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ABSTRACT An acceptance sampling plans are statistical tools in quality control which often used for
lot inspection in several areas such as industry, engineering and business. It can be applied for preserving
the quality of products in industry process and preserving the producer’s risk and consumer’s risk in the
production process of manufactures. The objective of this study is to utilize the Empirical Bayes approach
based on squared error loss and precautionary loss functions for parameter estimation in sequential sampling
plans. The parameters are estimated using Lindley’s approximation technique, and hyper-parameters can be
obtained via Gibbs sampling technique. Data are normally distributed under an unknown mean and variance.
The proposed plans are comparedwith traditional approaches including a single sampling plan and sequential
sampling plan. The probability of acceptance (Pa) and average sample number (ASN) are used as criterion
for comparison. Results show that the proposed plans yielded the smaller ASN and higher Pa than both
classical methods.

INDEX TERMS Empirical Bayes, sequential sampling plan, single sampling plan, squared error loss
function, precautionary loss function.

I. INTRODUCTION
Statistical quality control can be classified as control chart
and acceptance sampling plans. An acceptance sampling
plans have been widely used in lot inspection of productions
in the industries, when can be divided into attributes and
variables sampling plans. The quality characteristics of the
variables sampling plans are measured on a continuous scale.
This can be specified by the statistical hypothesis testing
for variables process parameters which is utilized as part
of the quality assurance concerning the average quality of
products such as bulk materials in bags and drums whereas
the one is the estimation of percentage of defective units
out of the specification limits. Variables sampling plan pro-
vide more information regarding production in the lots than
the attributes ones with a small sample size [1]. There are
various types of sampling plan, such as a single sampling
plan, double sampling plan (DSP), multiple sampling plans
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(MSP), sequential sampling plan (SSP) and skip lot sampling
plan (SkSP). The sequential sampling plan often provides
a smaller average sample number (ASN) than the single
sampling plan, DSP and MSP [2], [3].

Bayesian approach is extensively applied in statistical
inferences as an alternative to classical approaches. It was
used to estimate parameter in SSP, which can be shown
in [4]–[7]. Its principle is to incorporate information in the
history about parameters through a prior distribution, assum-
ing a known form of distribution. The parameters of prior
distribution, called hyper-parameters, are usually assumed to
be known or can be assessed regardless of the observed data.
In contrast, when the hyper-parameters are unknown and
estimated from the observed data, it is called the Empirical
Bayes (EB) approach [8]. The researches of EB have been
performed by many authors [9]–[14]. The EB approach can
be implemented with various types of loss function such
as absolute error loss (AEL) function, squared error loss
(SEL) function and precautionary loss (PL) function [15]. It is
applied in quality assurance of production and used to decide
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for producers and statisticians. The researches of EB method
using loss functions, can be seen in [16]–[23]. In addition,
the EB method was also applied to estimate the percentage
of defective units when the lots were accepted [24]. Ohta and
Ogawa [25], Shin and Shin [26], Karunamuni [27] utilized
the EB approach, combined with a specified cost function, for
testing destructive items of high quality products in Poisson
process.

As seen that, the EB approach in a sequential sampling plan
(EB in SSP) was usually performed to estimate proportion
of defective items in the lot rather than test the hypothesis
of processing mean in the variables sampling plan. In this
paper, we propose the use of EB approach with squared
error loss (SEL) and precautionary loss (PL) functions for the
lot inspection in sequential sampling plans to test variables
sampling plan process mean. Data are distributed as normal
with unknown mean and variance. The proposed plans are
then compared with the classical approaches, single sam-
pling plan and sequential sampling plan. The probability
of acceptance (Pa) and average sample number (ASN) are
criterion for comparison. The Gibbs sampling technique is
then applied to obtain hyper-parameters due to the complexity
of posterior predictive distribution function. The outline of
this paper is as follows. The variables sampling plan for
process mean is presented in Section 2. In Section 3 and 4,
single sampling plan and the sequential sampling plan by
variables are shown, respectively. Section 5 the EB approach
based on squared error loss and precautionary loss functions
are explained. Section 6 covers the Gibbs sampling proce-
dure. The result of simulation study is shown in Section 7.
Section 8 provides an example and final section presents the
conclusion.

