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ABSTRACT To tackle the problem of partial loss of image details in infrared and visible image fusion,
a gradient transfer optimization model is proposed for the fusion of infrared and visible images. Firstly,
an adaptive image decomposition method is proposed based on coupled partial differential equation,
the infrared image and the visible image are decomposed into base layer and detail layer to extract the high-
brightness target and the details of the two images. Based on this superior information of infrared image
and visible image, the optimization model is designed to obtain the fusion image obvious target and rich
details. For the proposed optimization model, Alternating Direction Method of Multipliers (ADMM) is used
to decompose the original model into sub-problems that are easy to solve and iteratively optimize to obtain
the optimal solution. The introduction of control parameters makes the model more flexible in different
situations, and retains the thermal radiation information of the infrared image and the detailed information
of the visible image to the greatest extent. The fused image visual effects and performance indicators are
improved. We completed the experiment using a public data set and analyzed the experimental results.
The experimental results show that the proposed method can better preserve the clear target and texture
information of infrared and visible images, and the fusion results are more accurate and comprehensive. The
experiment results also indicate that our method performs well and achieves comparable metric values with
the state-of-the-art methods.

INDEX TERMS Image fusion, optimization model, ADMM, partial differential equation.

I. INTRODUCTION
Image fusion is an enhancement technology that plays a very
important role in computer vision and image processing.
It aims to generate information-rich images by combining
images obtained by different types of sensors for subse-
quent target detection or human eye observation, recogni-
tion, classification and the like. The infrared sensor imaging
system can penetrate smoke, fog, snow, and has strong anti-
interference ability. It also can work at night, but the infrared
image only describes the thermal radiation intensity of the
object and there are not considerable texture details. The
visible light sensor imaging system has high resolution, rich
information on the edge and texture of the target, and strong
anti-interference ability. However, the image quality is poor at
night and in low visibility conditions. The fusion of infrared
and visible images providesmore comprehensive information
for various imaging conditions, and the fusion results play a
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key role in aviation detection, military reconnaissance, and
security monitoring [1].

According to different image fusion levels, the fusion pro-
cessing can usually be divided into three levels: pixel level
fusion, feature level fusion and decision level fusion. Fusion
algorithms are generally divided into seven categories accord-
ing to the theory used, i.e., multi-scale transformation [2], [3],
sparse representation [6], neural network [7]–[9], [11], sub-
space [12], saliency-based methods [13]–[15], hybrid models
[2], [16], [17] and other methods [19]–[22]. For the above cat-
egories, we have summarized several advanced image fusion
algorithms in recent years, as shown in Table 1.

From table 1, the methods based on multi-scale transfor-
mation are the most widely studied methods in image fusion.
But, inappropriate conversion methods can easily degrade
performance [23], and the current fusion rules are mostly
simple, so that interference information such as ‘‘halo’’ is
introduced to the results [24]. In recent years, neural net-
works have been applied to the field of image fusion, such as
using convolutional neural networks (CNN) to obtain image
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TABLE 1. State-of-the-art fusion methods.
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features and reconstruct fused images, or build a new deep
learning architecture for infrared and visible image fusion
problems [23]. The method has good adaptability, fault tol-
erance and noise immunity, but designing an appropriate
neural network and adjusting the corresponding parameters
is still a challenging task [24]. Other techniques such as
methods based on total variation [20], fuzzy theory [26] and
entropy [22], which bring new horizons to the fusion of
infrared and visible images. Among them, the fusion algo-
rithms based on total variation model are gradually proposed.
Total variation is a mathematical model that has achieved
fruitful results in the field of image deblurring, such as
Zhuo et al. [27] integrated a flash gradient into a maximum-
a-posteriori framework to recover a sharp image by com-
bining a blurry image and a corresponding flash image.
And Je et al. [28] employs disparity information in image
segmentation, and estimates a PSF, and restores a latent
image for each region. The main difference between our
method and these two methods is application background.
They apply to image deblurring, while we apply to image
fusion. And Son and Zhang [35] proposed a new method for
decomposing the image pairs to create a new base layer of
the infrared image, which can have visual appearance similar
to the denoised image. This algorithm made an outstanding
contribution to the denoising theory. Whereas in our algo-
rithm, in addition to denoising and decomposing algorithms,
we also propose an optimization model to achieve image
fusion by minimizing the optimization equation. In 2016,
Ma et al. [20] proposed fusion of infrared and visible images
based on total variation method. The main idea of the work
is to retain the intensity information of the infrared image
while retaining the detailed appearance of the visible light
image. The fusion result is visually a sharpened infrared
image. However, the author ignores part of the information
of the visible image, which may result in loss of details in
the image. Zhou et al. [29] proposed a method called target-
aware fusion, which introduced the concept of inner product
to strengthen the control of gradient modulus and gradient
direction. The fusion result is good and the visual information
is richer, however, multiple controls are not absolutely neces-
sary and have an adverse effect on computational efficiency.

Inspired by the above algorithms and based on the superior
information of infrared image and visible image, this paper
proposes to effectively utilize the difference to design an opti-
mization model of two types of images. The brightness infor-
mation retention item is designed to retain the general outline
of the target brought by the thermal radiation information in
the infrared image, and the texture information retention item
is designed to more accurately retain the gradient information
between the visible image and the infrared image. Using
optimization model will avoid the cumbersome problems of
designing too many fusion rules in traditional fusion method,
and will not introduce unnecessary interference information
to fused images. Compared with the neural network or the
method based on representation, the design idea is simple
and easier to understand and solve. The items in the model

are independent of each other and the introduction of various
control parameters makes the model more flexible in differ-
ent situations. Specific effects could be exerted by chang-
ing or increasing or decreasing one item. With the flexibility,
this paper presents the simplest fusion model, reducing the
computational burden, speeding up the fusion, and improving
the quality of the fusion.

The main contributions of this study are as follows:
(1) In order to solve the problems of distortions and arti-

facts in fusion images, an adaptive image decomposition
method is proposed based on coupled partial differential
equations(CPDE). The coupling coefficient is introduced in
CPDE to protect and enhance the edge while avoiding ‘‘block
effect’’. The introduction of the CPDEdecompositionmethod
also can obtain good fusion effect even in the case of image
degradation.

