IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 3, 2019, accepted March 2, 2020, date of publication March 10, 2020, date of current version March 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2979787

A Comprehensive and Didactic Review on
Multilabel Learning Software Tools

FRANCISCO CHARTE ', (Member, IEEE)

Department of Computer Science, Universidad de Jaén, 23071 Jaén, Spain

e-mail: fcharte @ujaen.es

This work was supported by the Spanish Ministry of Economy and Competitiveness under Project TIN2015-68854-R (FEDER Founds).

ABSTRACT Machine learning has become an everyday tool in so many fields that there is plenty of software
to run many of these algorithms in every device, from supercomputers to embedded appliances. Most of these
methods fall into the category known as standard learning, being supervised models (guided by pre-labeled
examples) aimed to classify new patterns into exactly one category. This way, machine learning is in charge
of getting rid of junk emails, labeling people in a picture, or detecting a fraudulent transaction when using a
credit card. Aside from unsupervised learning methods, which are usually applied to group similar patterns,
infer association rules and similar tasks, some non-standard supervised machine learning problems have been
faced in late years. Among them, multilabel learning is arguably the most popular one. These algorithms aim
to produce models in which each data pattern may be linked to several categories at once. Thus, a multilabel
classifier generates a set of outputs instead of only one as a standard classifier does. However, software tools
for multilabel learning tend to be scarce. This paper provides multilabel researchers with a comprehensive
review of the currently available multilabel learning software. It is written following a didactic approach,
focusing on how to accomplish each task rather than simply offering a list of programs and websites. The
goal is to help finding the most appropriate resource to complete every step, from locating datasets and

partitioning them to running many of the multilabel algorithms proposed in the literature until now.

INDEX TERMS Machine learning, multilabel, non-standard learning, software, tools.

I. INTRODUCTION

The availability of software such as R’s caret package [1],
Matlab’s Machine Learning toolbox [2], Java’s WEKA
application [3] and Python’s scikit—-learn package [4],
to mention only a few of the existing alternatives, puts
data analysis and data mining capabilities at the fingertips
of researchers, students and practitioners. Exploratory data
analysis (EDA) tools are essential to understand data traits,
compute diverse characterization metrics and visualize the
data in proper ways. Machine Learning (ML) software, and
specifically Data Mining (DM) tools, provide the means to
apply proven algorithms to these data, aiming to transform
or clean the data, to extract hidden knowledge or to create
predictive models, among other tasks.

A large portion of the data used nowadays falls into the
category of labeled data, e.g. e-mails are classified as spam
or legitimate, news are grouped into topics, people are tagged
as appearing in photos, etc. EDA and DM tools can take

The associate editor coordinating the review of this manuscript and

approving it for publication was Hui Liu

50330

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

advantage of the label assigned to each data pattern, for
instance by differentiating the points in a plot according to
their labels, or using the labels to infer a classifier by means
of supervised learning algorithms.

A typical assumption is that each data pattern is linked
to only one label. Sometimes this label can take one of two
values, i.e. the mail is spam or it is not. This is the binary case.
If the label can belong to a limited set of values, having this
set more than two elements, then it is known as the multiclass
case. Most EDA and DM software tools available nowadays
are aimed to work with binary and multiclass data.

Single-label learning, also known as standard learning,
is probably the most common scenario when working in EDA
and DM tasks, but it is certainly not the only one. There
are other non-standard modalities [5], such as multilabel
learning [6] (MLL), multiinstance learning [7], multiview
learning [8], etc. Here we are particularly interested in MLL,
since it is the most common case of non-standard learning.
Currently, MLL is being used in fields such as automatic
tagging of new entries in question-answering forums [9],
classification of aviation safety narratives [10], content-based

VOLUME 8, 2020

https://orcid.org/0000-0002-3083-8942
https://orcid.org/0000-0002-3267-6801

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

IEEE Access

retrieval of remote sensing images [11] and prediction of
chemical toxicity effects [12], among many others. Some
generic reviews and tutorials on MLL learning can be
found in [13]-[15].

Unlike standard learning, for which there is available a
plethora of tools, software for MLL is far scarcer and also
more specific. For those starting research in this field, it may
be difficult to locate suitable data sets. These can be in
disparate file formats, and most EDA tools are only capa-
ble to deal with a few of them. In the same way, running
the most popular transformation methods and learning algo-
rithms implies looking for the software tool that implements
them. Sometimes, a certain model is only available within one
of these tools, hence the value of knowing which MLL pro-
grams there are available, what are their capabilities, where
to find them, and how to use them. The goal of this paper is
to provide a quick answer to those questions.

This paper is structured as follows. Section II briefly dis-
cusses the most salient aspects of MLL versus traditional
learning. The topic of Section III is where to find and how to
produce MLL data. Section IV is concerned with EDA soft-
ware. The tools for partitioning and transforming these data
are described in Section V, whereas tools for applying MLL
algorithms are covered in Section VI. Section VII describes
how to assess predictive performance of MLL methods. After
some final words in Section VIII, a set of appendices provides
basic instructions on how to download, install and config-
ure the tools' used in the sections listed above.

Il. SPECIFICS OF MULTILABEL LEARNING

VS. STANDARD LEARNING

Before digging deeper into how to face each possible task,
in this section the main special characteristics of MLL are
going to be outlined.

The essential difference between MLL and standard single-
label learning (SLL) lies in the nature of multilabel data itself.
Let X!, ... X be the domains of the f features in a dataset
and L the set of distinct labels. The i-th data pattern in an
SLL dataset can be defined as in (1), whereas the definition
of the same data point in MLL would be that of (2).

Ii=(Xi7yi)|X,'€X1xsz...Xxf’
Ii:(Xi,Yi)|X,'€X1xsz...Xxf’

yieL (1)
YicL (2

As can be seen, there is no difference in the definition of
the set of input features X;, it being a sequence of values
taken from each attribute domain both in SLL and MLL. The
changes are found in the second part of the tuple. In SLL, y;
denotes a single label taken from L, whereas in MLL Y; can
be any subset of L, including the empty set and the full set of
labels. Y; usually is represented as a binary vector, made up
of zeroes and ones, each component corresponding to a label
in L and stating if it is relevant to the instance /; or not.

IThe work sessions shown in these appendices are available for download
at github.com/fcharte/MLC-Tools-Sessions.

VOLUME 8, 2020

A. MULTILABEL DATA CHARACTERISTICS

Since each data pattern in MLL can be linked to a set of labels
instead of exactly one, certain traits specific to multilabel
datasets arise. These can be summarized as follows:

1) ACTIVE LABELS

The most basic characterization metrics are those that evalu-
ate how many active labels in average there are in the data.
Assuming that each label relevant to an instance is repre-
sented as 1 and the remainder ones are set to 0, the number
of active labels in /; can be obtained by simply adding the
elements in Y;. From here, the mean number of active labels
throughout the dataset, dubbed label cardinality, can be easily
computed. The other common measurement, known as label
density, is calculated from the previous one by dividing it by
the total number of elements in L.

2) LABEL SETS

Assuming that there are |L| elements in L, ¥; could be any of
the 2!/ potential combinations. Each one of those is known as
labelset, and there are several characterization metrics related
to them. Since 2!"! can be a huge number depending on the
size of L, most labelsets do not occur in a dataset unless it also
has a huge amount of instances, hence the interest in knowing
how many distinct labelsets there are, how frequent they
are, etc.

3) LABEL FREQUENCY

As it happens in traditional data, multilabel datasets can suffer
from imbalance, i.e. unequal label distribution. Therefore,
several metrics involved in the analysis of label frequency
exist. An individual imbalance ratio for each label, with
respect to the most frequent one, can be computed. Aver-
aging the ratios from all labels yields a mean imbalance
ratio.

4) LABEL RELATIONSHIP

Among the specifics of multilabel data, maybe the most
studied topic in the literature is how to measure and take
advantage of potential relationships among labels. As a con-
sequence, measurements on how frequently two or more
labels appear together, whether the occurrence of one label
implies the presence of others, and similar metrics have been
proposed.

The formal definition of most MLL characterization met-
rics, including those in the previous four groups, can be found
in the book by Herrera et al. [6]. Specific imbalance measures
were introduced in [16] and [17].

Observe that all the metrics mentioned above are computed
only from Y; and L, which is where multilabel data differ
from traditional data. There are others that combine basic
statistics, such as the total number of attributes, amount of
labels, labelsets, etc., in order to evaluate the complexity [18]
of MLL data.

50331

IEEE Access

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

B. MULTILABEL LEARNING THROUGH
TRANSFORMATION METHODS

Since SLL and MLL data have an identical set of input
attributes, as seen in (1) and (2), unsupervised ML methods
can be applied in exactly the same way to both. By contrast,
SLL supervised methods are not able to deal with Y;, a set
of relevant labels, as they expect only one label instead.
Therefore, most of the classic regression and classification
algorithms cannot be directly applied to MLL data. However,
there are dozens of proven SLL methods that would be useful
if there were a way to transform (2) to (1).

The first approach to solve MLL was based on this kind
of data transformation methods. Many of them are detailed
in [6] and [19] and have been implemented in several of
the tools later described. Among them, the most popular
ones are known as Binary Relevance (BR) [20] and Label
Powerset (LP) [21]. They are very straightforward and easy
to understand.

BR relies on a binarization process, taking each label in
Y; one by one so that |L| different versions of the dataset are
produced. These can be given as input to any SLL algorithm,
obtaining a set of binary predictions that must be joined in the
end to construct the predicted labelset. The main drawback
of this option is that a large set (of size |L|) of binary models
has to be produced, increasing the time needed to perform the
task.

The approach followed by LP is even simpler. Each exist-
ing combination of labels Y; is taken as a class identifier.
Therefore, a single multiclass model is enough to deal with
the data. The predicted output is easily interpreted as a
labelset, splitting it in the correct set of labels. Some draw-
backs of this alternative are the potentially huge number of
different classes, up to 2/l of them, and the inability to predict
label combinations that do not exist in the training set.

C. NATIVE MULTILABEL LEARNING MODELS
Designing models able to learn from multilabel data would
allow to deal with some of the specifics previously out-
lined. However, this is not a trivial task, as the plethora
of potential solution proposals published in the literature
(see [6], [13], [14]) in late years demonstrates.

Some learning models, such as many kinds of neural net-
works, are inherently able to deal with any number of outputs,
hence the large amount of proposals based on these mod-
els [22]-[25]. By having an output neuron for each label in L,
the values produced by the neural network can be ordered to
provide a label ranking. Then, adjusting a cut-off threshold,
the subset of relevant labels is retrieved.

The adaptation process to work with multilabel data has
to be designed taking into account the specific architecture of
each learning model. For instance, in [26] the classic decision
tree is modified so that each leaf contains a set of labels
instead of only one. Besides this structural change in the
tree, the gain function used to define branching points has
to be adjusted as well, considering the existence of several

50332

labels per leaf. Similarly, the study of [27] adapts the popular
k-nearest neighbors classification algorithm by predicting a
subset of L from the labelsets of instances closest to the one
being classified.

In addition to the pure method adaptation approach, with
results such as the ones referenced above, there are also many
proposals mixing the use of SLL models with data transfor-
mation. These use the multilabel data to produce ensembles
of models [28]-[32], usually through one-vs-all and one-vs-
one techniques.