II. VARIABLES SAMPLING FOR PROCESS MEAN TESTING
It considers under variable sampling plan for process
mean testing which is used in the statistical hypothesis
under a six-sigma quality level, then the process mean has
3.4 defective units per million opportunities (p) where p =
P (X > USL|µ) and it is assumed to shift to ±1.5σ . Thus,
the hypothesis testing under an upper specification limit
(USL), it can be written as follows: H0: µ2 ≤ µ1 vs. H1:
µ2 > µ1 where µ1 is acceptable process level (APL) and µ2
is rejectable process level (RPL). This is considered under
normal distribution and known variance. The µ1 and µ2 can
be obtained from

APL = µ1 = P (X > USL|µ1) = Mean+ 1.5σx
and RPL = µ2 = P (X > USL|µ2) = ACL + Zβσx (1)

where ACL = µ1 + Zασx is acceptance control limits, Z ∼
N (0, 1), x is the sample mean, the producer’s risk (α) is the
probability of rejection at µ1 and the consumer’s risk (β) is
the probability of acceptance at [29].

III. SINGLE SAMPLING PLAN
This plan depends on two parameters according to sample
size (n) and acceptance criterion (K). The lot is accepted if

z ≥ K and rejected if z < K where z = (USL − x)/σ for
known variance and using standard deviation (s) for unknown
variance. The criteria for comparison of the single sampling
plan can be shown as follows.

Pa (µ) = P (Z ≤ z) , (2)

and ASN (µ) = n. (3)

IV. SEQUENTIAL SAMPLING PLAN BY VARIABLES
It is modified from the double sampling plan and multiple
sampling plans. One random sample is taken sequentially
from the lot [1]. For USL testing, the criteria for inspection
uses the acceptance limit line (Y1), and rejection limit line
(Y2) for rejecting the batch, accepting the batch and continu-
ing sampling, respectively.

Y1 = −h1 + s · n and Y2 = h2 + s · n. (4)

Thus, the lot is accepted if
∑n

i=1 x i ≤ Y1, the lot is to continue
sampling if Y1 <

∑n
i=1 x i < Y2 and the lot is rejected if∑n

i=1 x i ≥ Y2. The Pa and ASN are criterion for comparison
[29] which are calculated as follows:

Pa (µ) =

[(
1− β

/
α
)w
− 1

](
1− β

/
α
)w
−
(
β
/
1− α

)w , (5)

and ASN (µ) =

[
Laσ 2
µ2−µ1

+ Pa ·
(
Lσ 2A−Lσ 2a
µ2−µ1

)]
(
2µ−µ2−µ1

2

) . (6)

where w = (µ2+µ1−2µ)/(µ2 − µ1), a = log [(1− β)/α] ,
b = log [(1− α)/β] , s = (µ2 + µ1)/2 is the slope of the
lines, h1 = Lbσ 2/(µ2 − µ1) is the intercept of acceptance
line, h2 = Laσ 2/(µ2 − µ1) is the intercept of rejection line
and L = 2.3026.

V. EMPIRICAL BAYES PREDICTION APPROACH
Bayesian approach is applied in statistical inference that is
the difference from the classical approach. The traditional
method assumes constant parameters and the parameters are
the random sampling from the probability distribution func-
tion. However, the Bayesian approach is unknown parameters
δ are considered as a random variable, depending on informa-
tion in the history of parameters, called prior probability den-
sity function, assuming known prior distribution, π (δ|ω) and
known hyper-parameter ω. Thus, inference concerning δ is
performed using the Bayes’ theorem which can be expressed
up to proportionality as the product of likelihood function,
L (δ), and the prior distribution, π (δ|ω). The posterior distri-
bution, h

(
δ|x
)
is obtained as following

h
(
δ|x
)
=
L (δ) · π (δ|ω)

M
(
x|ω

) ∝ L (δ) · π (δ) , (7)

where M
(
x|ω

)
denotes the marginal distribution function of

x.
If the hyper-parameter (ω) is unknown that is estimated

from the observed data. This is called Empirical Bayes (EB)
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approach which the hyper-parameter can be determined from
the marginal distribution of x, provided by

M
(
x|ω

)
=

∫
δ

f
(
x|δ
)
· π (δ|ω) dδ. (8)

The observed data x are continuous random sample. The
predictive distribution function is then developed to estimate
newly observed data or a future observation (xn+1), based on
previous observed data x1, x2, x3, . . . , xn or x, which can be
derived from

h(xn+1|x) =
∫
δ

f (xn+1|δ) · h
(
δ|x
)
dδ. (9)

Suppose that f (xn+1|δ) is a function of the new observed
data [8].