(2)We formulate the image fusion as an optimization prob-
lem characterized by introducing a brightness information
retention item and a texture information retention item and
seek the optimal fused image by minimizing an optimization
function. Although our method needn’t design troublesome
fusion rules, it overcomes the problem of missing image
details and also obtains a fusion image with a significant
target and detailed appearance.

(3) Our method achieves remarkable fusion performance
on the ‘‘TNO Image Fusion Dataset’’. By comparing with
other algorithms, our fusion results have not only the best
visual effect (the fusion images look like sharpened infrared
images with clear highlighted targets and abundant textures),
but also superior performance index.

The rest of this article is arranged as follows. In part 2,
we present an optimization model for this algorithm and give
a detailed solution for the model. In part 3, we show the
experimental results and comparisons with other algorithms.
In part 4, we summarize the proposed algorithm.

II. THE PROPOSED FUSION METHOD
In order to obtain more comprehensive information in the
fused image, the proposed algorithm expresses the image
fusion as an optimization problem. By iterative optimization
of the designed objective function, a fused image is obtained
which retains both the infrared image thermal radiation infor-
mation and the visible image detailed appearance informa-
tion. The framework of our proposed algorithm is shown
in Fig.1. In this section, we comprehensively describe the
proposed fusion algorithm.

Fig.2 depicts a framework of the algorithm we proposed
herein and related algorithms. The following algorithms are
similar to ours: GTF [20], ALF [30], TAD-PGF [29]. Inspired
by these articles, we proposed the algorithm of this paper.
In order to clearly show the difference between our method
and the above algorithms, we drew the following flow chart.
The blue box in the figure represents the algorithm proposed
in this paper. The red box is the GTF algorithm proposed
by Ma et al. [20], and the green box is the ALF algorithm
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FIGURE 1. Framework of the proposed method.

FIGURE 2. The framework of the algorithm we proposed and related algorithms.

proposed by Guo et al. [30], and the purple box is the
TAD-PGF algorithm proposed by Zhou et al. [29].

For readability to readers, the notation table of this article
is listed in Table 2.

A. IMAGE DECOMPOSITION BASED ON COUPLED
PARTIAL DIFFERENTIAL EQUATIONS
Due to the difference of image feature information between
the infrared and the visible image, we can extract these
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TABLE 2. The notation table of this article.

significant information and analyze them separately, that is,
separate the infrared target from the background, and extract
the detail information in the visible image. This processing
method can highlight thermal infrared targets while preserv-
ing image details. This method can be achieved by using
the method of decomposing images. In this way, the original
image is decomposed into a base layer and a detail layer, and
then analyzed separately. For example, the fusion strategy of
the base layer and the detail layer are formulated separately,
and then the obtained base fusion layer and the detail fusion
layer aremerged, so as to utilize the source image information
as much as possible. In the past work, the decomposition
method based on anisotropic diffusion played an important
role, such as the traditional anisotropic diffusion algorithm:

SPDE(f ) = div [c(|∇f |)∇f ] (1)

fb = SPDE(f ) (2)

fd = f − fb (3)

where c(|∇f |) =
1

1+
|∇f |2

k

. The above algorithm effec-

tively preserves edge information while removing unneces-
sary noise. Anisotropic diffusion is a second-order partial
differential equation, which essentially evolves the image
toward the segmentation plane. Although it maintains a good
effect on the edge of the image, it also causes the image to
have a ‘‘block effect’’, the image looks like it covers a large
mosaic, which adversely affects the subsequent process of the
image.

In order to overcome the ‘‘block effect’’ brought by the
second-order partial differential equation, and take advantage
of its good edge-preserving features, we proposed an adaptive
decomposition strategy based on Coupled Partial Differen-
tial Equations(CPDE), it contains second- and fourth-order
partial differential equations. Unlike the second-order par-
tial differential equations, the fourth-order partial differential
equations approach the original image by segmented slopes.

The area of the grayscale gradation does not transform the
image into blocks with different gray values as in the second-
order equation. The fourth-order partial differential equations
smooth it into a region of grayscale gradation, thereby elimi-
nating the ‘‘block effect’’. So, it can avoid the above problems
well, the generated image looksmore natural, and the artifacts
are reduced accordingly. In order to make full use of the
advantages of fourth-order model and second-order model,
a decomposition method proposed in this paper is as follow:

CPDE(f ) =
∂f
∂t

= −g


(

fxx∣∣D2f
∣∣
)
xx

+

(
fxy∣∣D2f
∣∣
)
yx

+

(
fyx∣∣D2f
∣∣
)
xy

+

(
fyy∣∣D2f
∣∣
)
yy


+(1− g)div [c (|∇f |)∇f ] (4)

f mb = CPDE(f m−1), (m = 1 . . .N ) (5)

f md = f m−1 − f mb , (m = 1 . . .N ) (6)

where g is the coupling coefficient,m is the number of decom-
position layers, and f 0b is the input image f when m = 1. The
corresponding second derivative is calculated as follows:

(fxx)ni,j = f ni+1,j − 2f ni,j + f
n
i−1,j (7)

(fyy)ni,j = f ni,j+1 − 2f ni,j + f
n
i,j−1 (8)

(fxy)ni,j =
f ni+1,j+1 − f

n
i+1,j−1 − f

n
i−1,j+1 + f

n
i−1,j−1

4
(9)

(
∣∣∣D2f

∣∣∣)i,j = √(fxx)2i,j + (fxy)2i,j + (fyx)2i,j + (fyy)2i,j (10)

The above decomposition method includes an adaptive
decomposition process based on detecting image edges,
the coupling coefficient g is selected as the edge detection

function g =
1

1+ k|∇Gσ ∗ f |2
, Gσ represents a Gaussian

function with variance σ . Gaussian filtering is performed
on the image to smooth the effect of noise while protecting
edge. At the edge of the image, the smaller g is, the larger
1 − g is, that is, the coefficient of the fourth-order term
is smaller while the coefficient of the second-order term is
larger, then, the second-order term plays a major role to
protect and enhance the edge. Conversely, in the flat region of
the image, the fourth-order term plays a major role, thereby
avoiding ‘‘block effect’’. The decomposition algorithm pro-
posed in this paper is an edge-preserving algorithm. Pixels
with large changes in the gradient are regarded as edges,
at this time, the second-order term plays a leading role and
performs edge-preserving. Therefore, although the filtering
operation is performed on the image first, the edge of the
image is still maintained. The effect of the decomposition
algorithm is shown in Fig.5. Fig.6 shows the edge retention
ability of the decomposition algorithm, while Fig.7 shows the
impact of the decomposition algorithm on the fused image.
And performance index comparison of the fused image edge
strength is shown in Table 3.
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TABLE 3. Performance indicators comparisons of EN on figures.