D. ASSESSING MULTILABEL LEARNING PERFORMANCE
Another of the specifics of MLL concerns the way the results
produced by any method are assessed. In SLL, the prediction
z; produced by a classifier only can be correct (z; = y;) or
wrong (z; # yi). Conversely, a MLL prediction Z; can be fully
correct (Z; = Y;), totally wrong (Z; N'Y; = @) or partially
correct/wrong (@ # Z; NY; # Y;).

The usual performance metrics in SLL, such as accuracy,
precision, recall, etc., are computed from a confusion matrix
formed by the number of true positives, true negatives, false
positives and false negatives. The same computations are
made in MLL, but having a confusion matrix per label. Due to
this, the results can be accumulated and averaged in different
ways. The metric can be computed by sample, accumulated
and averaged (sample-based metrics) or it can be calculated
by label (label-based metrics). In the latter case there are
two approaches to aggregate the counters, named micro-
averaging and macro-averaging.

In addition to measurements based in the aforementioned
confusion matrix, in MLL there is other group known as
ranking-based metrics. These involve a ranking made from
the confidence levels produced by the model for each label.
Using this ranking, a threshold is applied to decide which
labels are relevant to the instance and which ones are not.

A comprehensive list of most of the MLL performance
metrics and their formulations can be found in [6], [33]. How
to compute them using different software packages will be
explained later.

E. FACING THE USUAL MULTILABEL LEARNING TASKS
Beyond the introduction to the basics that has just been
offered, the rest of this work is focused on how to use the
available software tools to complete each of the usual tasks
described below in practice. The reader can use the bibliog-
raphy already cited, especially [6] and the various reviews on
the subject [13], [14], [19], to resolve any theoretical aspect.
You will also find the guidelines provided in [34] helpful for
completing studies in the MLL field.

1) OBTAINING MULTILABEL DATA

In order to conduct any MLL study we will need some
multilabel data. Although these data could be self collected in
some cases, in most occasions some of the already available
datasets will be chosen. Existing multilabel data repositories
will be enumerated in Section III, along with the amount

VOLUME 8, 2020

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

IEEE Access

TABLE 1. Public multilabel data repositories.

Name URL Format Type MLDs
Cometa cometa.ujaen.es Several Generic > 170
Kdis www.uco.es/kdis/mllresources/ ARFF1/ARFF3 Generic > 170
LABIC computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html LABIC Protein 27
MULAN mulan.sourceforge.net/datasets-mlc.html ARFF1 Generic 26
CLUS dtai.cs.kuleuven.be/clus/hmcdatasets/ ARFF2 Hierarchical 24
MEKA sourceforge.net/projects/meka/files/Datasets ARFF3 Generic 15
XML manikvarma.org/downloads/XC/XMLRepository.html XML Large 15
LibSVM www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html LibSVM Generic 7

of datasets they offer and their file formats. Software tools
for retrieval as well as generation of datasets will be also
described.

2) EXPLORING MULTILABEL DATA TRAITS

A multilabel dataset will have specific characteristics depend-
ing on the way its labels are distributed among its data
points. Exploratory data analysis tools, such as those shown
in Section IV, will allow us to know if labels in L are equally
distributed or there is imbalance, whether each instance has
a large set of relevant labels (dense, high cardinality) or
only a few (sparse, low cardinality), whether these labels are
correlated or not, etc. The most appropriate datasets for each
study can be chosen based on these traits.

3) PARTITIONING AND TRANSFORMING THE DATA

Once the datasets have been collected, usually they have to be
partitioned and sometimes transformed to other file formats.
Several of the MLL learning tools are able to partition the data
dynamically, just before a learning model is created. In order
to perform this task statically so that partitions are stored in
files, thus easing further reproduction of the experiments, any
of the tools outlined in Section V can be used.

4) LEARNING FROM MULTILABEL DATA

After the previous steps involving data selection and analysis
are completed, it is time to use those data to train a model.
The same SLL unsupervised methods we are used to will also
work with MLL data, since class labels are not taken into
account by these algorithms. On the other hand, supervised
methods (Section VI) require applying data transformation
techniques beforehand or choosing algorithms specifically
designed for MLL.

5) EVALUATING MULTILABEL LEARNING

PREDICTIVE PERFORMANCE

The outputs produced by MLL methods, predictions about
the labels that should be relevant to each data instance, have
to be evaluated in order to assess model performance. This
step is usually included at the end of the learning task, as part

VOLUME 8, 2020

of it, but it can also be conducted independently as will be
explained in Section VII.

The following sections will describe how to complete these
tasks using various tools. Details on how to download, install
and configure these tools are provided in the corresponding
appendices.

1Ill. OBTAINING AND GENERATING MULTILABEL DATA
Sometimes, the data to be used in an ML experiment orig-
inate in a certain need arisen in a specific field. Therefore,
the authors themselves are in charge of collecting, cleaning
and formatting the data pieces which, in the end, will make
up the dataset. They will need to know the details of the file
format they want to generate, unless there is a tool able to
produce the dataset from raw data values. In other cases,
what researchers want to do is to test a new method they
have developed. To do so, they need the proper datasets,
which can usually be found in data repositories. If the data
have to present specific traits, this selection implies analyzing
the characteristics of the available datasets. Alternatively,
synthetic data that fits these needs can be generated.

This section begins by providing a list of available MLL
data repositories, i.e. web sites from where datasets can be
downloaded. The amount of datasets, offered file formats
and other details are also provided. Then, software tools
specifically designed for managing multilabel datasets are
described. The last subsection shows how to generate new
datasets by means of different programs.

A. DATA REPOSITORIES

When it comes to SLL learning, every researcher knows the
UCI Machine Learning Repository [35] as a primary resource
of data to work with. Each dataset is tagged with data type,
task it is used for, origin, number of samples and attributes,
etc. However, only a few of the hundreds of datasets available
in this repository correspond to MLL data. This has led to the
emergence of specific repositories for multilabel data.

Table 1 enumerates the repositories where most of the
publicly available multilabel datasets (MLDs) can be down-
loaded from. Rows have been sorted by the last column,
so that repositories hosting a larger amount of MLDs appear
first. Four of their download pages are shown in Fig. 1.

50333

IEEE Access

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

noried mining
"‘d”ta"w Mulan: A Java Library for Multi-Label Learning
[HoMe] - [GETTING MULAN] - [DOCUMENTATION] - [DATASETS] - [THE Team]
Datasets

The following multi-label datasets are properly formatted for use with Mulan. We initially provide a table with datasef
statistics, followed by the actual files and sources.

Statistics
attributes

name domain instances nominal numeric labels cardinality density distinct
bibtex text 7395 1836) 159 2.402 0.015 2856
birds news audio 645 2 258 19 1.014 0.053 133
bookmarks text 87856 2150 0 208 2.028 0.010 18716
CALS00 music 502 0 68 174 26.044 0.150 502
corelSk images 5000 499] 374 3.522 0.009 3175
corel16k (10 samples) images 1381187 500 0 161+9 2.867+0.033 0.018+0.001 4937+158
delicious text (web) 16105 500] 983 19.020 0.019 15806
emotions music 593 0o 72 6 1.869 0.311 27
enron text 1702 1001 0 53 3.378 0.064 753
EUR-Lex (directory codes) text 19348 o 5000 412 1.292 0.003 1615
EUR-Lex (subject matters) text 19348 0 5000 201 2.213 0.011 2504

(a) MULAN repository

MEKA

AMulti-label Extension to Weka

Brought to you by:

Summary Reviews Support Wiki Bugs Code - DEPRECATED Mailing Lists Discussion

2016-07-11

20150323

2014-09-30 -k
0160222 s7vs NG
README 20150615 co7yes 6)
EDICA 20150615 1310k8 1[] [6)
(b) MEKA repository

Datasets
The following multi-label datasets are properly formatted for use with our above software packages, which are divided
in two parts

(1) Data sets from the Internet
Browse datasets [Training [Test
[Dataset [Domain s [Atributes [Labels [Cardinality
. instances | _instances)
Senbase[3] Biology |63 191 1185 p7 135
" Yeast[2] 1500 17 103 14 [{4.24
S gy orel16K001[3] [Scene [5188 1744 1500 153 .87
mage[1] 1200 500 o4 5 124
- [Scene[2] 1211 1196 294 1.07
161 148 y [Emotions[3] Music 391 2 187
e “al500[3] 300 68 174 [26.04
Medical[3] [Text 45 1449 Bs 1.25
! o 5 [Enron[3] 1123 1001 53 3.38

[Canglog[4] 751 1004 75 118

[Slashdot[4] 2269 1079 p2 1.18

[TMC2007[3] 21519 {49060 p2 R.16

[TMC2007-500(3] R1519 1500 p2 .16

" 81 [Bibtex[3] 4480 1836 159 2.40
= = RCV1v2-1[2] 3000 {47236 101 .88
520 04 4 (2) Our protein data sets [5]
tacke chamisty .

IDataset A [fest lattributes [Labels [Cardinality
<al500 instances instances -
e — = = e s 254 VirusPseAAC [Biology [124 83 00 6 1.22

IGpositivePseAAC 311 208 {40 23 1.01

(c) COMETA Repository (d) LABIC Repository

FIGURE 1. Download pages of four MLD repositories.

It should be taken into account that there exists some over-
lapping among the data available in these repositories. Most
of the MLDs on MEKA are also available on MULAN, Kdis
holds most of the datasets on MULAN and MEKA, and
Cometa provides almost all of the available on the previous
repositories together. Certain repositories, such as LABIC,
CLUS and XML, provide specific types of datasets. Follow-
ing, file formats, data type and structure of the MLDs are
discussed.

1) FILE FORMATS
Aside from the quantity of MLDs provided, the main differ-
ence among the repositories lies on the file formats offered
for these MLDs. With the exception of Cometa, a reposi-
tory holding the same MLDs in disparate formats (MULAN
ARFF, MEKA ARFF, Keel ARFF, LibSVM and mldr),
the remaining ones are only provided in their own file format.
MLDs are mostly available in repositories linked to
software tools such as MULAN [36], MEKA [37] and
mldr.datasets [34]. Usually, they are provided in the file for-
mat used by the respective tool. For instance, both MULAN
and MEKA use the ARFF? file format, but the former relies

2 Attribute-Relation File Format. This is the same format used in the
popular software WEKA.

50334

on an external XML file to define which attributes are the
labels (dubbed ARFF1 in Table 1), so that they can appear in
any position inside the data, whereas the latter uses the ARFF
header to report the amount of labels (ARFF3 in Table 1),
assuming that they are always at the beginning.

The Clus system used by [38] also has a modified version
of ARFF, specific for hierarchical data in this case. LABIC
software, such as the proposal in [39], has its own text-based
file format, with the indexes of active labels at the beginning
and the values of attributes noted as index:value pairs,
all of them separated by a blank space. A very similar format
is XML (Extreme Machine Learning), although in this case a
header indicates the number of instances, features and labels.
Both, along with LibSVM that is also similar, are sparse file
formats. This means that for each instance, only attributes
having non-zero values are specified. ARFF supports both
dense and sparse representations of data.

2) TYPE OF DATASET

Among all MLDs available in the previous repositories,
there is a subset of them usually included in most studies.
These are mostly from generic fields, such as text and image
classification, and they have heterogeneous traits regarding
their dimensionality (number of features and labels), size

VOLUME 8, 2020

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

IEEE Access

bibtex mlds.datazets::get.mlds ("Bibtex”

Select your desired partitioning strategy, validation and format

& Download

Random
Hold out MULAN ~ MEKA LibSVM KEEL midr MULAN
2x5-fold cross validation MULAN ~ MEKA LibSVM KEEL midr MULAN
10-fold cross validation MULAN ~ MEKA LibSVM KEEL midr MULAN

o

FIGURE 2. Download options offered in the cometa data repository.

