconer [31]
also proposed two-step regression models for estimating Kx
using 81 data sets measured in natural streams of the USA.
Seo and Baek [19] and Papadimitrakis and Orphanos [32]
extended several empirical equations for estimating Kx in
various ranges of B

H values. These equations have several
limitations, such as narrow calibration data, a small range
of applicability, non-generality of collected data, and weak
estimates over unseen data. Furthermore, most of the reported
empirical and theoretical equations were developed using
particular assumptions and channels features. The perfor-
mance of these equations changes broadly for their calibrated
flow ranges and stream condition, and for smaller or more
extensive ranges of flow have not accurate results [17], [33].
Hence, it is crucial to develop a model that would have an
appropriate application in the global range of river and flow
conditions.

Data-driven techniques for over a decade have been used
to evaluatemany hydraulic and hydrologic problems. Regard-
ing the Kx estimation, the most frequently data-driven tools
are ANN [17], [34], [35], ANFIS [15], [23], [36], genetic
programming [37]–[39], SVM [36], [40], particle swarm
optimization [41], differential evolution [42], Granular Com-
puting Model [43], Polynomial regression [44] and regres-
sion kriging [18]. These studies are some of the recently
published researches that have been widely carried out to
estimate Kx based on a limited number of data and a
small range of applicability. High accuracy and less uncer-
tainty in Kx estimations have been observed using ANFIS
technique in comparison with the other models and equa-
tions [15], [20], [23], [34], [39].

Recently, Nature-inspired optimization systems have been
used in different fields of model optimization. In the field
of artificial intelligence, these algorithms provide a solu-
tion to achieve improved performance of non-optimized
models [45]. Firefly algorithm (FFA) is a novelmeta-heuristic
optimization algorithm that has provided the desired enhance-
ment and improvement in the modeling accuracy. The FFA
imitates the flashing behavioral patterns of fireflies [46]
based on their frequency, duration, and brightness [45]. The
FFA structure can effectively and simultaneously found the
local and global optima in the dataset and solve multimodal
optimization problems [47]–[50].

The FFA hybridized with ANFIS model is used to progress
the accuracy of estimations, such as estimating the roller
length of a hydraulic jump [51] and monthly streamflow
forecasting [45]. These studies have proved that the FFA
approach is able to eliminate the inaccuracy in estimation
of extremely shallow stream flows. Furthermore, FFA have
been used effectively in different studies such as estimat-
ing the minimum velocity in sewer pipes [52], [53], esti-
mating field capacity and permanent wilting point in soil
samples [54], forecasting electrical load [49], optimization
of Van-Genuchten model parameters in soil-water charac-
teristic curve [55] and selection of relevant attributes [56].
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Their results have shown more robustness of FFA compared
to the other optimization methods. The significant shortcom-
ings of the previous studies over longitudinal dispersion esti-
mation and the implemented methodologies are small range
of used data, narrow calibration data, small range of applica-
bility, non-generality of collected data, weak estimates over
unseen data and ANFIS learning by mathematical methods.
By considering all of these shortcomings, this research aims
to provide further improvements for inferring the embedded
mechanism in an extended database of Kx by hybridizing
the nature-inspired algorithm FFA with traditional ANFIS.
This will improve the accuracy of the ANFIS technique as
it adjusts and optimizes the modeling parameters based on a
global database of Kx. In this research, the functional form of
equation (3) is used for developing a novel accurate method-
ology of ANFIS-FFA technique to estimate Kx in natural
rivers based on a global database. Also, for the first time,
SSMD is hybridized with the ANFIS-FFA for the best subset
selection of the train and test sets. The observed Kxvalues of
different worldwide rivers are collected and used for evaluat-
ing the fitness of models. The proposed ANFIS-FFA model
presents the relation between Kx as output, and hydraulic
and geometric parameters as inputs. There is no need for
assumptions on the hydraulic and geometric parameters of
flow in the ANFIS-FFA model. The rest of the paper is orga-
nized as follows: Section II represents the datasets and pre-
processing, ANFIS, FFA, and hybrid models implemented in
the simulations and evaluation criteria. Section III contains

the results and discussions about the proposed model. Finally,
in Section IV, the conclusions were drawn.