B. DESIGN OF FUSION IMAGE OPTIMIZATION MODEL
In this paper, we assume that the given infrared image is
completely registered with the visible image. The infrared
images, visible images and fused images are both grayscale
images of the size m × n, with gray-scale values ranging
from 0 to 255.

Inspired by Ma et al. [20] which aims to make the fused
image look like a sharp infrared image with a clearly promi-
nent target, we present a new fusion optimization model. The
design idea of our model is to make the fusion image not
only retains the intensity information of the infrared target,
but also preserves the rich texture information of the visible
image. Such a design can make the fusion result full use of
the context information of the target to better accomplish
the subsequent target detection and recognition tasks. Due
to the obvious thermal radiation target of the infrared image,
we expect the infrared image to control the overall contrast
and target brightness of the fused image; at the same time,
in order to reduce the loss of texture details, the texture of the
fused image is obtained from the infrared and visible images.
According to this idea, the proposed optimization model
includes a contrast information retention item and a texture
information retention item. The contrast information reten-
tion item constrains the fused image to have a pixel intensity
similar to that of the infrared image. The texture information
retention item controls the gradient distribution in the original
infrared and visible images to be transferred into the fused
image. The algorithm model in this paper is as follows:ud=argmin

ud
‖ud−f1b‖1+‖∇ud−G‖1−λ〈∇ud ,∇f2d 〉

u = ud+f1b
(11)

1) DESIGN OF CONTRAST INFORMATION RETENTION ITEM
By observing a large number of images, the brightness infor-
mation of the target is obvious in the infrared image, while
that of the visible image is very weak and even difficult to
observe the target in some images. In other words, infrared
targets are easier to be detected from the background than
visible light targets. Therefore, when retaining the overall
contrast of the fusion image, we only consider constraining
the base layer of infrared image. Then the contrast constraint
can be expressed as follows:

ξ1 = ‖ud − f1b‖1 or ξ1 =
1
2
‖ud − f1b‖22 (12)

In the previous work, both L1 and L2 norm constraints
appeared. But as pointed out in Reference [30], when the

difference between the unknown fused image and the con-
strained target is Gaussian, it is best to use the L2 norm. The
L1 norm specification will be more appropriate when it is a
Laplace or pulse distribution. In our problem, most pixels
are expected to have similar strength to the source image,
with only a small portion being used to provide gradient
information, in which case the L1 norm specification is better.
Thus, we determine the luminance and contrast information
retention term as equation (13):

ξ1 = ‖ud − f1b‖1 (13)

2) DESIGN OF TEXTURE INFORMATION RETENTION ITEM
Our goal is to include more detail information than the source
image. In this paper, we describe the detail information using
texture features, while the texture features are often repre-
sented by the gradient of the image. Since in most cases, for a
source imagewith a complicated scene, the detail information
is mainly concentrated in the visible image, whereas the
infrared image also has some texture, if only consider the
texture information of the visible image, the details may be
lost. Therefore, in order to reduce the loss of details and get
as much detail information as possible for the fused image,
we constrain the gradient of the visible and the infrared image
at the same time in the design of the texture information
retention item.We take the gradient of the infrared and visible
image into account by integrating the gradient information
of the above two to obtain an initial fusion gradient map.
We control the gradient information and introduce the weight
coefficient to control the proportion of the two in different
situations:

G = ω1∇f1 + ω2∇f2 (14)

ω1, ω2 is the weight coefficients of the infrared and visible
light images, respectively. The weighting factors in this paper
are defined as follows:

ω1 =
|∇f1|

|∇f1| + |∇f2|
, ω2 = 1− ω1 (15)

Using the initial fusion gradient field obtained above as the
target gradient [31], the gradient of the fused image ud is close
to the target gradient:

ξ2 = ‖∇ud − G‖1 (16)

Then, we have basically realized the control of the gra-
dient information of the fused image, but for the gradient
information we only consider the gradient magnitude as the
constraint. Gradient amplitude constraints may corrupt the
pixel intensity distribution, which may result in the loss of
small amounts of information or distortion of the original
brightness value of the infrared target. Each pixel has its
gradient amplitude and gradient direction. In the constraints
above, we control the amplitude of the gradient. Next, we add
the gradient direction to obtain more accurate constraint
information. Inspired by [29], we use the inner product to
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further control the direction of the gradient to obtain a more
accurate fusion result, which is expressed as follows:

ξ2 = λ 〈∇ud ,∇f2d 〉 (17)

where 〈∇ud ,∇f2d 〉 represents the inner product of the fused
image and detail layer of the visible image, and it is
used to constraints the gradient of the fused image. The
inner product here can be expanded to:〈∇ud ,∇f2d 〉 =
|∇ud | |∇f2d | cos(θ∇ud − θ∇f2d ), where |∇ud | is the gradient
magnitude of the fused image, |∇f2d | is the gradient magni-
tude of the visible image detail layer, and (θ∇ud −θ∇f2d ) is the
difference in the gradient direction of the two. That is, when
the gradient information of the iterated fused image and the
detail layer of the visible image is closer, the inner product
will be larger. And even when the gradient information of the
fused image obtained in this iteration is consistent with the
gradient information of the detail layer of the visible image,
this item is 1, and then the fused image obtains complete
gradient information.