In this paper, we propose the use of Empirical Bayes
prediction in sequential sampling plan (EB in SSP) in case of
unknown mean µ and unknown variance σ 2. The parameter
estimators are determined by squared error loss (SEL) and
precautionary loss (PL) functions. Data are assumed: X ∼
N (µ, σ 2), informative priors: µ ∼ N (θ, τ 2), σ 2

∼ IG(a, b)
where µ and σ 2 are parameters, θ, τ 2, a and b are hyper-
parameters which can be estimated from marginal distribu-
tion function as follows.

A. THE MARGINAL LIKELIHOOD DISTRIBUTION
FUNCTION

M
(
x|θ, τ 2, a, b

)
=

∫
σ 2

∫
µ

f
(
x|µ, σ 2

)
· π
(
µ|θ, τ 2

)
π
(
σ 2
|a, b

)
dµdσ 2

=

∞∫
0

∞∫
−∞

1(
2πσ 2

)n/2 e− 1
2σ2

n∑
i=1

(xi−µ)2

×
1(

2πτ 2
)1/2 e− 1

2τ2
(µ−θ )2

×
ba

0 (a)

(
σ 2
)−(a+1)

e
−

b
σ2 dµdσ 2

∝

∞∫
0

1

(nτ 2 + σ 2)1/2

(
σ 2
)−(a+ n−1

2 +1
)

× e
−

1
2(nτ2+σ2)

[
n∑
i=1
(xi−θ)2− nτ2

σ20

(
n∑
i=1

x2i −nx
2

)]
−

b
σ2
dσ 2. (10)

It can see that the marginal distribution function does
not have a closed form, the hyper-parameters thus cannot
be estimated directly by classical method, such as max-
imum likelihood method (ML). Alternatively, the hyper-
parameters θ, τ 2, a and b are determined using Gibbs
sampler [30]. After that, the estimators θ, τ 2, a and
b will be substituted into the posterior distribution
function.

B. THE POSTERIOR DISTRIBUTION FUNCTION OF µ AND
σ2

The posterior distribution function of µ and σ 2 can be shown
by

h
(
µ, σ 2

|x
)
∝ L

(
µ, σ 2

|x
)
· π
(
µ|θ, τ 2

)
π
(
σ 2
|a, b

)
Then,

h
(
µ, σ 2

|x
)

∝
1(

2πσ 2
)n/2 e− 1

2σ2

n∑
i=1

(xi−µ)2

×
1(

2πτ̂ 2
)1/2 e− 1

2τ̂2
(µ−θ̂ )2

×
b̂â

0
(
â
) (σ 2

)−(â+1)
e
−

b̂
σ2

∝

(
σ 2
)−(â+ n

2+1)
e−

1
2σ2 τ̂2

[(
nτ̂ 2+σ 2

)
[µ−µn]2

]

× e
−

1
2σ2 τ̂2

[[
(n−1)s2+(2b̂+nx2)

]
τ̂ 2+θ̂2σ 2−

(nx τ̂2+θ̂σ2)
(nτ̂2+σ2)

2
]
.

(11)

Consider the following term

nτ 2 (µ− x)2 + σ 2(µ− θ̂ )2

=

(
nτ 2 + σ 2

)
[µ− µn]2 −

(
nxτ 2 + θ̂σ 2

)2
(
nτ 2 + σ 2

)
+ θ̂2σ 2

+ nτ 2x2,

µn =
nx τ̂ 2+θ̂σ 2

nτ̂ 2+σ 2
, s2 = 1

(n−1)

n∑
i=1

(xi − x)2 and
n∑
i=1

(xi − µ)2 =

s2 (n− 1)+ n(µ− x)2.
Thus, the joint posterior distribution functions of µ and σ 2

do not have a closed form, which can be obtained using Gibbs
sampler.