II. MATERIAL AND METHODS
A. LONGITUDINAL DISPERSION DATA COLLECTION
There is an extensive set of the hydrodynamic and geometric
parameters affecting the Kx values in natural streams. Among
all, channel width (B), flow depth (H), flow velocity (U),
and bed shear velocity (U∗) strongly affect the Kx [20], [39].
U affects the driving force of flow and U∗ increases the
longitudinal transfer of pollutant. B and H are geometrical
parameters of the river cross-section that define and magnify
the transverse distribution of longitudinal flow components
and produce transverse velocity gradients as themain agent of
dispersion. Also, vertical mixing is related to the flow depth
H and can affect the dispersion process. Both dimensional
and non-dimensional combinations of these parameters have
been used for Kx estimation in previous studies. As the
dimensional value of Kx is utilized in practical applications
and numerical models, in this paper, a dimensional esti-
mation is carried out. For this purpose, a field data bank,
including 503 data points from different worldwide rivers
are collected from the literature [27], [30], [31], [57]–[69]
(Appendix 1). Table 1 represents the statistical features of
subsets, which are selected by SSMD (discussed in the next
section). Table 1 shows that the river width varies from 0.2
to 867 meters, flow depth varies from 0.034 to 19.6 meters,
and Kx varies from 0.005 to 1798.60 m2/s, which declares the

TABLE 1. Statistical characteristics of the dataset variables (after Riahi-Madvar et al. 2019).
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generality of collected database and their extensive ranges.
In this research, four variables, including B, H, U and U∗ are
considered as input vector of the estimative models and Kx
assigned as the output of the models. All possible combina-
tions (fifteen) of four input variables are used. Fifteen differ-
ent model structures were used, and analysis of the results
were carried out to show the sensitivity of each parameter on
the model output in the train, test and overall data. For this
purpose, 15 possible input combinations that are represented
in Table 2 are considered.

TABLE 2. Different input vector combinations used for ANFIS-FFA
developments.

B. DATA PRE-PROCESSING BY SSMD
For a robust estimation, it is necessary to calibrate and train
the model appropriately by selecting a suitable training set.
The training performance highly depends on the dataset that
is utilized for train purpose. There is no unique method for
selecting the training and testing datasets. Trial and error
and cross-validation methods were used in subset selection
in previous studies of artificial intelligence [15], [70], [71].
In this research, we explore a robust algorithm to divide data
into subsets and extract proper training set. One of the main
factors in train and test subset selection is that the statistical
characteristics of both training and testing subsets must be
approximately identical. For example, if the train subset does
not include the extreme values, but the test subset has several
extreme values, the model could not be able to accurately
estimate the extreme values and vice versa. This reduces the
global applicability of trained models. To remedy this prob-
lem, in this research, SSMDmethod [72] was used for finding
optimum subsets and random data manipulation to categorize
training and testing subsets. In general, the SSMD method is

capable of selecting the training and testing subsets in such
a way that the statistical characteristics of subsets, including
the maximum, minimum, mean, and standard deviation are
stable, which guarantee a reliable estimation. The SSMDwas
first introduced by Kennard and Stone (1969) [73]. Based
on SSMD, the data with the highest dissimilarity to others
in the data set are selected [74] to characterize the overall
behavior of the dataset. To remove the scale effects, before
subset selection, the data are normalized as follows [6]:

xn =
xi − xmin

xmax − xmin
(4)

Then subsets are de-normalize as:

xi = xn (xmax − xmin)+ xmin (5)

In this research, 70% and 30% of the whole dataset are
selected automatically by SSMD as training and testing sub-
sets, respectively. For more details on the SSMDmethod, one
can refer to [6], [7], [39], [73]–[76]. Table 1 represents the sta-
tistical features of selected subsets. Also, Figure 1 shows the
distribution of selected subsets. From Table 1 and Figure 1,
it can be concluded that the SSMD is capable of propa-
gating the extreme values in training and testing subsets
equally, which eliminates the trial and error subset selection
and improve the applicability and reliability of estimations.
Figure 1 shows that the scattering of the training subset
contains the borders of the database, and the members of
the testing subset are positioned within the training subset.
Subsequently, it expects that the trained models with SSMD
suitably can realize the outliers’ behavior in the database.
Based on the results in this figure, the changes of variables
in the train subset are greater than the test subset, and this
increase the generalization of extrapolation models. The crit-
ical distinctiveness of the SSMD is that it spreads the extreme
values in the train and test sets and does not eliminate them
from modeling. For a global database as used in this paper,
The SSMD, by extending the cover limits of the train set,
strengthens the global uses of established estimations.