(number of instances), imbalance level, etc. All of them can
be easily obtained from the sites labeled as Generic in Table 1.

Specific types of MLDs are also available in some of the
repositories, as marked in the Type column. In addition to
generic datasets, the LABIC repository provides a dozen of
MLDs related to proteins. These supplement genbase and
yeast, the only two MLDs available in generic repositories
which come from the biology field.

The datasets provided in the CLUS repository represent
hierarchical multilabel data. That means that the labels in
these MLDs conform a hierarchy, so explicit relationships
among them exist.

Lastly, the special characteristic of the MLDs in the XML
repository is their size. Several of them have millions of
input features, millions of labels and millions of instances as
well. As the name of the repository (Extreme Classification
Repository) states, these datasets are aimed to test methods
designed for extreme cases, where the classic ones cannot be
applied.

3) STRUCTURE OF THE DATA

Another important aspect to take into account when using
the previous data repositories is how the provided MLDs are
structured. Sometimes the full datasets, stored in one file, are
available, whereas in other cases only partitions (usually two
files with train/test instances) can be downloaded.

MULAN and MEKA usually provide full and hold-out
train/test partitions of the datasets, but not for all of them. The
partitions usually correspond to those used in the papers were
the MLDs were introduced. The MULAN repository stores
the data files along an XML file needed to read the MLDs
from MULAN.

Only hold-out train/test partitions are provided in the
LABIC repository, formatted to be read from their software.
The way the MLDs were partitioned is not stated, which leads
to assume that they have been randomly processed. The XML
repository also offers train/test partitions, but in this case they
have been processed in a stratified fashion, so that labels keep
a similar distribution in training and testing.

Regarding the structure of MLDs, the LibSVM reposi-
tory is quite heterogeneous. Hold-out train/test partitions are

VOLUME 8, 2020

Stratified

Iterative stratified
MEKA LibSVM KEEL midr MULAN ~ MEKA LibSYM KEEL midr
MEKA LibSVM KEEL midr MULAN MEKA LibSYM KEEL midr
MEKA LibSYM KEEL midr MULAN ~ MEKA LibSVM KEEL midr

provided for some MLDs, even the small ones such as
scene, while five folds cross validation are available for
others.

Cometa is the most flexible repository regarding the struc-
ture of MLDs, since the user can choose (see Fig. 2) among
three different partitioning schemes as well as three parti-
tioning strategies. For each dataset an individual page allows
to get the full dataset or download it partitioned with hold-
out, five folds cross validation or ten folds cross validation
schemes. There are random and two stratified partitioning
strategies available in all cases.

Depending on the tools we are going to use to conduct a
hypothetical study, datasets should be in a specific file format
and possibly be prepartitioned. Usually, the first step would
be locating and downloading the proper datasets from the
previous repositories. Afterward, some of the tools described
later can convert these datasets to the desired format.

B. DATA MANAGING TOOLS

Searching for datasets in web repositories, manually down-
loading them, is just one option. There are some tools able
to automate this process, such as the mldr.datasets
R package introduced in [34]. A general overview of this
package is provided in Appendix D. This package is tightly
linked to the Cometa data repository, providing the com-
mands needed to enumerate the available datasets, with
function available.mldrs (), and download them, with
get.mldr ().

mldr.datasets downloads the full datasets in an R file
format specified by the m1dr package [40]. This way the
data can be explored directly from the R command line or an
R script. Then, by means of other functions in the package,
the user can partition and export the data to other file formats.
For instance, any dataset (or its partitions) can be written in
MULAN, MEKA, KEEL, LibSVM or CSV file formats by
means of the write.mldr () function.

The Python scikit-multilearn [41] library also has
built-in functions to access its own data repository. It offers
17 MLDs taken from the MULAN repository, the only con-
sidered file format. Function available_data_sets ()
returns a dictionary with the names of each dataset and

50335

IEEE Access

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

the available versions, undivided and split into train and
test partitions. Any of them can be loaded onto memory,
downloading it from the repository if necessary, by calling
load_dataset () providing the name of the MLD as
argument.

C. SYNTHETIC DATA GENERATION TOOLS

Sometimes machine learning methods are designed to tackle
a very specific problem. Although this problem can be vari-
ably present in real data, a detailed analysis is not always
possible if disparate traits interacting between them exist in
the data patterns. This is the reason why so many researchers
also include synthetic data in their studies. These data show
exactly the characteristics the proposed method aims for,
allowing a better adjustment of parameters. Once this work
is done, real world datasets are usually also included in the
experiments.

Most of the available tools to produce synthetic multilabel
data can be grouped into one of two categories: generic or
specialized. There are plenty of published articles that use
the latter category to obtain an MLD with very specific
characteristics, usually those the proposed MLL algorithm
is supposed to solve. On the other hand, tools in the former
group allow the users creating MLDs with disparate traits,
depending on their needs. The following three are among the
existing alternatives.

1) mldr_from_dataframe ()

This function is provided by the R m1dr [40] package. It can
be used from the R command line, needing two parameters:
an R data. frame containing the data and a vector stating
which columns act as labels. Since instances are provided as
adata.frame, they can have any desirable characteristics.
All the computing and statistical power of R is available
to model attribute values and label relevance. The gener-
ated MLD can be saved using several file formats (see the
mldr.datasets package description).

2) MLDATAGEN

A very simple to use web tool (http://sites.labic.icmc.usp.br/
mldatagen/) able to produce MLD instances following two
strategies, named hypercube and hypersphere, as defined
in [42]. In addition to the strategy, the user can choose the
amount of relevant, irrelevant and redundant features, as well
as the number of labels per instance and the level of noise.
The generated MLD can be downloaded in MULAN format,
so that most MLL algorithms can work with it.

3) ml_generator ()

This is a MATLAB function which also relies on an hyper-
cube strategy to produce the instances of the synthetic MLD.
The tool is introduced in [43] and can be downloaded from
http://www.aic.uniovi.es/ml_generator/. Once the function
has been loaded into MATLAB, the user can call it stating the

50336

amount of input attributes, number of instances and labels,
the desired label cardinality and label dependency levels,
number of hyperplanes to use, etc. Some of these parameters,
such as label cardinality and the dependency level, are only
suggestions to the algorithm, which will try to get as closer
as possible to these values.

IV. EXPLORATORY DATA ANALYSIS TOOLS

One of the key aspects in designing appropriate machine
learning methods is understanding the data you are work-
ing with, thus the importance of having EDA tools at your
disposal. When dealing with multilabel data, knowing in
advance if the labels are balanced or not, if label cardinality
and density are high or low, how many different labelsets
there are, etc., may allow us to choose one among the avail-
able learning methods and properly adjust its parameters,
as well as to decide if a preprocessing step is necessary.

EDA tools specifically designed for multilabel data are
scarce when compared with the multitude available for deal-
ing with classic single-label data. They can be grouped into
three categories:

o Programmatic tools: A program has to be written to load
and analyze the data before a set of characterization
metrics can be retrieved or a plot can be generated.

o Command line tools: Loading and analysis of data can
be performed in an interactive fashion, from a REPL
(Read-Eval-Print-Loop) prompt, obtaining an immedi-
ate answer.

o GUI tools: Provides a higher-level interface aimed at
non-experienced users, so that they can explore the data
traits by simply clicking some options.

A single piece of software may provide several interfaces
for accessing its EDA tools. For instance, the m1dr [40]
package has a command line interface, whose syntax can
be used in a programmatic way inside scripts, and also a
GUI, whereas MEKA [37] provides both programmatic and
GUI EDA options. Table 2 summarizes the type of interface
provided by each EDA tool.

TABLE 2. Type of interface provided by the EDA tools.

Lang. Tool Programmatic Command line GUI

Java MEKA

R mldr

Java MULAN
Python scikit-multilearn

ANANA NN
N X% N\ %
R IR NN

Another fact that differentiates existing tools is the set
of data traits they provide. There are very common charac-
teristics, such as label density and cardinality, found in all
software packages. However, some more specific metrics,
such as those related to imbalance or concurrence levels, are
not so common. Table 3 shows the EDA tools that can be used
to compute each metric. The following subsections portrait
the use of the major multilabel EDA tools.

VOLUME 8, 2020

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

IEEE Access

TABLE 3. Data traits provided by the EDA tools reviewed in this section.

MEKA mldr
404

Metric MULAN

A
AN
S
AN

inst./attr.

labels

labelsets

unique labelsets
Cardinality
Density

MeanlIR

Scumble

TCS

Label frequencies
Label IR

Label Scumble
Labelset frequencies

™M X} N X X X XN X XN
SANNSNSNANNANSNASNAN
L R " SRR NN

A. MULTILABEL EXPLORATORY DATA

ANALYSIS JAVA TOOLS

MULAN [36] is arguably the most used MLL tool. It does
not provide the user with a GUI as it is designed to be used
programmatically. However, it is quite easy to write a pro-
gram that loads an MLD and uses the Statistics class to
calculate some statistics. This class is the main EDA option in
MULAN. Once the calculateStats () method has been
called, data disparate traits can be retrieved including label
cardinality and density, label frequencies, distinct labelsets,
etc. The Statistics class also offers methods aimed to
compute label concurrence and label correlation matrices.

Although MEKA [37] has an easy to use GUI, it is mostly
aimed to design experiments rather than to facilitate EDA
tasks. The MEKA Explorer shows, once a dataset has been
loaded, the number of attributes and labels as well as basic
attribute statistics as they are chosen from the list. After
running any experiment, the results panel informs the user
about the label cardinality in the training and testing sets.
Lastly, the Visualize panel provides paired plots for all the
attributes, including the labels, so a basic intuition about their
distribution can be obtained.

Another Java tool aimed to perform EDA tasks, although
much less known than the previous ones, is MultiLabel
Dataset Analyzer [44]. This Java program provides a GUI
similar to that in MEKA. However, it is focused on providing
MLD characterization metrics as well as several types of plots
summarizing label frequencies, label co-occurrences, etc.

B. MULTILABEL EXPLORATORY DATA ANALYSIS R TOOLS
The main multilabel EDA tool for R is inside the m1dr [40]
package. It provides both a command line and a GUI
interface to accomplish most tasks. Traits of the data are
obtained through the function in charge of loading the MLDs.
It is also able to deal with data sets obtained through the
mldr.datasets [34] package or downloaded from the
Cometa multilabel data repository.