From the above, the texture information retention item can
be written as:

ξ = ‖∇ud − G‖1 − λ 〈∇ud ,∇f2d 〉 (18)

With the contrast information retention term constraining
the pixel intensity, the texture information retention term
constrains the gradient magnitude and direction. We get the
final optimization function:

ud=argmin
ud

‖ud−f1b‖1+‖∇ud−G‖1−λ 〈∇ud ,∇f2d 〉 (19)

where λ is the control parameter and controls the balance
between the two. Then we obtained the fused image. In order
to further enhance the brightness of the target to facilitate later
processing, we add the base layer of the infrared image to the
fused image:

u = ud + f1b (20)

As a result, we end up expressing the fusion problem as a
minimization problem in order to obtain a fused image with
significant targets and details. This model was inspired by
the fusion models of Ma et al. [20] and Zhou et al. [29], and
their models both achieved excellent results. The method of
Ma et al. is based on the total variation denoising model,
which directly constrains brightness and gradient of the
image. The fusion result is visually a sharpened infrared
image. But the author ignores part of the information of
the visible image, which may result in loss of details in
the image. Compared to the model proposed by Ma et al.,
we first decompose the image before constructing the model,
and the constraints on the information increase, so that more
accurate control of important information such as targets and
textures is achieved. The method of Zhou et al. decomposed
the image into base layer and detail layer, and introduced the
concept of inner product to strengthen the control of gradient
modulus and gradient direction. The fusion result has good
visual effects, however, multiple controls are not absolutely

necessary. Compared to the model proposed by Zhou et al.,
we applied the CPDE to decompose the image into base layer
and detail layer, and at the same time the CPDE is also an
edge-preserving filter for image denoising. So, our method
is a joint denoising fusion algorithm. In the design of the
model, the algorithm in this paper is more streamlined, reduc-
ing unnecessary constraints and reducing the computational
burden. The model of Zhao et al. [18] also provided ideas for
the proposed algorithm, after decomposing the source image,
they enhanced the edges of the detail layer image and then
fused, so they achieved excellent fusion results. In contrast to
their method, the decomposition algorithm in this paper is an
edge-preserving filter, so even though there is no enhanced
edge, a good fusion result is obtained.

The detailed solution of the algorithm is given next.

C. OPTIMIZATION ITERATIVE METHOD BASED ON
ALTERNATING DIRECTION MULTIPLIER METHOD
Alternating Direction Method of Multipliers (ADMM) is
a computational framework for solving optimization prob-
lems [30]. The objective function of the original problem
model is equivalently decomposed into several solvable sub-
problems, and then solve each sub-problem. Finally, the solu-
tion to the sub-problem offers the global solution of the
original problem. In the algorithm of this paper, we use
ADMM to tackle the issue.

For the original problem (19), we first convert it into an
optimization problem with equality constraints:

min
u,z,y
‖z‖1 + ‖p‖1 − λ 〈y,∇f2d 〉

s.t.z = ud − f1b ,p = ∇ud − G, y = ∇ud (21)

After obtaining the above ADMM form, we continue to
construct the augmented Lagrangian function:

Lρ(ud , z, p, y, a, b, c) = ‖z‖1 + ‖p‖1 − λ 〈y,∇f2d 〉

+
β

2

∥∥∥∥z− ud + f1b + a
β

∥∥∥∥2
+
α

2

∥∥∥∥y−∇ud + b
α

∥∥∥∥2
+
γ

2

∥∥∥∥p−∇ud + G+ c
γ

∥∥∥∥2 (22)

At this point, the solution to the original problem can be
obtained. The equation (21) is decomposed into three sub-
problems and iterated continuously. In the process of solving
each sub-problem, the remaining quantities are regarded as
fixed values.
• u-update

∂Lρ(ud , z, p, y, a, b, c)
∂ud

= −β(zk − ukd + f1b +
ak

β
)

−α∇T (yk −∇ukd +
bk

α
)

−γ∇T (pk−∇ukd + G+
ck

γ
)

= 0 (23)
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Perform a Fourier transform on equation (23):

F(zk + f1b +
ak

β
)+

α

β
F(∇T (yk +

bk

α
))

+
γ

β
F(∇T (pk + G+

ck

γ
))

= F(ukd +
α

β
∇

2ukd +
γ

β
∇

2ukd ) (24)

Thus, performing an inverse Fourier transform to
get uk+1d :

uk+1d = F−1

F(A)+
α

β
F(B)+

γ

β
F(C)

1+ F(D)


where,

A = zk + f1b +
ak

β

B = ∇T (yk +
bk

α
)

C = ∇T (pk + G+
ck

γ
)

D =
α

β
∇

2
+
γ

β
∇

2 (25)

• z-update
If z > 0,

∂Lρ(ud , z, p, y, a, b, c)
∂z

= 1+ β(zk − uk+1d + f1b +
ak

β
)

= 0

zk+1 = −
1
β
+ uk+1d − f1b −

ak

β
= v1 −

1
β
,

v1 = uk+1d − f1b −
ak

β
(26)

If z < 0,

∂Lρ(ud , z, p, y, a, b, c)
∂z

= −1+ β(zk − uk+1d + f1b +
ak

β
)

= 0

zk+1 =
1
β
+ uk+1d − f1b −

ak

β
= v1 +

1
β
,

v1 = uk+1d − f1b −
ak

β
(27)

Then we can get zk+1 :

zk+1 = max(|v1| −
1
β
, 0)sign(v1)

v1 = uk+1d − f1b −
ak

β
(28)

• p-update
The update method of p is the same as z:

pk+1 = max(|v2| −
1
γ
, 0)sign(v2)

v2 = ∇u
k+1
d − G−

ck

γ
(29)

• y-update

∂Lρ(ud , z, p, y, a, b, c)
∂y

= λ∇f2d + α(yk −∇u
k+1
d +

bk

α
) (30)

= 0

yk+1 = −
λ

α
f2d +∇u

k+1
d −

bk

α
(31)

• a-update

ak+1 = ak + β(zk+1 − uk+1d + f1b) (32)

• b-update

bk+1 = bk + α(yk+1 −∇uk+1d ) (33)

• c-update

ck+1 = ck + γ (pk+1 −∇uk+1d + G) (34)

This is the solution to the original optimization problem
we have worked out. By iterating the above sub-problems
to convergence, the optimal solution of the original problem,
that is, the detail layer fused image ud , can be obtained. And
the final fusion image can be obtained by u = ud + f1b.