C. THE EB ESTIMATOR OF µ AND σ2 WITH RESPECT TO
THE SEL FUNCTION
The SEL function format is given by

L
(
t;µ, σ 2

)
=

[(
µ, σ 2

)
− t
]2
, (12)

where t is estimated value of parameters of µ and σ 2. Thus,
the EB estimator of µ and σ 2 are the mean of the posterior
distribution [20] which can determine by

µ̂SEL = E
(
µ|x

)
,

σ̂ 2
SEL = E

(
σ 2
|x
)
.

In generally, the posterior expectation is provided by

E
[
u
(
µ, σ 2

)
|x
]
=

∫
∞

0

∫
∞

−∞

u
(
µ, σ 2

)
·h
(
µ, σ 2

|x
)
dµdσ 2,

(13)

where u
(
µ, σ 2

)
is any function forµ and σ 2 [18].We can use

Lindley’s approximation procedure to estimate the param-
eters. The estimators µ and σ 2 can be obtained from the
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posterior expectation by Lindley’s approximation [31] for
two parameters as follows.

E
(
µ, σ 2

|x
)

= u+
1
2
(u11σ11 + u22σ22)+ P1u1σ11 + P2u2σ22

+
1
2

[
σ11σ22 (u1L12 + u2L21)+ u1σ 2

11L30 + u2σ
2
22L03

]
.

(14)

1) OBTAIN THE EB ESTIMATOR OF µ WITH RESPECT TO THE
SEL FUNCTION
Let u

(
µ, σ 2

)
then

u1 = =
∂u
(
µ, σ 2

)
∂µ

= 1, u11 =
∂2u

(
µ, σ 2

)
∂µ2 = 0,

u2 =
∂u
(
µ, σ 2

)
∂σ 2 = 0, u22 =

∂2u
(
µ, σ 2

)
∂
(
σ 2
)2 = 0.

The likelihood function and prior distribution ofµ and σ 2 are
written as follows:

π
(
µ, σ 2

)
=

1(
2πτ̂ 2

)1/2 e− 1
2τ̂2

(µ−θ̂ )2
·
b̂â

0(â)

(
σ 2
)−(â+1)

e−
b̂
σ2 ,

L
(
µ, σ 2

|x
)
=

1(
2πσ 2

)n/2 e− 1
2σ2

n∑
i=1
(xi−µ)2

.

where

P = lnπ
(
µ, σ 2

)
= â ln b̂− ln0

(
â
)
−
(
â+ 1

)
ln σ 2

−
b̂
σ 2 −

1
2
ln
(
2πτ̂ 2

)
−

1
2τ̂ 2

(
µ− θ̂

)2
,

P1 =
∂P
∂µ
=−

1
τ̂ 2

(µ− θ̂ ), P2=
∂P
∂σ 2 =−

(â+ 1)
σ 2 +

b̂
σ 4

lnL = −
n
2
ln
(
2πσ 2

)
−

1
2σ 2

n∑
i=1

(xi − µ)2 ,

L20 =
∂2 lnL
∂µ2 = −

n
σ 2

L02 =
∂2 lnL

∂
(
σ 2
)2 = n

2σ 4 −
1
σ 6

n∑
i=1

(xi − µ)2 ,

L30 =
∂3 lnL
∂µ3 = 0

L03 =
∂3 lnL

∂
(
σ 2
)3 = − n

2σ 6 +
3
σ 8

n∑
i=1

(xi − µ)2 ,

L21 =
∂3 lnL
∂µ2∂σ 2 =

n
2σ 4

L12 =
∂3 lnL

∂µ∂
(
σ 2
)2 = 2

σ 6

n∑
i=1

(xi − µ)2 ,

σ11 = −
1
L20

and σ22 = −
1
L02

From equation (14), it can see that the estimator of µ with
respect to the SEL reduce to

E
(
µ|x

)
= u+ P1u1σ11 +

1
2

(
σ11σ22u1L12 + u1σ 2

11L30
)

Then,

E
(
µ|x

)
= µ̂−

(
µ̂− θ̂

)
σ̂ 2

nτ̂ 2
−

2σ̂ 2[
n2σ̂ 2−2n

(
n∑
i=1

x2i −nx
2
)] .
(15)

Therefore, the EB estimator of µ for SEL can be provided by

µ̂SEL= µ̂−
(µ̂−θ̂ )σ̂ 2

nτ̂ 2
−

2σ̂ 2[
n2σ̂ 2 − 2n

(
n∑
i=1

x2i − nx
2
)]
(16)

where µ̂ = x and σ̂ 2
=

1
n

n∑
i=1
(xi − x)2 = 1

n

(
n∑
i=1

x2 − nx2
)

are ML estimators.