Once an MLD has been loaded, it appears to R as an
“mldr” class object. This object has several attributes con-
taining data traits. A summary of some of them can be

VOLUME 8, 2020

Console Terminal -

>
> mld <- bibtex()
Looking for dataset bibtex in the download directory
Now reading dataset bibtex
>
> summary(mld)
num.attributes num.instances num.inputs num.labels num.labelsets num.single.labelsets
1995 7395 1836 159 2856 2199

max.frequency cardinality density meanIR scumble scumble.cv tcs
471 2.401893 0.01510625 12.49826 0.09378705 1.365618 20.54143

>
> mldSlabels[1:5,]

index count freq IRLb1 SCUMBLE SCUMBLE.CV
TAG_2005 1837 69 0.009330629 15.101449 0.05688129 0.9579146
TAG_2006 1838 132 0.017849899 7.893939 0.06127750 0.8030147
TAG_2007 1839 71 0.009601082 14.676056 0.04408056 1.0830003
TAG_agdetection 1840 104 0.014063556 10.019231 0.08254933 0.2875127
TAG_algorithms 1841 57 0.007707911 18.280702 0.12970282 0.8538352

>
> mld I

dataset 05 06
"{0,1 ¢ attributesIndexes 1}" "{0,1}"

attributes

Tabels

Tabelsets

: measures

bibtex

mlds|

>
>
>
>
>
>
>

FIGURE 3. Sample EDA session from the R command line using the midr
package.

retrieved through the usual summary () function, as shown
in Fig. 3. The remaining attributes® provide the following
information:

e attributes: A character vector holding the name
and a range of values for each attribute in the MLD,
including the labels.

e labels: An R data. frame with as many rows as
labels within the MLD. Each row provides the name
of the label, its position (column), absolute and relative
frequency, imbalance and concurrence levels.

e labelsets: A named array with an entry for each dis-
tinct label set in the MLD, stating the label combination
and number of occurrences.

« measures: A list holding all basic metrics of the MLD,
including number of attributes, labels, labelsets, label
cardinality and density, average imbalance and concur-
rence levels, etc.

In addition to attributes holding data traits, an “mldr”
object also has some methods useful to explore the MLD
such as the concurrenceReport () method. It analyzes
the most salient interactions between frequent labels and
minority ones, producing a textual report and a circular plot
showing these interactions. Another interesting method is
plot (), able to produce up to seven types of plots from
the MLD. These include histogram of labels, labelsets and
label cardinality, label and labelset bar plots, attribute type
pie chart, etc. All of them are thoroughly explained in [40].

All the functionality described above, from loading data
to retrieve generic metrics, label and labelset details, the con-
currence report and most available plots, is also accessible via
the package’s integrated GUI. Users are offered the option to
print and save the information shown in the interface, both
for tables and plots, as well as to filter and search the tables,
as can be seen in Fig. 4.

3Aside from informative members, the “mldr” object also has a
dataset attribute that contains the actual MLD data. It can be used to
perform any other exploratory action over attribute values and labels.

50337

IEEE Access

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

birds - midr

Main Labels Labelsets Attributes

birds - midr

Main Labels Labelsets Attributes

Concurrence About ©

Active MLD Visual summary
Select a dataset & Save plot
bids 2

birds

Load a dataset

n ARFF and a XML file to load a MULAN dataset, or select only an ARFF
e s a3 kA catacel.

Select the ARFF file
Browse... | Nofile selected

Select the XML file

Browse... | Nofile selected

Load dataset

How to use midrGUI

IAGUI s an EDA oo for ol datasets (MLOs)
the contrls above to select one of the MLDs included inthe package, o select
an arf and xmi i in your system (0 oad any MLD.
+ Gnce the MLD has baon oaced,you wil see 5. basc s n s page
+ Use the tabs atthe top of

Type and numbes of atrbutes

+ Use the Qut buton (6) o close the application

& Seve ot
birds - Labels per Instance histogram
birds - midr
Main Labels Labelsets Attributes Concurrence About o
Show 25 v entries Pont | Save
Search,
Attribute Type Summary
Sl L Min. 15tQu. Median Mean IAQu. Max.
0001333 0008115 0024863 0.0695054170542036 00902 0850176
o oimarc Min. 1stQu. Median Mean IdQu. Max.
0002663 0010673 0021624 00G67032620155030 0.062001 131813
ko gad3 fumerc Min. 1stQu. Median Mean Q. Mex.
0004012 0021457 0048250 0.101182341085271 013751 0016178
audo-ssad numenic Min. 15tQu. Median Mean sdau. Max.
0007605 0030335 0066101 O.116SE2765801473 0.165304 0.58258
o Loz Min. 1stQu. Median Mean dQu. Max.
0015742 0050271 0099202 0.146804280620155 0192939 0638798
L oimerc Min. 1stQu. Median Mean JdQu. Max.

FIGURE 4. Some of the pages provided by the m1dr package’s GUI.

C. MULTILABEL EXPLORATORY DATA

ANALYSIS PYTHON TOOLS

As far as we know, there are no specific tools for multi-
label data exploration in Python. Although Python library
scikit-multilearn [41] is capable of loading MLDs,
using them to train different classifiers, it lacks features spe-
cific to perform exploratory analysis. Therefore, metrics such
as label cardinality, label density, amount of distinct labelsets,
imbalance ratios, etc., have to be manually computed. For
most characterization metrics this is a simple procedure, but
demands some Python programming knowledge from the
user.

The scikit-multilearn load_dataset () func-
tion returns attribute and label values as well as attribute and
label names. The former are a couple of sparse matrices,
so the methods in the numpy library can be applied to com-
pute sums per columns or rows. This way label frequencies
can be obtained, in a first step, and then many other measure-
ments as a result of simple arithmetic operations, as shown
in Fig. 5.

50338

Concurrence About ©

Show 25 v entries Prnt || Save & save plot
Search: Choose range of labels to plot
Label index count freq IRLbI SCUMBLE 9 e
Brown 261 " 0021705426 7.357143 0.12484341
Creeper
Pacific Wren 262 81 0.126581395 1271605 005232609 “
Pacific:siope 263 46 0071317829 2239130 0.06361470
Fiycatcher
Red-breasted 264 9 0013953488 11444444 015744451
Nuthatch
Darkeyed 265 2 0031007752 5150000 010248336
Junco
Olive-sided 266 14 0021705426 7.357143 018493760
Fiycatcher
Hermit 267 47 0072868217 2.191489 0.06777263
Thrush
Chestnut- 268 40 0.062015504 2575000 006807452
backed
Chickadee
Varied 269 61 0.004673643 1.688525 0.07940806
Thrush
Hermit 270 53 0082170543 1943396 0.07999006
Warbler
Swainson's 271 103 0.159680922 1.000000 011214301

Thiush

3tab-8025-2

birds - midr

Main Labels Labelsets Afibutes Concurence About ©

. & Save plot
Concurrence analysis
“The SCUMBLE level for each label is shown in the table at the left. birds.

In the following tale the minoty labels most afected by
SCUMBLE are showr

For each one of them, the names of the majority labels with
interactions are provided.

Description Value
Dataset birds

Mean SCUMBLE ~ 0.0330276480664299

SCUMBLECV 2.20820627963242
Minority labels Olive-sided Fycatcher, Black-headed
with high Grosbeak, MacGilivray's Warbler
SCUMBLE
MacGiliviay's Chestnut-backed Chickadee, Hermit
Warbler Warbler, Swainson's Thrush, Golden
Crowned Kinglet
Black-headed Hermit Thrush, Hermit Warbler,
Grosbeak ‘Swainson's Thrush, Golden Crowned
Kinglet, Common Nighthawk
Olive-sided Pacific Wren, Pacific-siope Flycatcher,
Fiycatcher Hermit Thrush, Chestnut-backed

Chickadee, Varied Thrush, Hermit
Warbler, Swainson's Thrush, Westem
Tanager

Select the labels to plot

On the other hand, what the scikit-multilearn
package does offer is various functions for analyzing the rela-
tionships and co-occurrences between labels. For instance,
a list of label pairs, stating the number of times each
pair appear together in the MLD, can be generated with
LabelCoocurrenceGraphBuilder. This information
can be also plotted.

V. PARTITIONING AND TRANSFORMING

MULTILABEL DATASETS

Once the data is locally available, usually other data manip-
ulation operations are needed, mainly data partitioning and
transformation. These tasks, which take a dataset as input
and produce one or more output datasets, can be fulfilled
through several of the software packages summarized in the
appendices.

A. HOW TO PARTITION A MULTILABEL DATASET
Dividing an MLD into pieces, so that a fraction of the
samples can be used to train a model and the remaining

VOLUME 8, 2020

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

IEEE Access

A Python-session-scikitmlipyr X

B+ X O » m C Code v

Load and explore a dataset

emotions_X, emotions_Y, attributes, labels = load_dataset('emotions', 'undivided')

labels

emotions:undivided - exists, not redownloading

[('amazed-suprised’, ['0', '1']),
'happy-pleased’, ['0', '1']),
‘relaxing-calm', ['0"', '1']),
‘quiet-still*, ['@', '1']),
‘sad-lonely', ['0', '1']),
‘angry-aggresive', ['0', '1'])]

labelfreqs = emotions_Y.sum(axis=0)

print("Label frequencies: ", labelfreqs)

print(“MeanIR: ", np.mean(labelfreqs.max() / labelfregs))

Label frequencies: [[173 166 264 148 168 189]]

MeanIR: 1.4780684597524212

I [44]:

Card: 1.8684654300168635
Dens: ©.3114109050028106

print("Card: ", emotions_Y.sum() / emotions_Y.shape[0])
print("Dens: ", emotions_Y.sum() / emotions_Y.shape[@] / emotions_Y.shape[1])

FIGURE 5. Computing some simple characterization metrics in Python.

ones to evaluate it, can be accomplished following different
approaches. The simplest one, but nonetheless usual in many
studies, consists in randomly picking each instance to either
train or test the model. This way has a clear inconvenient,
since the distribution of labels in the training set could be
very different of that in the test set. In that case, the model
would be biased to the more frequent labels in detriment of
those rarer or even never seen in training.

Stratified partitioning of data samples is a straightforward
way of balancing classes among training and testing parti-
tions, but only for standard classification problems. Since
each pattern is associated to only one class, it is trivial
to distribute them among train and test subsets. However,
in the multilabel case there are several class labels linked to
most samples. Therefore, choosing one sample for training
or testing incorporates not only the label of interest, but also
all the other active labels in that sample. Because of this
reason more sophisticated partitioning methods have been
proposed in the literature, such as the ones proposed by [45]
(iterative stratified) and [18] (stratified), able to deal with this
complexity.

The three aforementioned algorithms, random, stratified
and iterative stratified, are available inthem1dr .datasets
R package [34]. In order to apply them, the input
dataset has to be previously loaded in R. Then, it is
only a matter of calling one of the six available func-
tions: random.holdout () or random.kfolds ()
for random partitioning, stratified.holdout () or
stratified.kfolds () for the stratified approach,
and iterative.stratification.holdout () or
iterative.stratification.kfolds () to use the

VOLUME 8, 2020

iterative stratification strategy. For further details, see the
example in Appendix D.

MULAN [36] is built on top of Weka [3], and ran-
dom partitioning can be performed through the Filter
utility class of the latter. In addition, MULAN itself pro-
vides the IterativeStratification class in the
mulan.data package. It conducts the iterative strat-
ified partitioning described in [45] (see example ses-
sion in Appendix A). The crossvValidate () method
(Evaluator class) automatically builds random partitions,
so that cross validation can be accomplished without manu-
ally splitting the data.

The MEKA [37] GUI allows the user to choose between
hold-out and cross validation random partitioning schemes,
as well as getting prepartitioned train/test splits for any exper-
iment. As far as can be inferred from the documentation, there
is no way to partition a dataset and store the folds for further
use, they can only be used to train and test a MEKA classifier
through the Evaluation.cvModel () method.

The utiml R package [46] also provides the user
with two partitioning functions, but only random hold-
out (create_holdout_partition()) and k-folds
(create_kfold_partition()) strategies are
considered.