As Figure 1 shows, although the training set includes the
upper and lower limits of the database, also there are some
extreme values in test sets, and both of the selected datasets
have a uniform pattern of variables that avoids the overfitting
of the model. Indeed by using the SSMD, the selection pro-
cess is progressed in such a way that there will be maximum
dissimilarity between the members of an individual set and
the same values will not occur in one set.

C. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
The Fuzzy logic (FL) developed by Zadeh [77] is based
on semantic uncertainty, which effectively used in various
environmental and water resources problems [78]. Fuzzy
inference system is a rule-based structure with three concep-
tual mechanisms, including a rule-based structure, a database
of models and an inference system. The first component is
based on if-then rules, while the second defines the member-
ship function, and the third is the combination of the rules
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FIGURE 1. The coverage and distribution of train and test subsets.

and producing the results [79], [80]. An automatic proce-
dure for the optimization of membership function features
and adjusting parameters is needed [79], [81], [82]. ANFIS,
which is the integration of fuzzy logic and artificial neural
network (ANN) is used to overcome this problem [83], [84].
Generally speaking, ANFIS is a multi-layer feed-forward
network based on the ANN learning capabilities and fuzzy
thinking [79], [85]–[87]. Tsumoto, Mamdani and Sugeno are
three categories of ANFIS, while the Sugeno is the most
popular [88], [89] and used in this research. Also, there are
several membership functions (including Trapezoidal, Gaus-
sian, Sigmoid, Triangular, Generalized bell-shaped, etc.) for
ANFIS [90]. The selection of the membership function is a
crucial part of ANFIS modeling. A Sugeno first-order fuzzy
model with four inputs and one output is described here
to show how the ANFIS system works. In this research,

geometric and hydrodynamic parameters of flow are the input
and longitudinal dispersion coefficient (Kx) is the output
variables. The rules for the ANFIS system are presented in
equations (6) and (7):
Rule 1: IF H is A1, U∗ is B1, U is C1 and B is D1 then

KX1 = a1H + b1U∗ + c1U + d1B+ r1 (6)

Rule 2: IF H is A2 and U∗ is B2, U is C2 and B is D2 then

KX2 = a2H + b2U∗ + c2U + d2B+ r2 (7)

In which ai, bi, ci and di are the parameters which would be
optimized by the FFA during the training procedure, Kxi is the
output of the fuzzy system, and Ai, Bi, Ci and Di are the fuzzy
sets. Figure 2 shows the schematic ANFIS model, which is
used in this study. Based on Figure 2, there are five layers in
ANFIS modeling, which briefly discussed here.
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FIGURE 2. The architecture of ANFIS in Kx estimation.

Layer 1: The input layer adopts the activation function on
input variables.

O1,i = µAi(x) for i = 1, 2, or

O1,i = µBi−2(y) for i = 3, 4 (8)

where one of the B, H, U and U∗ is the input to each node
and Ai or Bi−2 is related linguistic label and O1,i is the
membership grade of fuzzy sets. In this step, several member-
ship functions are tested and finally, Gaussian membership
function is used.

µAi(x, σ, c) = e
−(x−c)2

2σ2 (9)

In which σ and care membership function of variables set.
So the output of the first layer is as follows:

O1,i=µAi(x) = e
−(xi−ci)

2

2σ2i (10)

Layer 2: This layer determines the membership degree of
inputs.

O2,i = µAi(x)µBi(y) i = 1, 2 (11)

Layer 3: This layer calculates the relative weights of inputs.

O3,i = w̄i =
wi

w1 + w2
i = 1, 2 (12)

Layer 4: This layer adopts inputs with relative weights.

O4,i = w̄iKxi = w̄i(aiH + biU∗ + CiU + DiB+ ri) (13)

Layer 5: This layer calculates the final output of the model.

O5,i =
∑
i

w̄iKxi =
w1Kx1 + w2Kx2

w1 + w2
(14)

In general, ANFIS has a high capability in learning and
classifying input-output data. However, training the ANFIS
model to obtain optimal membership function and parameters
is time-consuming. So, in this research, The FireflyOptimiza-
tion Algorithm (FFA) was utilized to solve this problem

D. FIREFLY ALGORITHM AND HYBRIDIZING ANFIS-FFA
In the present paper, the firefly optimization algorithm (FFA)
was utilized to find the optimum values of parameters for
the membership function. FFA was introduced by Yang [48],
which is based on firefly behavior and flashing features. The
mata-heuristic algorithms such as FFA need proper setting
of parameters and need several iterations to find the optimal
response. In reverse, faster convergence and low probability
of entrapping in local optima are two main advantages of
these algorithms.