2) SPECIFY THE EB ESTIMATOR OF σ2 WITH RESPECT TO
THE SEL FUNCTION
Let u

(
µ, σ 2

)
= σ 2 then the EB estimator of σ 2 with respect

to the SEL reduce to

E
(
σ 2
|x
)
= u+ P2u2σ22 +

1
2

(
σ11σ22u2L21 + u2σ 2

22L03
)

= σ̂ 2
−

(
σ̂ 4

D

)1− 2(â+ 1)+
2b̂
σ̂ 2 −

n
σ̂ 4

+

3
(

n∑
i=1

x2i − nx
2
)

σ̂ 6

 (17)

Therefore, the EB estimator of σ 2 for SEL function is pro-
vided by

σ̂ 2
SEL = σ̂

2
−

(
σ̂ 4

D

){
1− 2(â+ 1)+

2b̂
σ̂ 2 −

n
σ̂ 4

+

3
(

n∑
i=1

x2i − nx
2
)

σ̂ 6

 (18)

where

u1 =
∂u
(
µ, σ 2

)
∂µ

= 0, u11 =
∂2u

(
µ, σ 2

)
∂µ2 = 0,

u2 =
∂u
(
µ, σ 2

)
∂σ 2 = 1,

u22 =
∂2u

(
µ, σ 2

)
∂
(
σ 2
)2 = 0, D = nσ̂ 2

− 2

(
n∑
i=1

x2i − nx
2

)
.
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After that, the estimators µ̂SEL and σ̂ 2
SEL will be replaced into

the posterior predictive distribution function.

D. THE EB ESTIMATOR OF µ AND σ2 WITH RESPECT TO
THE PL FUNCTION
The PL form is written as

L
(
t;µ, σ 2

)
=

[(
µ, σ 2

)
− t
]2

t
. (19)

The EB estimator of µ and σ 2 for PL [20] is determined by

µ̂PL =

√
E
(
µ2|x

)
,

σ̂ 2
PL =

√
E
[(
σ 2
)2
|x
]
.

1) OBTAIN THE EB ESTIMATOR OF µ WITH RESPECT TO THE
PL FUNCTION
Let u

(
µ, σ 2

)
= µ2, the EB estimator of µwith respect to the

PL function can be reduce as follows.

E
(
µ2
|x
)

= u+
1
2
u11σ11 + P1u1σ11+

1
2

(
σ11σ22u1L12 + u1σ 2

11L30
)

= µ̂2
+
µ̂σ̂ 2

n

1− 2
(
µ̂− θ̂

)
τ̂ 2

−

4
(

n∑
i=1

x2i − nx
2
)

D

 .
(20)

Therefore, the EB estimator ofµ for PL function is expressed
as

µ̂PL=

√√√√√√√√µ̂2+
µ̂σ̂ 2

n

1− 2
(
µ̂−θ̂

)
τ̂ 2

−

4
(

n∑
i=1

x2i −nx
2
)

D


(21)

where

u1 =
∂u
(
µ, σ 2

)
∂µ

= 2µ, u11 =
∂2u

(
µ, σ 2

)
∂µ2 = 2,

u2 =
∂u
(
µ, σ 2

)
∂σ 2 = 0, u22 =

∂2u
(
µ, σ 2

)
∂
(
σ 2
)2 = 0.

2) SPECIFY THE EB ESTIMATOR OF σ2 WITH RESPECT TO
THE PL FUNCTION
Let u

(
µ, σ 2

)
=
(
σ 2
)2
, the EB estimator of σ 2 with respect

to the PL function can calculate from

E
[(
σ 2
)2
|x
]

= u+
1
2
u22σ22+P2u2σ22+

1
2

(
σ11σ22u2L21+u2σ 2

22L03
)

= σ̂ 4
−

(
2σ̂ 6

D

)1+ σ̂
2
− 2

(
â+ 1

)
+

2b̂
σ̂ 2 +

(
2σ̂ 6

D

)

×


3
(

n∑
i=1

x2i − nx
2
)

σ̂ 6 −
n
σ̂ 4


 . (22)

Therefore, the EB estimator of σ 2 for PL function is shown
by (23), as shown at the bottom of the next page
where

u1 =
∂u
(
µ, σ 2

)
∂µ

= 0, u11 =
∂2u

(
µ, σ 2

)
∂µ2 = 0,

u2 =
∂u
(
µ, σ 2

)
∂σ 2 = 2σ 2, u22 =

∂2u
(
µ, σ 2

)
∂
(
σ 2
)2 = 2.