B. COMMON DATA TRANSFORMATIONS: BINARY
RELEVANCE AND LABEL POWERSET

Data transformation is the most common approach to mul-
tilabel learning problems. Among the transformation meth-
ods proposed in the literature, BR [20] and LP [21] are

50339

IEEE Access

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

undoubtedly the best known. As a result, their availability in
several software packages is expected.

For R users, these transformations can be found in the
mldr [40] package. The m1dr_transform method takes
a dataset as its first parameter. The second argument estab-
lishes the transformation to be applied, “BR” or “LP”. The
following example applies both of them to the same dataset,
obtaining a list of binary datasets and a multiclass dataset.
Once the transformed data have been obtained, any of the
classifiers available in the plethora of R packages, such as
caret [1], may be used.

1| > library(mldr)

2

3| > emobr <- mldr_transform(emotions, type =) # Returns list binar
4| > emolp <- mldr_transform(emotions, type =) # Returns multiclass

Example 1. Transformation methods in the midr package.

Some other R packages, suchasmlr [47] and ut im1 [46],
as well as the MEKA [37] software, also implement BR
and LP transformations. However, their functions do not
return the transformed data but use it to train the cor-
responding classifiers. The same is applicable for the
scikit-multilearn [41] Python library. For instance,
the following lines would use the BR transformation and a
support vector machine to train a multilabel classifier using
the utiml package.

> library(utiml)

> brclassifier <- br(emotions$train,)

ORI

6> tt r btain pr

emotionsS$test)

> predictions <- predict (brclassifier,

Example 2. Transformation methods in the utiml package.

The mulan.transformations package in MULAN
exports four classes aimed to perform different transfor-
mations. The first one is in charge of conducting the BR
transformation, BinaryRelevanceTransformation.
The second one, LabelPowersetTransformation,
is responsible for the LP transformation. Both have a
transformInstances () method that takes the original
set of multilabel instances and return the transformed ones.

C. APPLYING OTHER TRANSFORMATIONS
In addition to BR and LP, there exist other data transfor-
mations for multilabel data. Some of them are available
in certain software packages. This is the case of REME-
DIAL [48], an algorithm aimed to resample a dataset so that
instances having highly imbalanced labels are decoupled. The
remedial () function in the m1dr R package implements
this algorithm, and can be used as follows:

As can be seen, the dataset has more samples once the
method is applied, but the number of labelsets, label cardinal-
ity, label density and SCUMBLE metric have been reduced.

50340

>
> summary (emotions)
num.attributes num.instances num.inputs num.labels num.labelsets num.single.
labelsets
1 78 593 72 6 27
4

B WN e

max.frequency cardinality density meanIR scumble scumble.cv tes
1 81 1.868465 0.3114109 1.478068 0.01095238 1.26456 9.364262
>

©WwJOU

> summary (remedial (emotions))
num.attributes num.instances num.inputs num.labels num.labelsets num.single.
labelsets
1 78 815 72 6 19
2

1 257 1.359509 0.2265849 1.478068 0.0005623093 2.566903 9.012865
>

0
11 max.frequency cardinality density meanIR scumble scumble.cv tes
12

3

Example 3. Emotions traits before and after applying REMEDIAL
algorithm.

VI. RUNNING MULTILABEL LEARNING ALGORITHMS

A supervised algorithm relies on label data, the information
that is not available at test time, to produce and/or adjust the
learning model. Standard learning methods, designed to work
with one output (class or target value) only, are not suitable
for this task since multilabel patterns have multiple binary
outputs.

Most MLL supervised methods fall into one of two
approaches, as explained in subsections II-B and II-C. The
creation of binary classifier ensembles to cope with this job
might be the most usual technique. The major difference
among the tools described below is in the set of algorithms
they implement. Some of them are mainly focused on trans-
formation methods, whereas others also include a large col-
lection of native MLL methods. Table 4 (see abbreviations
at the bottom) enumerates the algorithms provided by each
software package. The details on how to use them are given
in the following subsections.

A. MULTILABEL LEARNING WITH JAVA

The first general purpose MLL libraries were written using
the Java language. It does not come as a surprise, since
WEKA [3] was also written in Java and both MULAN [36]
and MEKA [37] are built on top of WEKA’s foundations.
The main difference between these two software tools lies in
the approach by which the user can access their functionality.
MULAN is a purely programmatic tool, a library of classes
to be used from the user’s programs. By contrast, MEKA
is more similar to WEKA and provides a GUI as well as
an Application Programming Interface (API). Many of the
existing MLL algorithms, following both the transformation
and the adaptation approaches, can be found implemented
in Java. On the contrary, as is shown in following sections,
adaptation-based MLL algorithms are scarce in other pro-
gramming languages such as R or Python.

1) THE MULAN LIBRARY

Designing an MLL experiment with MULAN implies writing
a Java program, importing the MULAN packages and using
the classes supplied by them. Then, the source code needs
to be compiled and run from the command line, as usual with
any other Java console application. A specific variation of the

VOLUME 8, 2020

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

IEEE Access

TABLE 4. Summary of MLL algorithms implemented in each software
package.

Algorithm meka mlr mulan scikit-ml utiml

Transformation

Adaboost. MH
BR
BR+
BRS
CcC
CDN
CLR
CT
CTRL
DBR
EBR

[es)
o)
A
R N N R N R S N N N R S
B¢ 3 3% % M N X X X} M X M} N X X X X NN XN X
ARXAURXEX AN XX XXX NSNS
¢ 3 N X M X} N X X X X X X X X X XN X XN X
CRRN NN NN NN UX NN

Adaptation

BP-MLL
BR-KNN
DBPNN
IBLR-ML
ML-ARAM
ML-kNN
MLTSVM
MMPLearner
Random ferns
Random forest

BP-MLL=Back Propagation MLL, BR=Binary Relevance,
BRS=BR Stacking, CC=Classifier Chains, CDN=Conditional Depen-
dency Network, CLR=Calibrate Label Ranking, CT=Classifier Trellis,
CTRL=Controlled Label Correlation, DBR=Dependent BR,
DBPNN=Deep Back Propagation NN, EBR=Ensemble BR,
ECC=Ensemble CC, EPS=Ensemble PS, HOMER=Hierarchy multil-
abel Classifiers, IBLR-ML=Instance Based and Logistic Regression,
LIFT=Learning Specific Label Features, LP=Label Powerset,
MMPLearner=Multiclass Multilabel Perceptron, NS=Nested Stacking,
PRUDENT=Pruned Confident Stacking, PS=Pruned Sets,
RAKEL=Random k Labelsets, RDBR=Recursive Dependent BR,
RPC=Ranking Pairwise Comparison

™ X X X X X X N X\
NN X X X X X X X X
XX AR AR XN
X X NN N X X N\ X%
X X X N X X X X X

ARFF file format is defined by MULAN, along with an XML
file holding label information. The mulan.data package
provides the classes in charge of loading and manipulating
MLDs.

Once the data has been loaded into an object
MultiLabelInstances, the steps to perform an MLL
experiment using MULAN are the undermentioned:

1) Create an object from any of the classes derived
from MultilLabelLearnerBase. All of them
are grouped into several subpackages inside the
mulan.classifier package. Depending on the
type of classifier, the constructor will need a specific
set of parameters, usually:

o Transformation methods: The classesinmulan.
classifier.transformation implement

VOLUME 8, 2020

transformation-based models. They will require an
underlying binary/multiclass classifier, a WEKA
object that has to be created and given as parameter
to the constructor.

o Adapted methods: The remainder classes will
take a series of specific arguments aimed to con-
figure the MLL algorithm.

2) Callthe build () method providing the set of training
instances as argument. This will adjust the classifier’s
internal parameters according to the seen patterns.

3) UsethemakePrediction () method to obtain label
predictions for individual test instances.

4) To assess the classifier performance the evaluate ()
method in the Evaluator class is used. It takes the
trained classifier, test instances and a list of metrics to
compute as parameters.

The work session shown in Fig. 6 demonstrates how to use
MULAN to train and evaluate the performance of two MLL
methods with same data. Additional details on how to install
and use MULAN can be found in Appendix A.

7 Java-session-mulanipynb ®

B+ X0 O » = C Code v

var train = new MultilabelInstances
var test = new MultilabelInstances(

n.arff", “emotions.xml");
arff", "emotions.xml")

var classl = new ClassifierChain(new 348());
var class2 = new MLKNN(S, 1.0);
class1.build(train);

class2.build(train)

var evaluator = new Evaluator();

ListcMeasure> metrics = Arrays.asList(new HammingLoss(), new curacy(), new s

evaluator.evaluate(class1, test, metrics)
Hamming Loss: ©,2896

Example-Based Accuracy: ©,4277
Example-Based F Measure: ©,5145

evaluator.evaluate(class2, test, metrics)
Hamming Loss: ©,2120

Example-Based Accuracy: ,5165
Example-Based F Measure: 8,5959

FIGURE 6. Train and evaluate two MULAN classifiers.

2) THE MEKA APPLICATION

Unlike MULAN, which is made mostly for Java program-
mers, MEKA [37] is a full-fledged application useful to any
practitioner. Its GUI is made up of several components. The
MEKA Explorer makes possible to load an MLD, choose a
classifier, run it and obtain performance results. By means
of the MEKA Experimenter, more complex experiments
can be designed, involving several datasets and classifiers.
All these tasks can also be accomplished from an OS terminal,
simply by issuing a command with the appropriate options
(see Appendix B).

The MEKA GUI is very similar to the one in WEKA [3],
so WEKA users would get used to it in no time. After launch-
ing MEKA, a small window with a couple of buttons and
a menu will appear. Assuming that the user is interested in
performing a single experiment, it would open the MEKA
Explorer and follow the steps detailed below:

1) Load any MLD in ARFF file format through the

File>Open option. Unless it is a MEKA ARFF, state
which attributes act as labels.

50341

IEEE Access

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

® MEKA Explorer - O X
Eile Edit Classify
Preprocess | Classify | Visualize | Log

Classifier

Choose |LC-W wel
Evaluation
Train/test split -
start

History
2019-04-18 13:24:54: multilabel BR
2019-0 Save...
20190 Remove

Remove all

Predictions on test set
Reevaluate model on test set
Copy model setup

Save model...

Export Predictions (CSV)

Save graph(s)...
Show Macro-Averaged Curve

Show Micro-A veraged Curve =

Show Precision-Recall Ll I »

Show ROC e
Predic| “ailed to parse options stored in relation name; expected format for relation name: ‘name: optiof}'s
Show graph(s) |

FIGURE 7. Running classifiers through the MEKA explorer.

2) Choose the classifier to be used, as well as the valida-
tion scheme, in the Classify page. The Start button in
this page will run the experiment and show in-depth
performance data in the Result panel.

3) Use the pop-up menu of any of the already run experi-
ments (see Fig. 7) to save the model, export the predic-
tions to a CSV file, show disparate plots, etc.

In addition to those pointed out in Table 4, MEKA also
incorporates many CC-derived methods, such as Bayesian
CC (BCC), MonteCarlo CC (MCC), Probabilistic CC (PCC),
among others. Moreover, it provides a MULAN proxy which
makes available to the user all MULAN algorithms. Table 4
only indicates the methods natively implemented in MEKA.

B. MULTILABEL LEARNING WITH R
Thousands of pre-built packages are available to R users.
They can be installed from either CRAN, Bioconductor or
other repositories. Many of these packages provide learning
algorithms, specifically classification and regression meth-
ods. However, most of them aim to deal with standard
tasks rather than multilabel ones. Some packages, such as
caret [1] and m1r [47], act as wrappers around many of the
former, offering a unified way of performing learning tasks.
Native MLL methods are somewhat scarce in R. Only a
handful of them have been implemented. On the contrary,
many of the transformation-based methods in the literature
are available for R users. Most of them can be found in the
mlr and utiml [46] packages described below.