The flashing features are categorized into three rules [48]:
- The fireflies assumed to be unisex and as a result, attract-
ing to other fireflies is not based on the sex.

- The attractiveness is relative to the brightness and in the
case that no one is brighter, the movement is random.

- The brightness is proportional to the light emission.
Based on these three rules, the brightness and the intensity of
light emission can be the objective function [45]. The firefly
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FIGURE 3. The flowchart of integrated SSMD with ANFIS-FA modeling.

light intensity and attractiveness were formulated as follows:

I = I0e−γ r

β = β0e−γ r
2

(15)

where I and β are firefly light intensity and attractiveness,
respectively. I0 and β0 represent the original light intensity
and attractiveness at r=0, r is the distance of two fireflies and
γ is the light absorption coefficient. The Cartesian distance
between two fireflies introduces as [48]:

rij =
∥∥xi − xj∥∥2 (16)

The distance is not to be Cartesian distance and also can be
the time delay and, etc. [48]. Also themovement of one firefly
by another one is defined as [48]:

xi = xi + β0e
−λr2ij

(
xj − xi

)
+ αεi (17)

where α and εi are randomization coefficient (between
0 and 1) and random number vector, respectively [45].

In this paper, 15 models with different input variables that
have only 1 output parameter of Kx are developed (Table 2).
The ANFIS-FFA uses root-mean-square error (RMSE) as the
cost function in the optimization of the ANFIS parameters.

The limits of parameters that are optimized by the cost func-
tion in FFA should be identified first. In the hybrid optimiza-
tion flowchart, as presented in Figure 3, each firefly includes
a set of two types of optimization parameters, antecedent and
consequent parameters given in equations 9, 10 and 13. In this
paper in the M1 model, as the best one from 15 models, B,
H, U and U∗ are used as input vector, and the associated
output parameter (Kx) is estimated. If the input vector has
three fuzzy membership functions of Gaussian MFs, then the
IF–THEN rules can be written as:

Rule s: IF B is F i1(s1i, c1i) and H is F i2(s2i, c2i) and U is
F i3(s3i, c3i) and U∗ is F i4(s4i, c4i)1 then

Kxs = asB+ bsH + csU + dsU∗ + rs (18)

The parameters of ANFIS that should be optimized are
(sji, cji, as, bs, cs, ds, rs) and these parameters are decision
variables in the optimization problem. These parameters for
all of the associated rules and MFs need to be determined.
The primary firefly population is selected randomly, and each
firefly is imagined into the ANFIS parameters set. According
to each firefly’s light intensity, the attractiveness (cost) of
each firefly (ANFIS parameter) is calculated and assessed,
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and fireflies (parameter values) with the lowest light
move toward parameters with the highest cost (brightness).
Consequently, the cost function is calculated. The cost func-
tion in this paper is the minimization of root mean square
error (RMSE) of estimations in regard to decision variables.
This procedure cycles until the maximum generation value or
minimum preferred cost function are derived. Figure 3 shows
the flowchart of hybrid SSMD with ANFIS–FFA that is used
in this paper to estimate Kx.

E. EVALUATION CRITERIA
There are several statistical performance evaluation criteria
for model assessment. In this paper, eight statistical evalua-
tion criteria, including the root mean square error (RMSE),
the coefficient of determination (R2), mean absolute error
(MAE), the Nash-Sutcliffe Efficiency (NSE), index of agree-
ment (d), persistence index (PI), confidence index (CI) and
relative absolute error (RAE) were utilized for model eval-
uation. The explanation of these criteria was presented else-
where [80], [91], [92]. Also, visualize approaches, including
scatter plot, Taylor diagram [93], ellipse confidence bounds,
and the probability distribution of revised discrepancy ratio
(RDR) are used to evaluate the model results.