After that, the estimators µ̂PL and σ̂ 2
PL will be replaced into

the posterior predictive distribution function.

E. THE POSTERIOR PREDICTIVE DISTRIBUTION FUNCTION
The posterior predictive distribution function of xn+1|x,
which can be derived as

h
(
xn+1|x

)
=

∞∫
0

∞∫
−∞

f
(
xn+1|µ, σ 2

)
· h
(
µ, σ 2

|x
)
dµdσ 2

=

∞∫
0

∞∫
−∞

1
√
2πσ 2

e−
1

2σ2
(xn+1−µ)2

×
b̂â

0
(
â
)
(2π)

n/2
(
2πτ̂ 2

)1/2
(
σ 2
)−(â+ n

2+1)

× e
−

1
2σ2 τ̂2

[
τ̂ 2s2(n−1)+2b̂τ̂ 2+nτ̂ 2x2+θ̂2σ 2

]

× e
−

1
2σ2 τ̂2

[(
nτ̂ 2+σ 2

)
[µ−µn]2−

(nx τ̂2+θ̂σ2)
(nτ̂2+σ2)

2
]
dµdσ 2

∝

∞∫
0

(
σ 2
)−(â+ n

2+1)[
(n+ 1)τ̂ 2 + σ 2

]1/2 ·
× e
−

1
2σ2

(
s2(n−1)+2b̂+nx2+µ2

−
(xn+1+nµn τ̂2+µnσ2)

2

(n+1)τ̂4+σ2 τ̂2

)
dσ 2.

(24)

where µn = nx τ̂ 2+θ̂σ 2

nτ̂ 2+σ 2
. Similarly, the posterior predictive dis-

tribution function xn+1|x does not have a closed form which
can be generated from the conditional posterior distribution
via Gibbs sampling technique, that is f

(
xn+1|µ, σ 2, x

)
=

f
(
xn+1|µ, σ 2

)
[32].

VI. GIBBS SAMPLING PROCEDURES
1) Draw x(t+1)n+1 from x(t+1)n+1 |x ∼ N (µ, σ 2) where µ ∼

N (θ̂ , τ̂ 2), σ 2
∼ IG(â, b̂) and x = (x1, . . . , xn).
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2) Draw θ (t+1) from θ (t+1)|τ 2(t), a(t), b(t), x ∼

f̂
(
θ |τ 2, a, b, x

)
, where f̂

(
θ |τ 2, a, b, x

)
=

1
M

M∑
t=1

h
(
θ |τ 2(t), a(t), b(t), x

)
that is to estimate

h
(
θ |τ 2, a, b, x

)
.

3) Draw τ 2(t+1) from τ 2(t+1)|θ (t+1), a(t), b(t), x ∼

f̂
(
τ 2|θ, a, b, x

)
, where f̂

(
τ 2|θ, a, b, x

)
=

1
M

M∑
t=1

h
(
τ 2|θ (t+1), a(t), b(t), x

)
that is to estimate

h
(
τ 2|θ, a, b, x

)
.

4) Draw a(t+1) from a(t+1)|θ (t+1), τ 2(t+1), b(t), x ∼

f̂
(
a|θ, τ 2, b, x

)
, where f̂

(
a|θ, τ 2, b, x

)
=

1
M

M∑
t=1

h
(
a|θ (t+1), τ 2(t+1), b(t), x

)
that is to estimate

h
(
a|θ, τ 2, b, x

)
.

5) Draw b(t+1) from b(t+1)|θ (t+1), τ 2(t+1), a(t+1), x ∼
f̂
(
b|θ, τ 2, a, x

)
, where f̂

(
b|θ, τ 2, a, x

)
=

1
M

M∑
t=1

h
(
b|θ (t+1), τ 2(t+1), a(t+1), x

)
that is to esti-

mate h
(
b|θ, τ 2, a, x

)
.