1) THE MLR PACKAGE

This is one of the most popular R packages for ML tasks,
including data preprocessing, data resampling, clustering,
regression and classification methods, etc. Although recently
it gained some MLL capabilities [49], the set of learning
methods it provides is quite small as can be seen in Table 4.
Only two adaptation methods and five transformation-based
algorithms are implemented.

50342

Performing an MLL experiment with mlr is straight-
forward. Once the multilabel data is stored into an R
data. frame (see details about data types in Appendix E),
the steps are as follows:

1) Create a task from the data by means of the
makeMultilabelTask () function, stating which
columns hold the labels.

2) Configure the learning algorithm. Two alternatives can
be used:

o Native methods: Call makeLearner () using
either “multilabel.randomForestSRC”
or “‘multilabel.rFerns” asthe only param-
eter, depending on the algorithm to be used.

o Transformation methods: Start by calling the
makeLearner () function to instantiate any
of the methods available in mlr to serve as
binary classifier. Then, call one of the five
makeMultilabelXXXWrapper () functions
to configure the transformation.

3) Train the classifier by feeding it the data held in
the task. The train () function takes the value
returned by either makelLearner () or any of
the makeMultilabelXXXWrapper () functions
as first parameter. The second one would be the value
returned by makeMultilabelTask ().

4) Obtain predictions for new instances through the
predict () function. It accepts the trained classifier
as first argument and the instances to be processed
as second argument.

Console Terminal =

>

> Tibrary(mlr)

> nrow(yeast.taskSenvSdata)

[1] 2417

> rflearner <- makeLearner("multilabel.rFerns™)

> rfmodel <- train(rflearner, yeast.task, subset = 1:2000)

> rfmodel

Model for Tearner.id=multilabel.rFerns; learner.class=multilabel.rFerns

Trained on: task.id = yeast-example; obs = 2000; features = 103

Hyperparameters:

> preds <- predict(rfmodel, yeast.task, subset = 2001:2417)

> predsSdata[1,]

id truth.labell truth.label2 truth.label3 truth.label4 truth.label5 truth.label6

2001 2001 FALSE TRUE TRU FALSE FALSE FALSE
truth.label7 truth.label8 truth.label9 truth.label10 truth.labelll truth.labell2

2001 FALSE FALSE FALSE TRUE TRUE TRUE
truth.label13 truth.labell4 response.labell response.label2 response.label3

2001 TRUE FALSE FALSE TRUE TRUE
response.label4 response.label5 response.label6 response.label7 response.labels

2001 FALSE FALSE FALSE FALSE FALSE
response.label9 response.labell0 response.labelll response.labell2 response.labell3

2001 TRUE TRUE TRUE FALSE FALSE
response.labell4

2001 TRUE

> performance(preds)

multilabel.hamloss

0.4580336
>

FIGURE 8. Sample sesion using the mir R package.

The function in step 4 returns an object whose data
member holds the predictions. For each instance, the set
of true labels along with the predicted ones is provided,
so that the performance of the model can be evaluated. The
performance () function is in charge of this. A sam-
ple mlr work session is shown in Fig. 8. It uses the
multilabel task yeast.task included as example in the
package.

VOLUME 8, 2020

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

IEEE Access

2) THE UTIML PACKAGE
This package [46] is the most recent addition to the R MLL
learning portfolio. Unlike m1r, it has been designed from
the beginning to accomplish MLL tasks. Aside from pre-
processing and basic partitioning methods, ut im1 provides
22 functions to train different classifiers (see Table 4). All of
them are transformation-based MLL algorithms, with the
only exception of ML-kNN.

The usual steps to be taken to complete a predictive task
with this package are as follows:

1) Get the MLD using the services in the m1dr package
and split it as desired.

2) Give the training instances to one of the functions
which implement the classifiers, e.g. br (), ecc (),
mlknn (), etc. A base classifier to process each binary
problem can be also specified.

3) Obtain label predictions for each test sample by calling
the predict () function, as usual. A threshold can
be applied to the predicted values in order to generate
a label bipartition.

4) Call the multilabel_evaluate () function to
assess classifier performance. In addition to the set
of test instances and the predictions returned by
predict (), this function also takes as parameter a
vector stating the evaluation metrics to be computed.

A sample ut im1 work session is shown in Fig. 9, train-
ing an ensemble of pruned sets classifier to process the
emotions MLD. More details on how to use this package
are provided in Appendix F.

Console Terminal

>
> library(utiml, quietly = TRUE)

> partitions <- create_holdout_partition(mldr::emotions, c(train = 0.7, test = 0.3))
> classl <- eps(partitionsStrain, base.algorithm = "SVM")

> classl

Ensemble of Pruned set Model

cal:
eps(mdata = partitions$train, base.algorithm = "svM")

Models: 10
Instance by models: 312
Prune: 3
strategy: A
B value: 2
> preds <- predict(classl, partitionsStest)
> preds[1,]
amazed-suprised happy-pleased relaxing-calm quiet-still sad-lonely angry-aggresive
1 0 2.120925 2.327697 o o o
> multilabel_evaluate(partitionsStest, preds)
accuracy average-precision clp coverage F1 hamming-1oss
0.6194757 0.7911361 0.0000000 1.7752809 0.7038390 0.1853933
macro-AuC macro-F1 macro-precision macro-recall margin-loss micro-Auc
0.9051349 0.7170753 0.6733649 0.7809119 1.0842697 0.9103865
micro-F1 micro-precision micro-recall mlp one-error precision
0.7242340 0.6666667 0.7926829 0.0000000 0.3146067 0.6737828
ranking-loss recall subset-accuracy wip
0.1658864 0.7902622 0.3707865 0.0000000

FIGURE 9. Sample session using the utiml R package.

C. MULTILABEL LEARNING WITH PYTHON

In recent years Python has been rising among machine
learning tools, largely thanks to the popularity of libraries
such as numpy, pandas and, above all, scikit-learn.
Although existing methods in the latter library could be used
to face MLL, by applying basic data transformations and
using binary or multiclass classifiers, there is no native sup-
port for MLL in scikit—-1learn. This gap has been filled
by the scikit-multilearn library [41], built on top of
the previous one.

VOLUME 8, 2020

Some datasets from MULAN are hosted in a specific
scikit-multilearn repository. They can be down-
loaded from this repository and loaded onto memory by
calling the 1oad_dataset () function. Any other MLD,
as long it is provided in ARFF format, can be read using the
load_from_arff () function. Once the data is available,
the usual steps to train and evaluate the MLL algorithms
included in scikit-multilearn are as follows:

1) Use any of the functions within the adapt or
problem_transform modules, such as MLKNN ()
or BinaryRelevance (), to configure the desired
classifier.

2) Train the classifier by calling its £it () method. It will
receive as parameters the features and labels of training
instances.

3) Obtain label predictions for test data by means of the
predict () method. It takes the features of test sam-
ples as input and returns the predicted outputs.

4) Compute performance metrics through the functions
available in the sklearn.metrics module.

Although only a handful of transformation-based and
adapted algorithms are implemented in this Python library,
it also provides a wrapper that allows the user to call any
MEKA classifier. The capability to use Keras in order to
build deep learning-based multilabel models is also included.
A sample scikit-multilearn work session is shown
in Fig. 10, where two classifiers are trained with the
emotions MLD. Additional details about how to install and
use this Python library are given in Appendix G.

D. MULTILABEL LEARNING ALGORITHMS IMPLEMENTED
IN OTHER LANGUAGES

Beyond the functionality found in the software packages
already described, many authors provide their own imple-
mentations of many published MLL methods. Reference
implementations of algorithms, those written by the authors
themselves, can be found in disparate languages. Usually
the link to these resources is given in the paper or the
book where the algorithms are described. For instance,
reference implementations of some techniques explained
in [6] are hosted at https://github.com/fcharte/SM-MLC.
Many of these links can be also found in MLL reviews
such as [13]-[15], [19].

Two outstanding websites in this regard are those of
research teams LABIC (http://computer.njnu.edu.cn/Lab/
LABIC/LABIC_Software.html) and LAMDA (http:/
lamda.nju.edu.cn/Data.ashx). The former hosts MATLAB
packages for performing multilabel linear feature extraction,
and offers C4-+ packages with several MLL implementations
relying on SVMs and kNN. The list of software methods
provided in the latter page is quite long, mostly MATLAB
source code modules although there also are Python, Java and
C++files. These include a remarkable amount of MLL clas-
sifiers, as well as MLL combined with other techniques such

50343

IEEEACC@SS F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

[®] Python-session-scikitmlipyr X

B+ XOTf » m C Code v

Load train and test partitions to fit two classifiers

emotions_X_train, emotions_Y_train, _, _ = load_dataset('emotions', 'train')
emotions_X_test, emotions_Y_test, _, = load_dataset('emotions', ‘test’')

emotions:train - exists, not redownloading
emotions:test - exists, not redownloading

classl = BinaryRelevance(classifier=SVC(gamma="auto"))
classl.fit(emotions_X_train, emotions_Y_train)

BinaryRelevance(classifier=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf"',
max_iter=-1, probability=False, random_state=None, shrinking=True,
t01=0.001, verbose=False),

require_dense=[True, True])

class2 = MLKNN()
class2.fit(emotions_X_train, emotions_Y_train)

MLKNN(ignore_first_neighbours=0, k=10, s=1.0)

prediction = classl.predict(emotions_X_test)
print('Hamming loss: ', metrics.hamming_loss(emotions_Y_test, prediction))
print('Accuracy: ', metrics.accuracy_score(emotions_Y_test, prediction))

Hamming loss: ©.26485148514851486
Accuracy: ©0.14356435643564355

FIGURE 10. Training and testing of two classifiers using scikit-multilearn.

as multiinstance learning, multiview learning, reinforcement A. EVALUATING PERFORMANCE FROM JAVA

learning, etc. Themulan.evaluation.measure packagein MULAN

defines a large assortment of classes, aimed to compute a
VIl. EVALUATING MULTILABEL LEARNING performance metric* each one of them. Since they derive
PREDICTIVE PERFORMANCE from a few common classes, and implement the Measure
Most of the learning algorithms specifically designed to work interface, their behavior is always the same. Essentially, they

with multilabel data have a goal, predicting the set of labels ~ provide an update () method that gets a prediction and a set
for unseen instances as accurately as possible. As stated of ground truth labels, a reset () method to clear previous

in Section II, this prediction can be fully correct or fully computations, and agetValue () method which returns the
wrong, but also any point in between. Because of this a large current metric value.

collection of performance metrics, more than twenty, aimed MULAN does not facilitate a direct mechanism to
to assessing the models exists. compute a collection of metrics from a set of pre-

In order to compute the evaluation metrics for a set of dictions, although the individual classes in the package
instances, we will usually need the sets of ground truth labels mulan.evaluation.measure could be used to accom-
and of predicted ones. Predictions can be a binary partition, plish this task with a bit of programming work. The

simply stating which labels are relevant or not for each Evaluator class expects a trained classifier and a set
instance, or real values, such as confidence levels. In the latter of test instances as arguments, instead of predictions. The
case, a label ranking can be obtained, and it can be converted evaluate () method takes care of doing all the work inter-
to a binary partition by simply applying a threshold. nally, obtaining the predictions for each test sample from the
Although all performance metrics are defined in the lit- classifier and updating the chosen metrics. The Evaluator
erature, not all software tools implement them in the same class also has a crossValidate () method able to per-
way. The evaluation functions of a specific package couldbe ~ form cross validation, using a specific number of folds and
able to process the representation of results produced only returning average performance metrics.
by itself. Moreover, not all existing metrics are provided Both MEKA tools, the Explorer and the Experimenter,
by all tools. Table 5 summarizes the ones available in each return a full list of performance metrics for each completed
software package among the most common metrics. There experiment. The values are shown in the GUI and they can
are others not reflected in this table due to being very basic be exported to a file as well. Internally, MEKA relies on

and common, such as the amounts of true positives and true the methods in the Evaluation () class to assess the

negatives, or being too specialized and quite rare in MLL. g .)
The followi b . it th d Aside from the usual MLL performance metrics, MULAN also considers

€ . 0. owing subsections portrai ¢ procedures (o assess a few specific ones aimed to evaluate multiregression outputs. These are not
predictive performance through several programs. shown in Table 5.