Beside these criteria, a revised discrepancy ratio (RDR)
was used. Discrepancy ratio (DR) was introduced by
White et al. [94] to examine the model robustness:

DR = Log
(
Predicted Value
Observed Value

)
(19)

However, this form of DR is not applicable to zero or negative
values. Noori et al. [95] proposed a new index (DDR) based
on the DR to remedy this problem. However, the logarithmic
base of the DR is eliminated in DDR:

DDR =
Forecasted Value
Observed Value

− 1 (20)

Because of these shortcomings, RDR was proposed by
Memarzadeh et al. [76] as a new index which is capable of
using for all negative, positive values and the logarithmic
base of DR remains and calculates the normalized error of
estimated values as follows:

RDR = Sign (Estimated.Kx −Measured.Kx)

×

∣∣∣∣log ∣∣∣∣Estimated.Kx
Measured.Kx

∣∣∣∣∣∣∣∣ (21)

In the case of over estimation of model results, the value of
RDR >0, in the case of underestimation, RDR<0, and for
exact estimations, RDR is equal to zero.

III. RESULTS AND DISCUSSION
The results of ANFIS-FFA and previously published equa-
tions are presented in this section. To evaluate the results of
models and compare their capability versus existing equa-
tions, some graphical and statistical indices are used. In next
subsection the results of ANFIS-FFA with different input
parameters and comparing the best ANFIS-FFA model with
existing equations are presented respectively.

A. RESULTS OF ANFIS-FFA MODEL
The ANFIS model is trained by Firefly Algorithm using
503 data points, which are collected from previously pub-
lished data. The SSMD approach is used to select the training
and testing data subset of models, as described previously.
The 351 number of Kx values contains the training data set,
whereas 152 remaining ones are used in the testing stage. The
primary comparative analysis in this research shows that the
input vector in the dimensional state is superior to dimension-
less values. So in this research, the dimensional parameters
of U(m/s), U∗(m/s), B(m) and H(m) were used. The input
layer of the ANFIS model has a different combination of
these 4 parameters, and by this way, 15 models are trained
using FFA. The output layer of ANFIS-FFA includes a single
variable as Kx. As described previously in the ANFIS struc-
ture, each input parameter has several parameters in terms of
rules, and furthermore, each rule contains several parameters
of membership functions. The membership function type,
the number of clusters, and type of FIS are determined by trial
and errors. It was found that the best is the Gaussian mem-
bership function with two parameters, 8 clusters (number of
membership functions for each variable) and genfis3. In this
research, the FIS structure (genfis3) is of the specified type,
Sugeno and 8 numbers of clusters to be generated by fuzzy
c-means (FCM) clustering. The input and output member-
ship function types are ‘gaussmf’ and ‘linear’, respectively.
The symmetric Gaussian function depends on two param-
eters sigma and c (Eq.10). The linear output function has
5 parameters (Eq. 13). So the input parameters that should be
determined are 4. In this research, each parameter has 8 rules
(membership functions), and each rule contains 2 parameters.
In the largest input vector, there are 64 (4 variable×8 rules×
2 parameters) parameters that must be optimized by the fire-
fly algorithm in layer 2. In layer 3, this combination produces
48 nodes and in layer 5, there are 23×5 unknown parameters
within the de-fuzzifcation process. So, we have 104 ANFIS
parameters that should be determined and optimized by the
firefly algorithm. In other cases with a reduced number of
input variables (Table 2), the numbers of optimization param-
eters are reduced proportionally.

In this paper, all possible combinations of U, U∗, B and
H variables are used (Table 2). The FFA is used in all
15 combinations of input vector (Table 2) for the optimization
of ANFIS parameters over the training data set selected by
SSMD. In Figure 4, the variation of the best cost function
with generations in the M1 model of ANFIS-FFA is shown.
It shows the trend of cost reduction as a function of iteration
over the firefly optimization process, and it was found that
after 500 generations, the best solution was achieved and
the model converged to the optimized parameters of ANFIS.
The final results of 15 ANFIS-FFA models are summarized
in Figures 5-9 and Tables 3-5. Figure 5 visualizes the Taylor
diagram of Kx estimated by ANFIS-FFA with different input
parameters in the train, test and overall of the data. The
Taylor diagram visually compares the quantitative perfor-
mance of 15 ANFIS-FFA models for the train, test and all

VOLUME 8, 2020 60321



H. Riahi-Madvar et al.: Improvements in the Explicit Estimation of Pollutant Dispersion Coefficient in Rivers by SSMD Hybridized

TABLE 3. Results of ANFIS-FFA models for estimation of Kx over training data.

FIGURE 4. Convergence process and best cost variations of ANFIS-FFA
over generation.

of the data. This figure evaluates the quantitative accuracy
of ANFIS-FFAs comparatively and shows that the nearest
estimations to the observed values of Kx are reproduced
in M1. As it is expected, the models with one or two inputs
had the worst performance.