VII. NUMERICAL AND RESULTS
Data are generated from standard normal distribution. The lot
size is specified by N = 1,000, the sample size is defined by
n = 50, and the number of iterations is given by t = 1, 000.
The producer’s risk (α) is 0.05 and the consumer’s risk (β)
is 0.10. The proportion of defective units is determined by a
six-sigma process level in which the proportion of defective
units at APL is p = 0.00034. In this study, we consider
the EB in SSP in case of unknown mean µ and unknown
variance σ 2, assuming informative priors on µ and σ 2: µ ∼
N (θ, τ 2), σ 2

∼ IG(a, b). The estimation of the parame-
ters µ and σ 2 are determined from SEL and PL functions.
The hyper-parameters θ, τ 2, a and b can be obtained using
Gibbs sampling technique. The proposed plans are compared
with traditional approaches according the single sampling
plan and the sequential sampling plan by variables (SSP by
variables). The Pa and ASN are considered as the criteria
for comparison. The result of simulation can be illustrated
in Table 1 and 2.

The simulation result for variables process mean testing
under H1 : µ2 > µ1 provide that µ1 = 1.50 and µ2 = 1.92
which is determined from referring to (1). Results for single
sampling plan can be expressed by the sample size (n) and
acceptance limits K, which are n = 50 and K= 1.6857. Also,
the decision-making process for this plan is to accept the lot
if x ≥ 1.6857 or to reject the lot if x < 1.6857. Figure 1 to

FIGURE 1. The cumulative of sample mean with the SSP by variables
versus sample size (n).

FIGURE 2. The cumulative of E(xn+1|x) with EB in SSP for SEL at various
sample sizes.

3 shows that are compared with the SSP by variables, EB in
SSPwith SEL and PL functions, respectively. The cumulative
of sample mean of the SSP by variables is compared with Y1
and Y2 where the intercept of acceptance line is h1 = 5.4387
and the intercept of rejection line is h2 = 6.9826. For EB
in SSP with SEL and PL, the cumulative of the mean of
E(xn+1|x) are compared with Y1 and Y2 where the intercept
of acceptance line and rejection line of the EB in SSP for SEL
and PL are h1 = 7.8318, h2 = 10.0549, and h1 = 8.4980
and h2 = 10.9104, respectively. It can see that the SSP by

σ̂ 2
PL =

√√√√√√√√σ̂ 4 −

(
2σ̂ 6

D

)1+ σ̂ 2 − 2
(
â+ 1

)
+

2b̂
σ̂ 2 +

(
2σ̂ 6

D

)
3
(

n∑
i=1

x2i − nx
2
)

σ̂ 6 −
n
σ̂ 4


. (23)
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TABLE 1. Comparison Pa of single SP, SSP by variables, EB in SSP for SEL
and PL.

variables provides the highest sample size for accepting the
lot which is n = 26. However, EB in SSP with SEL and PL
give smaller sample size than single sampling plan and SSP
by variables for accepting the lot.

Table 1 shows that the Pa and ASN of EB in SSP with SEL
and PL are compared with single sampling plan and SSP by

TABLE 2. Comparison ASN of single SP, SSP by variables, EB in SSP for
SEL and PL.

variables. The Pa for SSP by variables and EB in SSP can
be calculated from (5). It is apparent that much of the Pa
for the single sampling plan falls in the range of 0.0452 and
0.2107 and shows a generally upward trend in cases where the
average is high. In the case of the Pa for the SSP by variables,
this is much greater than the single sampling plan and lies in
the range of 0.8849 to 0.9767. The trend shows a declining
tendency when the average is large. However, the Pa of EB
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FIGURE 3. The cumulative of E(xn+1|x) with EB in SSP for PL at various
sample sizes.

FIGURE 4. The comparison Pa of single SP, SSP by variables and EB in SSP
for SEL.

in SSP for SEL and PL yield the highest Pa level at almost
0.99. For these four methods, the OC curves are presented
in Figure 4 and Figure 5, respectively. Table 2 illustrates ASN
for the single sampling plan amounts to 50 per lot. The ASN
for SSP by variables and EB in SSP can be calculated refer to
(6), the ASN in the range of 19 to 29 per lot is not as large as
the single sampling plan, but if the average begins to increase,
the ASN for SSP by variables also trends upwards. The ASN
for EB in SSP with SEL and PL are the smallest, from 12 to
14 per lot which was clearly the lowest among all types. It
can see in Figure 6 and Figure 7.