50344 VOLUME 8, 2020

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

IEEE Access

TABLE 5. Summary of performance metrics provided by each tool.

Metric meka mldr mlr mulan scikitml utiml
Instance-based

Accuracy v v v v v v
Example AUC X v X X v X
F-measure v v v v v v
Hamming loss v v v v v v
Hierarchical loss X X X v X X
PPV X X v X X X
Precision v v X v v v
Recall v v X v v v
Subset 0/1 v X v X v X
Subset accuracy v v X v v v
TNR/Specificity X X X 4 X X
TPR/Sensitivity X X v X X X
Label-based

Macro AUC v v X v v v
Macro AUPRC v X X X X X
Macro F-measure v v X v v v
Macro Precision v v X v v v
Macro Recall v v X v v v
Macro Specificity X X X 4 X X
Micro AUC X v X v v v
Micro F-measure v v X v v v
Micro Precision v v X v v v
Micro Recall v v X v v v
Micro Specificity X X X 4 X X

Ranking-based

Average precision v v X v v v
Coverage X 4 X v v v
Log loss v X X X X X
Margin loss X 4 X 4 X v
One Error v X X v X v
Ranking loss v 4 X 4 v v

AUC=Area Under ROC Curve, AUPRC=Area Under Precision Re-
call Curve, PPV=Positive Predictive Value, TNR=True Negative Rate,
TPR=True Positive Rate.

performance of a classifier. The metrics are calculated
through the static methods offered by the Metrics class
in the meka.core package. Aside from the ones shown
in Table 5, MEKA also considers a few metrics that are not so
usual in MLL, such as the Jaccard index or the Levenshtein
distance.

B. EVALUATING PERFORMANCE FROM R
The procedure for evaluating predictive performance in R
will mainly depend on the format in which the predicted
and true labels are stored. If they are in a Prediction
Multilabel object, returned by the predict () function
in the m1r package [47], the obvious way would be passing
ittomlr’sperformance () function. It usually needs two
parameters: the object having the predictions and a list with
the measures to be computed. The model that generated the
predictions could be also needed for some measurements.
A list of all supported multilabel metrics can be retrieved
through the 1istMeasures () functions. As can be seen
in the following example, only a small subset of existing
measures are currently implemented:

The predict () functioninutiml package [46] returns
an mlresult object holding the predictions. It has to

VOLUME 8, 2020

1> ‘

2| > measures <- mget (listMeasures (), envir = as.environment (

3| > performance (preds, measures, model = rfmodel)
4 featperc multilabel.tpr multilabel.hamloss multilabel.subset0l
5 1.0000000 0.6394875 0.4580336 0.9928058
6 timeboth timetrain timepredict multilabel.ppv
/ 0.0900000 0.0800000 0.0100000 0.3725792
8 multilabel.fl multilabel.acc
9 0.4489768 0.3215382
10

>

Example 4. Evaluating predictive performance with mir.

be fed to functions multilabel_evaluate () and
multilabel_confusion_matrix (), responsible of
computing performance metrics and produce a confusion
matrix, respectively. A total of 19 multilabel metrics are
considered. A vector with their names can be retrieved by
calling themultilabel_measures () in this package.

Although the m1dr [40] package does not include any
MLL algorithm, it provides a evaluation function able to
return a comprehensive set of performance metrics. The
original goal was to facilitate a reference implementation of
as many metrics as possible. This implementation has been
used by other package designers. The function in charge
of computing the metrics is ml1dr_evaluate (). It takes
two parameters as input, the ground truth labels for every
instance and the set of predictions. The returned value is a
list of 20 metrics including the data needed to plot a ROC
curve, as explained in Appendix C.

C. EVALUATING PERFORMANCE FROM PYTHON
The well-known Python’s scikit—-learn library has a
module named metrics. A large collection of functions,
aimed to compute binary, multiclass and multilabel perfor-
mance metrics, can be found inside it. Usually, they take at
least two parameters, the set of ground truth labels and the
set of predicted ones. Many of them also accept an addi-
tional average parameter. It can take the “samples”,
“macro” and “micro” values, so that any metric func-
tion, suchasprecision_score () orfl_score (),can
compute both sample-based and label-based MLL metrics.
Apart from obtaining individual performance indica-
tors, the metrics module also has a function able
to produce a text report including the main evaluation
measures. In the multilabel case this function, named
classification_report (),displaysindividual preci-
sion, recall and F1-score values for each label in the MLD.

VIil. CONCLUDING REMARKS

Multilabel learning techniques have experienced an impor-
tant growth in late years. However, they are still barely
supported by the most popular machine learning software
tools. This paper provides an up-to-date and comprehen-
sive revision of MLL software, including data repositories,
exploratory data analysis tools, and general purpose pack-
ages with MLL algorithms implementations. Firstly, a broad
overview of these tools’ capabilities has been portrayed, dig-
ging deep into the functionality they offer. Then, a didactic

50345

IEEE Access

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

TABLE 6. Most usual classes from the MULAN library.

Class/Package Description

MultiLabelInstances
Statistics

mulan.transformations

Loads a dataset from an ARFF file getting label information from an XML file.
Computes several MLL data traits, including label correlation coefficients.

The classes in this package are in charge of performing data transformations such as BR

(BinaryRelevanceTransformation)and LP (LabelPowersetTransformation).

mulan.classifier This package is the root

several sub-packages, such as mulan.classifier.lazy,

mulan.classifier.meta or mulan.classifier.transformation, that hold the classes
where each MLL algorithm is implemented.

Evaluator
performance.

mulan.evaluation.measures

The evaluate () and crossValidate () methods in this class take care of assessing the classifiers

All the performance metrics are defined as classes in this package.

description on how to install and use the most important
ones has been contributed. This way, the present paper com-
plements previously published tutorials focused on MLL
methods [15] or the approach for performing MLL experi-
ments [34], allowing researchers and practitioners to choose
the tools that best suit their needs.

APPENDIXES

APPENDIX A

MULAN

MULAN [36] was the first general purpose library for con-
ducting MLL experiments. It is written in Java and relies
on the functionality of WEKA [3]. The MULAN library,
along with its source code, documentation, the corresponding
WEKA version and some sample datasets, can be down-
loaded from http://mulan.sourceforge.net. The installation is
straightforward, since the user only has to unpack a ZIP file
and set the proper path in an environment variable. A recent
Java Development Kit (JDK) is assumed to be installed in the
computer.

Using MULAN implies writing a Java application that
imports the MULAN and WEKA packages and uses their
classes. So, a certain knowledge of the Java language and
basic programming techniques is required. Since Java 9 there
exists a Java REPL named jshell. It can be used to work
interactively in a similar fashion to Python or R. Once the
JAR files containing the WEKA and MULAN libraries have
been loaded, the classes summarized in Table 6 can be used
to accomplish the most usual MLL tasks.

Once the program is written and compiled, the follow-
ing command would run it from the command line: java
—-cp mulan. jar;weka.jar myprogram. Alterna-
tively, jshell can be launched as shown in Fig. 11, with the
-c classpath option, to work interactively. Assuming
this latter configuration, the following is a sample work
session with MULAN. It loads the full emotions dataset
and obtains some data traits. Then, training and testing
partitions are loaded and two different classifiers are trained
and evaluated.

50346

jshell> import mulan.classifier.x;
jshell> import mulan.data.x;
jshell> import mulan.classifier.transformation.ClassifierChain;
jshell> import mulan.classifier.lazy.MLKNN
jshell> import mulan.evaluation.x;
jshell> import mulan.evaluation.measure.x;
jshell> import weka.classifiers.trees.J48
jshell> import weka.core.Utils;
jshell> var emotions = new MultiLabelInstances (D D6
jshell> var statistics = new Statistics();
jshell> statistics.calculateStats (emotions);
jshell> statistics
Examples: 593
Predictors: 72
Nominal: 0
--Numeric: 72
Labels: 6

OO UTE W O W 10U WN

e el

Cardinality: 1.8684654300168635
20| pensity: 0.3114109050028106
21| pistinct Labelsets: 27

3 Percentage of examples with label 1: 0.2917369308600337
24| percentage of examples with label 2: 0.2799325463743676

26| // Load the train and test partitions from ARFF files
27| jshell> var train = new MultilLabelInstances (B
)i
8| jshell> var test = new MultilabellInstances (o)

0| 7/ some data exploration

1| jshell> system.out.println(

+ train.getNumLabels() +

2 + train.getCardinality ()
3| Instances: 391, Labels: 6, Card: 1.813299232736573
4

+ train.getNumInstances() +

// A transformation-based classifier and an adapted classifier
6| jshell> var classl = new ClassifierChain(new J48());
37| jshell> var class2 = new MLKNN(5, 1.0);

39| 77 Train both classifiers
40| jshell> classl.build(train);
41| jshell> class2.build(train

43| // pefine the evaluation metrics to obtain
44| jshell> var evaluator = new Evaluator();

45| jshell> List<Measure> metrics = Arrays.asList (new HammingLoss(), new
ExampleBasedAccuracy (), new ExampleBasedFMeasure());

46

47| 7/ Evaluate the ClassifierChain classifier

48| jshell> evaluator.evaluate(classl, test, metrics)

49| Hamming Loss: 0,2896

50| Example-Based Accuracy: 0,4277

51| Example-Based F Measure: 0,5145

52

53| // Evaluate the MLKNN classifier

54| jshell> evaluator.evaluate(class2, test, metrics

55| Hamming Loss: 0,2120

56| Example-Based Accuracy: 0,5165

57

Example-Based F Measure: 0,5959

Example 5. Sample MULAN work session.

APPENDIX B

MEKA

MEKA [37] differs from most other tools in two Ways:5 on
the one hand, its objective is to facilitate the execution of

5 Aside from multilabel learning, MEKA also provides tools to accomplish
multitarget learning and hierarchical learning. Those are not considered here.

VOLUME 8, 2020

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

IEEE Access

B C:\Windows\System32\cmd.exe - jshell -c “C:\Program Files\Java\jre-9\lib;mulan jar:weka.jar" --add-modules javaxml.bind - o X

“[Goodbye

V¥elcome to JShell -- Version

D:\FCharte\Estudios\mulan-1. 3. 0> jshell -c “C:\Program Files\Java\jre-9\lib;mulan. jar;weka. jar” --add-modules java.xml.bind

For an introduction type: /help intro

\ishell> import mulan. data.*

jshell> MultilabellInstances mld = new MultiLabellnstances(“birds-train. arff”, “birds.xml”)

mld ==> mulan. data. fultiLabelInstances@3c46e67a

fama11N a2

FIGURE 11. Interactive MULAN session using the Java 9 REPL.