Tables 3-5 shows that by increasing the number of input
parameters, the model result improved. The R2 values of
the M1 model in the train, test and overall data are 0.72,
0.67 and 0.7, respectively and MAE values are 51.72, 48,

50.6 and NSE are 0.72, 0.63 and 0.7, respectively. These
values show the superiority of the M1 model over the others.
Figure 6 shows the RDR distribution of the best 6 models
in the test step, including M1, M2, M5, M7, M9 and M14,
and M1, M2, M4, M5 M6 and M7 for overall data. In these
graphs, further inclination in RDR spreading to the centerline
and higher values of the maximum RDR are related to more
accuracy. Based on this figure, the selected models in regard
to RDR have some positive skewness, but in comparison with
wide ranges of input and output values in Table 1, the overall
performances are valuable.

Observed and predicted Kx and associated errors in the
training and testing steps forM1 usingANFIS-FFA are drawn
in Figures 7 and 8, respectively. It is noticeable that the
estimated and measured values have the same trends, and the
measured and estimated Kx values have approximately simi-
lar patterns. The model estimations are accurate, particularly
at small or large Kx values, and have an acceptable correlation
with measurements. From these figures, it is finding out that
ANFIS-FFA accurately can inference the inherent relation-
ships between four hydraulic and geometric features of natu-
ral rivers (U, U∗, B, H) with Kx. It must be noted that the main
aim of the research was to improve ANFIS capabilities in

FIGURE 5. Taylor diagram for training, testing and overall data for all combinations of variables in ANFIS-FFA.
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TABLE 4. Results of ANFIS-FFA models for estimation of Kx over testing data.

TABLE 5. Results of ANFIS-FFA models for estimation of Kx over all data.

FIGURE 6. RDR values for the best ANFIS-FFA models using A) test and B) all of the data.

global conditions of natural rivers without clustering the data
based on variable ranges, where will reduce the generality
of estimation model and causes the over fitting challenges in
artificial model estimations.

Figure 9 shows the regression plots of the ANFIS-FFA
estimation versus the measured Kx values in the training,
testing steps and all of dataset. The correlation coefficient (R),
as an index of the linear correlation between the estimated
and measured Kx, was calculated and presented for M1 using

the ANFIS-FFA model in these figures. The results show
acceptable agreement with the high R (0.84 and 0.85) and the
95% confidence ellipse of estimations. The blue points are
those beyond the 95% bound of observations, and the green
points are those inside the 95% confidence bound. From
Figure 9, it is clear that in train step, 17 points of 352 number
of observations (4.8%), in test step, 5 of 151 (3.3%) and
over all data, 22 of 503 (4.4%) estimations are outside of
the 95% ellipse bounds. It is concluded that the M1 model
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FIGURE 7. Comparing observed Kx versus predicted M1 ANFIS-FFA in train phase.

FIGURE 8. Comparing observed Kx versus predicted M1ANFIS-FFA in the test phase.

FIGURE 9. Scatter plot of observed Kx versus ANFIS-FFA predictions and 95% confidence ellipse for the best-selected model.

in ANFIS-FFA shows a satisfactory relationship between
the estimated and observed Kx for most of the data points
and the greatest part of the data points placed alongside the
imagined unique line. Indeed, it is realized that in M1 using

ANFIS-FFA, the number of both overestimation or underes-
timation of Kx is limited. Therefore, it is apparent that the Kx
estimated by ANFIS-FFA benefits from the uppermost level
of accuracy.
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TABLE 6. Empirical equations used in Kx estimations.

B. COMPARING ANFIS-FFA WITH ANFIS AND EMPIRICAL
EQUATIONS
To evaluate the robustness of the ANFIS-FFAmodel in regard
to empirical equations, the Kx was calculated for the test
and all of the data using eight formulas that were developed
in previous studies. The empirical equations are presented
in Table 6. Also, the ANFIS model is developed to compare
its results with ANFIS-FFA. A comprehensive evaluation of
the M1 results by ANFIS-FFA with results of equations and
conventional ANFIS over the test and all of the dataset are
presented in Tables 7 and 8 for both dimensional and non-
dimensional results. Indeed, these tables present the values
of the statistical indices used to validate the applicability of
published existing equations in estimating Kx for extended
data from small to large rivers. The best results that are pre-
sented in Tables 7 and 8 are for equation Alizadeh et al. [41]
with R2