VIII. AN EXAMPLE
The proposed method is applied to real data, Flash Memory
128-bit EEPROMchip, as studied byNtzoufras [33]. The data
considered of n = 142, where USL = 5 µA, α = 0.05 and
β = 0.10.

FIGURE 5. The comparison Pa of single SP, SSP by variables and EB in SSP
for PL.

FIGURE 6. The comparison ASN of the single SP, SSP by variables and EB
in SSP for SEL.

FIGURE 7. The comparison ASN of the single SP, SSP by variables and EB
in SSP for PL.

4.140, 3.914, 3.993, 3.390, 3.200, 4.201, 4.066, 4.049,
4.210, 4.247, 4.106, 4.650, 3.470, 4.420, 4.216, 3.746, 4.590,
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FIGURE 8. The comparison Pa of single SP, SSP by variables and EB in SSP
for SEL in real data.

FIGURE 9. The comparison Pa of single SP, SSP by variables and EB in SSP
for PL in real data.

3.945, 3.390, 3.342, 4.175, 4.100, 3.644, 3.946, 4.090, 3.696,
3.729, 4.024, 3.975, 3.720, 4.211, 3.440, 3.931, 4.091, 4.057,
3.761, 3.965, 3.976, 3.940, 4.154, 4.156, 4.316, 3.700, 3.917,
3.953, 4.145, 3.910, 4.000, 4.040, 4.170, 4.042, 3.906, 4.260,
4.241, 4.153, 3.620, 4.139, 3.200, 3.240, 3.752, 4.610, 4.020,
3.571, 4.015, 3.300, 3.230, 4.233, 3.905, 4.290, 3.761, 4.059,
4.333, 3.921, 3.300, 3.250, 4.040, 4.715, 4.123, 3.640, 4.103,
3.957, 4.400, 3.717, 3.921, 4.515, 3.666, 3.740, 3.695, 4.146,
4.025, 3.740, 4.100, 4.320, 4.127, 3.740, 4.191, 4.120, 4.045,
4.220, 3.730, 4.245, 4.279, 4.301, 3.713, 4.046, 3.619, 4.356,
3.250, 3.763, 3.610, 4.130, 4.075, 3.040, 3.700, 3.960, 3.943,
4.637, 3.745, 4.199, 4.139, 3.730, 4.390, 3.442, 3.965, 4.025,
4.166, 4.123, 3.955, 3.773, 4.060, 4.191, 3.950, 3.994, 4.005,
4.541, 4.147, 3.767, 3.970, 3.770, 4.324, 3.600, 4.140.

The sample mean and SD of this data are 3.96 and 0.33,
respectively. Where APL(µ1) is 4.45 mm, RPL(µ2) is 4.54.
Results show that Pa values of EB in SSP for SEL and
PL are mostly higher than single SP and SSP by variables
which are about 0.99, which shown in Figure 8 and Figure 9,
respectively. In addition, the ASN of the proposed plans

FIGURE 10. The comparison ASN of the single SP, SSP by variables and EB
in SSP for SEL in real data.

FIGURE 11. The comparison ASN of the single SP, SSP by variables and EB
in SSP for PL in real data.

provided smaller ASN than classical methods, as displayed
in Figure 10 and Figure 11.

IX. CONCLUSION
In this paper, we considered variables process mean test-
ing when data follow normal distribution under situation
unknown mean and variance. The lot size is N = 1, 000,
the sample size is n = 50, and the number of iterations is
t = 1,000. The proportion of defective units is determined by
a six-sigma process level in which the proportion of defective
units at APL is p = 0.00034, α = 0.05 and β = 0.10.
The objective of this study is to use the EB in SSP with SEL
and PL functions, and compare with the classical approaches:
single sampling plan and SSP by variables. Result shows that
the EB in SSP with SEL and PL provide the highest Pa and
the smallest the ASN. Therefore, the proposed plans are more
efficient than traditional approaches.
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The value of Pa and ASN of EB in SSP for SEL and PL
are similar because the estimated values of µ and σ 2 under
SEL are close to those under PL. In addition, we applied the
proposed plans to real data, Flash Memory 128-bit EEPROM
chip, which yielded consistent results with those in simula-
tion.
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