III. EXPERIMENTAL RESULTS AND ANALYSIS
In the above sections, we have introduced the model of
the algorithm and its specific implementation process. This
section will be devoted to the analysis of the advantages and
disadvantages of the proposed method by comparing with
other advanced algorithms.

A. EXPERIMENTAL ENVIRONMENT AND PARAMETER
SELECTION
This experiment is implemented by MATLAB R2018a. The
computer is configured with a main frequency of 3.30GHz,
Intel Core CPU, 4GB of memory, and 64-bit win7 operating
system.

There is a control parameter λ in equation (19). During
the experiment, we found that the fusion effect will change
according to the parameter λ. Fig.3 shows the change of per-
formance indicators when different parameters are selected.
As shown in the figure, when the values of λ are 0.2, 0.4,
and 0.6, respectively, the values of the performance indicators
gradually increase, but are lower than the values of λ = 0.8.
When λ = 0.8, each performance indicator shows an optimal
trend. When λ is 1.0 and 1.2, the values change slightly
and tend to be stable. At the same time, we observed the
fused images obtained through different parameters, a part
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FIGURE 3. Performance indicators with different control parameter. The
horizontal axis indicates the value of different parameters.

of fusion results is shown in Fig.4. When we set λ = 0.2,
the fusion result is severely distorted, which only reflects the
approximate outline of the fused image, but the target edges
are blurred, and a lot of image details are lost, the texture of
the fused image cannot be presented. When the value of λ
is gradually increased, it can be seen from fig.4(b) that the
fusion result is gradually clearer, the texture retained by the
image is gradually increased, the contrast is also improved.
As shown in fig.4(c), the fused image has clear targets and
textures when λ = 0.8, and the visual effect of the image

is more in line with the observation of the human eye. As λ
continues to increase, the fused image gradient is more obvi-
ous, as shown in fig.4(d), the fused image is visually like an
over-sharpened image. After compared all the values of λ,
we found λ = 0.8 is the best. The fused image not only has
good visual effect, but also has well performance indicators.
So λ = 0.8 is finally selected, and it kept unchanged for all
the images to be fused.

B. EXPERIMENTAL RESULTS AND COMPARISON
We use a common data set to test the proposed algo-
rithm. The dataset used in the experiments is the TNO
Image Fusion Dataset, which contains registered infrared-
visible image pairs in various conditions. The performance
of the algorithm is tested by direct observation and com-
parison with seven excellent fusion algorithms, they are
DenseFuse [9], MDLatLRR [32], VSM-WLS [2], SAF [33],
CSR [6], FPDE [19], GTF [20].

1) DECOMPOSITION ALGORITHM RESULTS
• Visual quality
Using the above decomposition method, we decom-
posed the infrared image and the visible image into the
base layer and the detail layer to perform the next fusion
operation more effectively. The decomposed images
are shown in Fig.5. We obtained the base layer fb

FIGURE 4. From (a) to (d) are the fusion results with different control parameter.

FIGURE 5. Results of decomposition.
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FIGURE 6. Partial enlarged images. (a) DenseFuse, (b) MDLatLRR, (c) VSM-WLS, (d) SAF, (e) CSR, (f) FPDE, (g) GTF, (h) ours.

FIGURE 7. From top to bottom are the undecomposed fused images and the fused images after decomposition, respectively.

through CPDE, and then use fd = f − fb to obtain
the detail layer fd . In order to facilitate observation,
we have increased the gray level of the detail layer image
by 0.2. In Fig.5, (a) is source image, from (b) to (e)
are the results of decomposition. From top to bottom
are infrared images and visible images, respectively.
(b) and (c) are the images obtained by the method
proposed in this paper, (d) and (e) are the results obtained
by the second-order partial differential equation decom-
position. (b) and (d) are base layers, (c) and (e) are detail
layers. It can be seen from (b) and (d) that the image
transition in (b) is more natural, whereas the partial
region in (d) has stratification.
It can be seen from the Fig.5 that the base layer images
obtained by the two algorithms are significantly differ-
ent. The images obtained by the algorithm in this paper
do not appear ‘‘black shadow’’ and the transition is nat-
ural, whereas the partial region in (d) has stratification.
Figure 6 shows the edge retention capability of the
algorithm in this paper. Figures (a) to (h) are the fusion
images obtained by other advanced algorithms and our

algorithm. We have intercepted and enlarged important
information in the picture (such as the edges of the char-
acter and some texture information). The figure shows
that the fusion image (d) of the SAF algorithm, the target
person has the highest brightness and the most obvious
edges, but the texture of the fence and road is not clear.
It can be seen that the algorithm makes full use of
infrared information. Image (b),(f) and (g) processed
by MDLatLRR, GTF and FPDE respectively have a
low brightness, and the edges of the characters are
not obvious. From the images (c) and (h) we can see,
the image information obtained by VSM-WLS and the
algorithm proposed has high brightness and clear edges,
and the texture of fences and roads is more obvious.
It can be seen that although the algorithm in this paper
performs filtering on the image, it still retains the edge
information of the image.
Fig.7. shows the effect of the decomposition algorithm
on the fusion results. The first row is the fusion result
obtained without decomposing and recombining, and
the second row is the image obtained by decomposing

50100 VOLUME 8, 2020



R. Yu et al.: Infrared and Visible Image Fusion Based on Gradient Transfer Optimization Model

FIGURE 8. Quantitative comparisons of four evaluation indices on the eight image pairs of Nato-camp, Kayak, Duine, Steamboat, Lake, Street, Kaptein,
Road (from left to right).

and recombining, and from (a) to (h) are the results
on the eight image pairs of Nato-camp, Kayak, Duine,
Steamboat, Lake, Street, Kaptein, Road. As can be seen
from the figure, the fusion result after the decomposition
operation is more natural in image ‘‘Nato-camp’’, and
there is no ‘‘black shadow’’. The results of the fusion
after the decomposition of image ‘‘Kayak’’ and ‘‘Steam-
boat’’ are clearer and brighter.