= 0.20, NSE=0.17 in test data and R2
=

0.16, NSE = −0.02 over all of the data, respectively in
dimensional results. In the Non-dimensional values, the best

results are derived by the Seo and Cheong [11], equation with
R2
= 0.37 and NSE = −0.32 in the test set and R2

=

0.24 and NSE = −0.38 over all of the data. These values
show the limitation and weakness of empirical equations in
the new database of Kx. After that, the equations of Sattar
and Ghorbani [38] and Kashefipour and Falconer [31] have
more accurate estimations for dimensional values among the
existing Kx equations and have better results in comparison
with the Seo and Cheong [11], Wang et al., Fischer [26] and
Deng et al. [30] equations. However, all of these equations
have very low accuracy and high error than the ANFIS-FFA
and ANFIS. The estimated values represented in these tables
show that the collected data are very global, general and scat-
tered, in such a way that nearly all of the equations have high
error, and even the best equations do not yield reasonable esti-
mations of Kx. According to these results, the ANFIS-FFA
model is superior to the existing equations and conventional
ANFISmodel. In ANFIS model, the statistical parameters for
the test step are R2

= 0.37, RMSE = 463.34, MAE=85.69,

VOLUME 8, 2020 60325



H. Riahi-Madvar et al.: Improvements in the Explicit Estimation of Pollutant Dispersion Coefficient in Rivers by SSMD Hybridized

TABLE 7. Results of equations for estimation of Kx over testing data.

TABLE 8. Results of equations for estimation of Kx over all data.

NSE = −5.19, and CI = −2.79 and for all of the data are
R2
= 0.41, RMSE=259.68, MAE=48.43, NSE = −0.84,

and CI = −0.59 for the M1 which show the low accuracy in
estimations by the ANFIS in comparison with the ANFIS-
FFA. According to the results, comparing ANFIS with
ANFIS-FFA, ANFIS-FFA in M1 has the highest accuracy.
This result and the superiority of ANFIS-FFA versus ANFIS
were approved by Azimi et al. [51] in calculating the roller
length of a hydraulic jump on a rough channel bed. Also,

Yaseen et al., [45] stated the ANFIS-FFAmodel shows higher
accuracy in results over than the non-optimizedANFISmodel
in forecasting the streamflow. Therefore, new strengthen
models such as ANFIS-FFA are capable of estimating Kx
precisely and can be implemented in pollution modeling.

After all the aforementioned quantitative and graphical
evaluations, the superiority of the hybridized ANFIS-FFA
model in estimating of Kx is distinct and can combine with
numerical pollutant modeling.
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TABLE 9. Gaussian parameters for weights calculation in eq. 22, optimized by ANFIS-FFA, with an example calculation.

TABLE 10. Consequent parameters in the estimative equation of Kx by ANFIS-FFA, with an example calculation.

C. EXPLICIT CALCULATION PROCEDURE OF Kx BY
ANFIS-FFA OPTIMIZED PARAMETERS
As mentioned previously, the ANFIS model is a black box
system that has not provided the algebraic form explicitly.
Another novel contribution of this research is hybridizing the
FFA procedure with ANFIS model in the explicit calculation
of Kx, using an extended database. The ANFIS models can
be used as a trained program with its optimized inherent
parameter values. ANFIS usually is used in a subprogram
that receives input vector and produces corresponding output
rather than the algebraic form. However, the algebraic form
of the best model (M1) in matrix format is provided. The
algebraic form of ANFIS-FFA for Kx estimations based on
the eq. 14 is derived:

Kx =
nmf=8∑
j=1

wnj fj=
nmf=8∑
j=1

[
wnj
(
B×aj+H×bj + U×cj+U·×dj+rj

)]
(22)

where aj, bj, cj, dj and rj are the optimized consequent param-
eters that are given in Table 9. wn

j is the normalized matrix
of weights derived by the membership degree from Gaussian
function parameters and provided in Table 10.

The normalized weights are calculated using
equations 9-12, and they are used in equation 22 to calculate
the Kx value.

The main focus of the current study is providing an
explicit calculation procedure for Kx based on the optimized
ANFIS that has not yet reported in the previous studies

clearly. An example of calculation procedure is provided
in Tables 9 and 10. In this example H=2.09m; B=53.3m;
U=0.79m/s; U∗ = 0.11m/s. The calculation steps for calcu-
lating the output of optimized ANFIS model for these values
are as follows:

1- Use parameters of membership functions: The
columns 2-9 in Table 9 give the s and c parameters
of each membership function for each input parameter
that are optimized and determined by FFA.

2- Calculate the output of membership functions: by
using the optimized values of c and s in equation 10,
the output of each membership function for every
input parameter calculates, as the example calculations
are provided bellow the Table 9. The output of each
membership function in each parameter of B=53.3m;
H=2.09 m; U=0.79 m/s; U∗ =0.11 m/s is calculated
in columns 10-13 in Table 9.

3- Calculate the product of membership function outputs
by using Eq.11: by multiplying the output of each
membership function the product value is calculated in
column 14 in Table 9.

4- Calculate the relative weight of each membership func-
tion by using Eq.12: this is calculated by dividing each
row in column 14 to the total sum of column 14 and the
results are given in column 15 in Table 9.

5- Use the optimized consequent parameters of each
membership function. These FFA based optimized val-
ues are provided in column 2-6 in Table 10.

6- Calculate the consequent outputs, the second part that
are in parentheses in Eq.13; these values are calculated
in column 7 in Table 10.
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TABLE 11. The raw data set used in ANFIS-FFA model development.
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TABLE 11. (Continued.) The raw data set used in ANFIS-FFA model development.
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TABLE 11. (Continued.) The raw data set used in ANFIS-FFA model development.
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TABLE 11. (Continued.) The raw data set used in ANFIS-FFA model development.
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TABLE 11. (Continued.) The raw data set used in ANFIS-FFA model development.
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TABLE 11. (Continued.) The raw data set used in ANFIS-FFA model development.
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7- Calculate the weighted output of consequences by
Eq.13. The result of this step is given in column 8 in
Table 10.

8- Calculate the final Kx value by using Eq.14: this is
the final result of predicted Kx for given input values
and is calculated and provide at the end of Table 10
(Kx=54.68).

these steps are used in an excel workbook and for all of the
data are repeated to calculate the final values ofmodel outputs
and the procedure can be used in all of other cases as an
explicit calculation procedure of ANFIS instead of previous
black box approaches that limited the applicability of ANFIS
models.

The newly developed equation (Eq.22) and its constants
and parameters in Tables 9-10 is another novel contribution of
ANFIS-FFA models in Kx estimations by providing explicit
ANFIS based equation. Consequently, the newly developed
equation can put its results into practical and numerical
applications of pollutant transport over a wide range of
hydraulic and hydrologic riverflows in the simulation of
pollutant transport.

According to the statistical evaluations and one-by-one
comparisons of ANFIS-FFA, ANFIS and existing equations,
it is concluded that the ANFIS-FFA model shows a superior
accuracy versus the others. The evaluation of the statistical
indices of ANFIS-FFA and ANFIS demonstrates that hybrid
training of the ANFIS with FFA is valuable because it pro-
vides a valuable improvement in the accuracy, generality and
robustness of ANFIS to estimate the longitudinal dispersion
in lack of the concentration profile measures.

IV. CONCLUSION
In this paper, the ANFIS model trained with FFA is imple-
mented to estimate the Kx for pollutant transport. A global
and general database of Kx contains 503 data records, is col-
lected and assessed by the SSMD technique for subset selec-
tion. The sensitivity results attained in ANFIS-FFA with
different input combinations of dominant variables showed
that using the U, U∗, B and H variables led to the best results.
Evaluation of ANFIS-FFA and existing equations suggests
that the developed hybridization scheme outperforms the
existing approaches in dimensional and Non-dimensional
format of the results. The newly developed methodology esti-
mated about 96% of Kx values with <5% error as presented
by ellipse bounds. In conclusion, the ANFIS-FFA proved
to be a consistent tool for pollutant dispersion estimations
under a wide range of flow conditions, especially from small
to large rivers. When the complexity of pollutant dispersion
increases and generality of existing equations are wasted, due
to a lack of their calibration data and inherent weaknesses
of them, the newly developed model has valuable practical
strength. The new developed explicit matrix formula (Eq.22)
is a novel mathematical derivation of ANFIS-FFA model
results. It can be used in hybridizingwith numericalmodels of
pollutant transport and this is one of the main contributions of
the present paper in extending the applicability of black-box

models of ANFIS-FFA in an explicit formulae. The proposed
approach for the derivation of explicit equations based on
ANFIS-FFA can be used in further studies of future ANFIS
models.

APPENDIX
See Table 11.
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