• Performance indicators
In this text, we measured some objective parameters to
evaluate the fusion results. We quantitatively evaluated
the performances of different fusion methods using four
metrics, i.e., entropy(EN), structural similarity index
measure (SSIM) [34], mutual information (MI) [34], and
edge intensity(EIN). EN reflects the amount of infor-
mation contained in the image. The larger the entropy
value in the image, the richer the image information
contains. SSIM is used to measure the level of similarity
between images. The higher the value of the structural
similarity, the higher the similarity between the fused

image and the corresponding source image reveals. The
higher the EIN, the sharper the edges of the image.
Fig.8 shows a histogram of the results of this experiment,
in which the yellow column represents the experimental
parameters of the fused image after using the decom-
position algorithm, and the green one is the parameters
of the image obtained by directly fusion. It can be seen
from the histogram that under the premise of using
the optimization model of this paper, the performance
indicators of the fused image obtained by using the
decomposition algorithm is slightly better than that of
the directly fused image.

2) FUSION RESULTS
• Visual quality
Some samples of the images obtained from the exper-
iment are shown in Fig.9, and from left to right are
the results on the eight image pairs of Nato-camp,
Kayak, Duine, Steamboat, Lake, Street, Kaptein, Road.
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FIGURE 9. Qualitative fusion results. (a) DenseFuse, (b) MDLatLRR, (c) VSM-WLS, (d) SAF, (e) CSR, (f) FPDE, (g) GTF, (h) ours.

We visually observed each set of test images, and
the algorithms involved showed their excellent perfor-
mance. In general, the details of the fusion image based
on the Densefuse algorithm are clear, but the overall
tone are heavier, especially the ‘‘Duine’’. The images
obtained by the VSM-WLS and SAF algorithm have
large image contrast, the thermal radiation targets have
high brightness; but ‘‘black shadows’’ appear in some
areas in images fused using SAF methods, for example,
in image ‘‘Nato-camp’’, the transition at the fence is not

natural, and this phenomenon also appears in the image
‘‘Lake’’. The details of the fused images obtained by
the FPDE method are not much lost, but the infrared
targets are not significant. The fused images based on
the CSR method has better visual effects, with obvious
targets and clear textures. The GTF results tend to pre-
serve the thermal radiation distribution of the infrared
images, so the infrared target brightness is suitable, but
the texture information needs to be further enriched, for
example, the image ‘‘Lake’’ misses texture information.
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FIGURE 10. Results on ‘‘Kayak’’ images. (a) DenseFuse, (b) MDLatLRR, (c) VSM-WLS, (d) SAF, (e) CSR, (f) FPDE, (g) GTF, (h) ours.

FIGURE 11. Results on ‘‘Lake’’ images. (a) DenseFuse, (b) MDLatLRR, (c) VSM-WLS, (d) SAF, (e) CSR, (f) FPDE, (g) GTF, (h) ours.

The last row is the algorithm proposed in this paper.
It can be seen by observing the images ‘‘Nato-camp’’,
‘‘Street’’ and ‘‘Road’’, the contour of the object in the
image is clear, and image ‘‘Kayak’’ and ‘‘Lake’’ show
that the infrared target is significant; the design goal is
basically realized. The experiment achieved satisfactory
result.
In general, the images obtained by DenseFuse, VSM-
WLS, CSR and ours have better visual effects, retaining
important information of infrared and visible images.
However, DenseFuse and CSR need to build a network
and train it, and VSM-WLS needs to design a fusion
strategy. It can be seen that the advantages of the

algorithm in this paper are simple design and easy to
understand.
Figures 10 and 11 show two representative fusion exam-
ples in our experiments. For better comparison, some of
the focus areas in the source image and the fused image
are labeled with a rectangular box. Fig. 10 shows the
fusion of the different methods for the ‘‘Kayak’’ source
image. The scenes described contain a wealth of content,
including beaches, pedestrians, ships, clouds and so on.
Infrared images mainly capture the thermal radiation
information of pedestrians and ships, whereas visible
images extract most of the spatial details of beaches
and clouds. In this example, the ideal fusion result is
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FIGURE 12. Fusion results on noisy images. (a) Nato-camp, (b) Duine, (c) Lake, (d) Street, (e) Kaptein.

that the characters are prominent and the background
information is obvious. The fused images based on SAF
and FPDE have clear texture details, amd the texture
of clouds and beaches is obvious. However, the high
contrast of these two methods is also not friendly to
visual observation, and appear visual artifacts (such as
the sky and the sea in Fig.10(d)(f)). The fused image
based on MDLatLRR and GTF methods have relatively
low performance in the extraction of thermal radia-
tion information from infrared images, resulting in low
brightness for pedestrians and ship targets (pedestrians
in Fig.10(b)(g)). The fusion of the DenseFuse method
have high quality with clear texture and infrared targets.
It can be seen from Fig.10(h) that the proposed method
achieves higher performance in detail extraction (such as
the stripes on the beach, clouds in the sky and coastline),
and the heat radiation target has a higher brightness
(such as pedestrians and ships). Fig. 11 shows the
fusion results of the different methods for the ‘‘Lake’’
source image. The scenes describe information such as
lakes, trees, grassland and so on. The SAF- and GTF-
based methods are not well completed in this example,
the texture of the grassland area in the fused images
is not clear(see the fence in Fig.11(d)), and in addi-
tion, some of the background areas in the fusion result
appear black, which also introduces an unnatural visual
experience.The DenseFuse-,SVM-WLS-based and pro-
posed methods have achieved a good visual experience.
The lake is clear and the background information is
rich. The method proposed in this paper is superior to
retain the details of the visible image, and the texture
is clearer than other methods (such as the trees and
grassland in Fig.11(h)).
Finally, we add Gaussian noise to the source image to
verify the stability of our algorithm when the image

environment is poor. The experimental results are shown
in Fig.12.
It can be seen from the Fig.12 that despite adding
noise to the source images, the fused images still obtain
clearer target and texture. It shows that our algorithm can
complete the fusion work even when the image quality
is poor.

• Performance indicators
Observed assessment is more subjective, we also mea-
sured some objective parameters to evaluate the fusion
results. We quantitatively evaluated the performances
of different fusion methods using four metrics men-
tioned above, that is, EN, SSIM [34], MI [34], and
EIN. According to the above four indicators, the image
with higher value is better in our test. The experimental
results are shown in Table 3 to Table 6. The red numbers
indicate that ourmethod performs best; the blue numbers
indicate that our result is second only to the first, and the
black bold numbers indicate that the relevant method
is optimal. It can be seen that the indicators measured
by the algorithm proposed in this paper are not optimal
for each item, but the overall effect is good and the
performance is relatively stable. Among them, the EIN
and SSIM of the fused image are better, it shows that
the algorithm in this paper retains more source image
information and has stronger edge retention ability. It is
worth mentioning that DenseFuse also shows extraordi-
nary results, but its framework is cumbersome and the
calculation process is complicated. It is not as easy to
calculate and understand as the method of this paper.
At the same time, we used the image fusion data set
‘‘Nato-camp’’ as a test sequence to verify the versatility
of the method, which contains 32 pairs of infrared and
visible images. The quantitative results of the test are
shown in Fig.13, where our method is represented by a
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FIGURE 13. Quantitative comparisons of four evaluation indices on the ‘‘Nato-camp’’ sequence. The eight state-of-the-art methods were used for
comparison.

TABLE 4. Performance indicators comparisons of SSIM on figures.

TABLE 5. Performance indicators comparisons of EIN on figures.

TABLE 6. Performance indicators comparisons of MI on figures.

yellow-brown star. The results show that our method is
optimal for EN and SSIM. In most cases MI performs
well. This shows that our method is generally effective,

not only retains important target information in the
infrared image, but also retains rich details of the visible
image.

IV. CONCLUSION
In this paper, an algorithm for infrared and visible image
fusion based on gradient transfer optimization model is
proposed. Firstly, a decomposition algorithm based on the
coupled partial differential equation is used to decompose the
source images, and then we build an optimization model and
solve it to obtain a fused image with significant target contour
and rich details information. Since the control parameter
between the brightness contrast information holding item and
the texture information holding item is introduced, the fused
image with different effects can be obtained by increas-
ing or decreasing the parameter to control the proportion of
the infrared and visible images, and it greatly expands the
application scenario of fused images. Experimental results
show that the proposed method gives a performance compa-
rable with state-of-the-art fusion approaches, compared with
the other eight fusion methods, the visual effects and perfor-
mance parameters show that the proposed algorithm not only
has good visual effects, but also has superior performance
indicators.

REFERENCES
[1] Q. Luo, Study on the Theory of Multi-Sensor Image Fusion and Its Appli-

cations. Wuxi, China: Jiangnan Univ., 2010.

VOLUME 8, 2020 50105



R. Yu et al.: Infrared and Visible Image Fusion Based on Gradient Transfer Optimization Model

[2] J. Ma, Z. Zhou, B. Wang, and H. Zong, ‘‘Infrared and visible image fusion
based on visual saliencymap andweighted least square optimization,’’ Infr.
Phys. Technol., vol. 82, pp. 8–17, May 2017.

[3] F. Meng, M. Song, B. Guo, R. Shi, and D. Shan, ‘‘Image fusion based
on object region detection and non-subsampled contourlet transform,’’
Comput. Electr. Eng., vol. 62, pp. 375–383, Sep. 2016.

[4] P. Hill, M. E. Al-Mualla, and D. Bull, ‘‘Perceptual image fusion using
wavelets,’’ IEEE Trans. Image Process., vol. 26, no. 3, pp. 1076–1088,
Mar. 2017.

[5] Z. Zhou, B. Wang, S. Li, and M. Dong, ‘‘Perceptual fusion of infrared and
visible images through a hybrid multi-scale decomposition with Gaussian
and bilateral filters,’’ Inf. Fusion, vol. 30, pp. 15–26, Jul. 2016.

[6] Y. Liu, X. Chen, R. K. Ward, and Z. Jane Wang, ‘‘Image fusion with
convolutional sparse representation,’’ IEEE Signal Process. Lett., vol. 23,
no. 12, pp. 1882–1886, Dec. 2016.

[7] T. Xiang, L. Yan, and R. Gao, ‘‘A fusion algorithm for infrared and vis-
ible images based on adaptive dual-channel unit-linking PCNN in NSCT
domain,’’ Infr. Phys. Technol., vol. 69, pp. 53–61, Mar. 2015.

[8] Y. Liu, X. Chen, J. Cheng, H. Peng, and Z. Wang, ‘‘Infrared and visible
image fusion with convolutional neural networks,’’ Int. J. Wavelets, Mul-
tiresolution Inf. Process., vol. 16, no. 3, May 2018, Art. no. 1850018.

[9] H. Li and X.-J. Wu, ‘‘DenseFuse: A fusion approach to infrared and visible
images,’’ IEEE Trans. Image Process., vol. 28, no. 5, pp. 2614–2623,
May 2019.

[10] Z. Fu, X. Wang, J. Xu, N. Zhou, and Y. Zhao, ‘‘Infrared and visible
images fusion based on RPCA and NSCT,’’ Infr. Phys. Technol., vol. 77,
pp. 114–123, Jul. 2016.

[11] W. Kong, L. Zhang, and Y. Lei, ‘‘Novel fusion method for visible light and
infrared images based on NSST–SF–PCNN,’’ Infr. Phys. Technol., vol. 65,
pp. 103–112, Jul. 2014.

[12] W. Kong, Y. Lei, and H. Zhao, ‘‘Adaptive fusionmethod of visible light and
infrared images based on non-subsampled shearlet transform and fast non-
negative matrix factorization,’’ Infr. Phys. Technol., vol. 67, pp. 161–172,
Nov. 2014.

[13] W. Gan, X. Wu, W.Wu, X. Yang, C. Ren, X. He, and K. Liu, ‘‘Infrared and
visible image fusion with the use of multi-scale edge-preserving decom-
position and guided image filter,’’ Infr. Phys. Technol., vol. 72, pp. 37–51,
Sep. 2015.

[14] X. Zhang, Y. Ma, F. Fan, Y. Zhang, and J. Huang, ‘‘Infrared and visible
image fusion via saliency analysis and local edge-preserving multi-scale
decomposition,’’ J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 34, no. 8,
pp. 1400–1410, Aug. 2017.

[15] J. Zhao, Y. Chen, H. Feng, Z. Xu, and Q. Li, ‘‘Infrared image enhancement
through saliency feature analysis based on multi-scale decomposition,’’
Infr. Phys. Technol., vol. 62, pp. 86–93, Jan. 2014.

[16] M. Yin, P. Duan,W. Liu, and X. Liang, ‘‘A novel infrared and visible image
fusion algorithm based on shift-invariant dual-tree complex shearlet trans-
form and sparse representation,’’ Neurocomputing, vol. 226, pp. 182–191,
Feb. 2017.

[17] Y. Liu, S. Liu, and Z. Wang, ‘‘A general framework for image fusion based
on multi-scale transform and sparse representation,’’ Inf. Fusion, vol. 24,
pp. 147–164, Jul. 2015.

[18] W. Zhao, H. Lu, and D. Wang, ‘‘Multisensor image fusion and enhance-
ment in spectral total variation domain,’’ IEEE Trans. Multimedia, vol. 20,
no. 4, pp. 866–879, Apr. 2018.

[19] D. P. Bavirisetti, G. Xiao, and G. Liu, ‘‘Multi-sensor image fusion based
on fourth order partial differential equations,’’ in Proc. 20th Int. Conf. Inf.
Fusion (Fusion), Jul. 2017, pp. 1–9.

[20] J. Ma, C. Chen, C. Li, and J. Huang, ‘‘Infrared and visible image fusion
via gradient transfer and total variation minimization,’’ Inf. Fusion, vol. 31,
pp. 100–109, Sep. 2016.

[21] X. Bai, ‘‘Infrared and visual image fusion through fuzzy measure and
alternating operators,’’ Sensors, vol. 15, no. 7, pp. 17149–17167, Jul. 2015.

[22] J. Zhao, G. Cui, X. Gong, Y. Zang, S. Tao, and D. Wang, ‘‘Fusion of
visible and infrared images using global entropy and gradient constrained
regularization,’’ Infr. Phys. Technol., vol. 81, pp. 201–209, Mar. 2017.

[23] Q. Zhang, Y. Liu, R. S. Blum, J. Han, and D. Tao, ‘‘Sparse representa-
tion based multi-sensor image fusion for multi-focus and multi-modality
images: A review,’’ Inf. Fusion, vol. 40, pp. 57–75, Mar. 2018.

[24] J. Ma, Y. Ma, and C. Li, ‘‘Infrared and visible image fusion methods and
applications: A survey,’’ Inf. Fusion, vol. 45, pp. 153–178, Jan. 2019.

[25] L. Chang, X. Feng, R. Zhang, H. Huang, W. Wang, and C. Xu, ‘‘Image
decomposition fusion method based on sparse representation and neural
network,’’ Appl. Opt., vol. 56, no. 28, p. 7969, Oct. 2017.

[26] S. Rajkumar and P. C. Mouli, ‘‘Infrared and visible image fusion using
entropy and neuro-fuzzy concepts,’’ in Proc. 48th Crit. Infrastruct. Annu.
Conv., 2014, pp. 93–100.

[27] S. Zhuo, D. Guo, and T. Sim, ‘‘Robust flash deblurring,’’ in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2010,
pp. 2440–2447.

[28] C. Je, H. S. Jeon, C.-H. Son, and H.-M. Park, ‘‘Disparity-based space-
variant image deblurring,’’ Signal Process., Image Commun., vol. 28, no. 7,
pp. 792–808, Aug. 2013.

[29] Y. Zhou, K. Gao, Z. Dou, Z. Hua, and H. Wang, ‘‘Target-aware fusion of
infrared and visible images,’’ IEEE Access, vol. 6, pp. 79039–79049, 2018.

[30] H. Guo, Y.Ma, X.Mei, and J.Ma, ‘‘Infrared and visible image fusion based
on total variation and augmented lagrangian,’’ J. Opt. Soc. Amer. A, Opt.
Image Sci., vol. 34, no. 11, pp. 1961–1968, Nov. 2017.

[31] F. Fang, Remote Sensing Image Fusion Based on Variational Methods.
Shanghai, China: East China Normal Univ., 2013.

[32] H. Li, X.-J. Wu, and J. Kittler, ‘‘MDLatLRR: A novel decomposition
method for infrared and visible image fusion,’’ IEEE Trans. Image Pro-
cess., vol. 29, pp. 4733–4746, Feb. 2020.

[33] W. Li, Y. Xie, H. Zhou, Y. Han, and K. Zhan, ‘‘Structure-aware image
fusion,’’ Optik, vol. 172, pp. 1–11, Nov. 2018.

[34] M. B. A. Haghighat, A. Aghagolzadeh, and H. Seyedarabi, ‘‘A non-
reference image fusion metric based on mutual information of image
features,’’ Comput. Electr. Eng., vol. 37, no. 5, pp. 744–756, Sep. 2011.

[35] C.-H. Son and X.-P. Zhang, ‘‘Layer-based approach for image pair fusion,’’
IEEE Trans. Image Process., vol. 25, no. 6, pp. 2866–2881, Jun. 2016.

RUIXING YU was born in Xi’an, China, in
1978. She received the M.S. and Ph.D. degrees in
navigation, guidance, and control from
Northwestern Polytechnical University (NWPU),
Xi’an, in 2003 and 2006, respectively. She was
sponsored by the Chinese Scholarship Council to
work for one year with the Multimedia Research
Group, University of Alberta. She is currently
an Associate Professor with School of Astronau-
tics, Northwestern Polytechnical University. Her

research interests include video tracking, image recognition, and feature
detection and analysis.

WEIYU CHEN received the B.E. degree in
measurement-control technology and instrumen-
tation from the North China Institute of Aerospace
Engineering, China, in 2017, and the M.S. degree
from the School of Astronautics, Northwestern
Polytechnical University. Her research interests
include image processing and deep learning.

DAMING ZHOU (Member, IEEE) was born in
Xi’an, China, in 1989. He received the M.S.
degree in navigation, guidance, and control from
Northwestern Polytechnical University (NPU),
Xi’an, China, in 2013, and the Ph.D. degree
in electrical engineering from the University of
Bourgogne Franche-Comte, UTBM, Belfort,
France.

He is currently a Full Professor with the School
of Astronautics, Northwestern Polytechnical Uni-

versity. His research interests include energy management of fuel cell hybrid
systems, and power system stability and control.

50106 VOLUME 8, 2020