& MEKA Experimenter - O X
File Execution Statistics

Setup (basic) | Setup (expert) | Statistics | Log

Classifiers Datasets

meka.classifiers.multilabel BR -W weka.classifiers| add... C:\Users\F: elease1.9 Add..
meka.classifiers.multilabel.CC -S 0 -W weka.classi C:\Users\Fi i | 1.9
meka.classifiers.multilabel. RAKEL -M 10 -k 3-P 0 -

Remove all

& MEKA Experimenter = o X
File Execution Statistics
Setup (basic) | Setup (expert) | Statistics | Log

Raw | Aggregated | Measurement

Remove all

« > < 1] »

Runs 10/
Evaluation Cross-validation | v

Folds 10

Split percentage

Preserve order

Statistics Choose |KeyValuePairs -F C\Users\Francisco\Documents\Experiment

Notes

i Hamming loss -
Dataset D] 2 B

Music:-C6 | 0262 0262 0258

thyroid -C 7 070009 098

Index Classifier

[1]__|meka classifiers muttilabel BR -W weka.classifiers trees J48 — -C 0.25 -M 2
[2] _|meka classifiers muttilabel. CC -S 0 -W weka classffiers trees J48 — -C 0.25 M 2
[3] _|meka classifiers.multilabel RAKEL -M 10 k 3 -P 0 -N 0 -S 0 -W weka classifiers trees.J48 — -C 0.25 -M 2

Usereg.Exp | Search

==

==z

FIGURE 12. Configuring an MLL experiment in the MEKA experimenter and analyzing the results.

$ CLASSPATH=./lib/+

$ java meka.classifiers.multilabel.BR -t data/Music.arff

3| == Evaluation Info

Classifier meka.classifiers.multilabel.BR
options [-W, weka.classifiers.trees.J48,--,-C,0.25,-M,2]
Additional Info

Dataset Music

Number of labels (L) 6

Type ML

Threshold 0.9333333333333333

Verbosity 1

3| == Predictive Performance
Number of test instances (N)
Accuracy

Jaccard index

443
443
741
173

cooo

Hamming score
3 | Exact match

0| == Additional Measurements
Number of training instances 355
Number of test instances 2
Label cardinality (train set) 1.789
Label cardinality (test set) 1.99.
Build Time 3.05

@
&

Example 6. Sample MEKA work session.

MLL algorithms and obtain results rather than to perform
EDA; on the other hand, it offers a GUI instead of a command
line or API as MULAN, mlr and scikit-multilearn
do. The MEKA GUI is inspired by WEKA’s [3], so the
procedure to follow to configure and run MLL experi-
ments is quite similar to that used in standard learning
tasks with the latter tool. MEKA can be downloaded from
http://waikato.github.io/meka/ in a ZIP file. Once it has been
unpacked, the user can simply double click the run.sh
(GNU/Linux and MacOS) or run.bat (Windows) file to
launch the application.

VOLUME 8, 2020

Running MLL experiments by means of the MEKA GUI
is a straightforward process. The MEKA Experimenter is the
best choice for comparing several algorithms over a set of
MLDs. Firstly, the experiment has to be configured choos-
ing the MLL methods and their parameters, as well as the
list of datasets as shown in Fig. 12 (left). The number of
runs and partitioning/evaluation scheme are also set in this
page, as well as the destination file where the statistics will
be stored. Once the Apply button sets the configuration,
the experiment is run with the Execution>Start option. After
finishing, the Statistics page allows the user to choose any
metric, including running time, and compare the performance
amongst classifiers (see right image in Fig. 12).

By means of the MEKA Explorer, the user can test different
classifier configurations, see all the performance metrics, plot
some of their precision-recall curves and ROC curves, save
them for further use, etc. Fig. 13 shows several runs of differ-
ent MLL methods (left) and the ROC curve corresponding to
the last one (right).

Like WEKA, MEKA also allows the user to run
these tasks from the command line. Assuming that the
CLASSPATH environment variable is correctly set, any
MLL algorithm can be called with the command java
meka.classifiers.multilabel .METHOD, indicat-
ing the MLD to be processed with the —t option, as shown
below. Additional parameters can be passed to set the under-
lying binary/multiclass classifier and other options.

50347

IEEE Access

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

® MEKA Explorer - o X
File Edit Classify

Preprocess | Classify | Visualize | Log

Classifier

Choose |RAKEL -M 10k 3-P 0-N 0-5 0-W ws

Evaluation
Trainitest split =

Start

History

2019-04-18 13:24:54: multilabel. BR
2019-04-19 09:12:24: multilabel. BR
2019-04-21 10:37:39: multilabel.LC
2019-04-21 12:12:27: multilabel.LC
2019-04-21 13:03:16: multilabel.RAKEL.

“] >

T
ne
Kh

4 multilabel RAKEL *

o[1[2[3[a[s

X: False Positive Rate (Num) v | |Y: True Positive Rate (Num) -

Colour: Threshold (Num) v || Select Instance v

Clear Open save Jitter O
Plot AUC: 0.844
1

0

0 0.5 1

Class colour

0 3 6

FIGURE 13. The MEKA explorer allows testing disparate configurations and visualizing the results.

Console Terminal

> Tibrary(mldr)

Enter mldrGUI() to Taunch mldr's web-based GUI

>
>

FIGURE 14. Loading the mldr package into the R session.

APPENDIX C

MLDR

Aside from Java and Python, R is among the most used
languages for data science. As a consequence, several R
packages related to multilabel learning are available. The
mldr package, thoroughly introduced in [40], was the
first of them to be published in the CRAN® (Comprehen-
sive R Archive Network), the official network for R pack-
ages. Therefore, it can be installed simply by entering the
usual install.packages (“mldr”) command into the
R console. The latest version of this software can be also
obtained from github.com/fcharte/mldr.

Although it provides functions to perform some other
tasks, the main goal of this R package is to ease the
exploratory data analysis (EDA) of multilabel datasets. This
work can be done either from the command line or through
a graphical user interface (GUI). The command to open the
GUTI is shown in the console as soon as the package is loaded
onto memory, as can be seen in Fig. 14.

One of the key aspects of this package is that it incorporates
into R a new data structure, the “m1dr” S3 class. This is
a special kind of list holding all the information about any
loaded MLD. Before the introduction of the m1dr package
there was no structure in R for working with multilabel data.
Interestingly, other R packages which have included MLL

6https://cran.r-proj ect.org/

50348

capabilities lately, such asmlr [49],m1dr.datasets [34]
or utiml [46], support this same data structure.

Once a dataset has been loaded or generated, by call-
ingmldr () ormldr_from_dataframe (), the obtained
“mldr” object carries both the data and a summary of its
traits. This includes basic characterization metrics, label and
labelsets distribution, imbalance and label concurrence data,
etc. Since the package overloads basic R functions such as
print (), summary () andplot () J the “m1dr” object
contents can be retrieved and plotted through these standard
methods. A summary of the functions exported by the pack-
age is provided in Table 7.

As can be observed, aside from EDA functions this pack-
age also includes implementations of some transformations
methods, such as BR, LP and REMEDIAL, as well as the
tools needed to evaluate a set of predictions. With the excep-
tion of these, all the functionality of the package is also
accessible through the GUI shown in Fig. 15.

Assuming the package is already installed, the following
script demonstrates how to use some of its capabilities.

The script starts by loading a dataset, then obtaining a
summary of its traits. Next, a list of labels and their basic
characteristics is retrieved. A report of concurrence among
labels is printed after that. Lastly, and assuming that a set
of predictions have been obtained through some procedure,

7Seven types of plots are considered, including multilabel specific designs
of histograms, bar plots and circular plots.

VOLUME 8, 2020

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools I E E EACCGSS

TABLE 7. Most usual commands from the mldr package.

Command

Description

mldr

Loads a dataset from an ARFF file and optionally an XML file containing label information. This way MULAN, MEKA
and other ARFF-based datasets can be loaded as "m1dr" objects.

mldr_from_dataframe Creates an "mldr" object from the data contained in an R data. frame, easing the generation of synthetic datasets.

mldrGUI

concurrenceReport

mldr_transform
write_arff

==,+and []

mldr_evaluate

remedial

Launches a web GUI aimed to simplify the process of loading and exploring any multilabel dataset. The GUI relies on
the functions that the user can also call from the command line.

Produces a textual report on label concurrence, including metrics, a list of label interactions and also a circular plot
showings these interactions.

Transforms a multilabel dataset into a set of binary classifiers (BR) or a multiclass dataset (LP).
Exports an "m1dr" object to an ARFF-format file, also creating the XML file containing label information.

Operators to compare two "mldr" objects, concatenate two datasets and filter the samples in a multilabel dataset,
respectively.

Taking as input an "m1dr" object and a set of predictions, this function computes and returns a set of 20 evaluation
metrics. These can be also individually obtained through their respective functions.

Applies the REMEDIAL algorithm described in [48] to the dataset, thus decoupling highly imbalanced labels that
concur in the same instances.

films - midr

Main Labels Labelsets Attributes Concurrence About

& Save plot

Concurrence analysis
The SCUMBLE level for each label is shown in the

table at the left.

In the following table the minority labels most
affected by SCUMBLE are shown.

For each one of them, the names of the majority
labels with interactions are provided.

Description
Dataset

Mean
SCUMBLE

SCUMBLE
Ccv

Minority
labels with
high
SCUMBLE

Film-Noir

IMDB

Value

IMDB

0.108216503373893

History

5951

1.40233966478634

Film-Noir, News, Talk-Show

Sci-Fi, Crime, Romance,
Music, War, Horror,
Adventure, Thriller, Mystery,

>
&
&
o

@
Scumblo = 0.108216503373693

FIGURE 15. The GUI of the mldr package has several pages, providing summaries and plots for different aspects of the loaded dataset.

a evaluation is performed and the set of performance mea- APPENDIX D

surements is shown in

the console. The last member of this MLDR.DATASETS

list, named roc, can be provided to the plot () function to Like the previous one, this is an R package available on
graph the usual ROC curve. CRAN. Therefore, it can be installed by issuing the command

VOLUME 8, 2020

50349

IEEEACC@SS F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

TABLE 8. Most usual commands from the mldr.datasets package.

Command Description

available.mldrs Returns an R data . frame with name, URL and other basic data about the available datasets in the Cometa repository.

get.mldr Takes the name of a dataset as parameter and loads it, if it is locally available, or downloads it from Cometa. Alternatively,
the package provides a function for each dataset, e.g. emotions (), slashdot (), etc., that loads the requested
dataset like get .m1dr ("name") would do.

density/sparsity These functions compute and return the level of density/sparsity of the dataset. The larger is the amount of attributes with
zero value among the dataset instances the higher its sparsity and lower its density.

XXX.holdout Where XXX canbe iterative.stratification, stratified or random, depending on the desired partitioning
strategy. This function divides the dataset into one training and one test partitions.

XXX.kfolds Divides the dataset into the number of desired folds, each one made of a pair of training/test partitions. The same three
partitioning strategies of XXX .holdout are available.

toBibtex Returns a string with the citation data of the dataset formatted as a BibTeX entry.

write.mldr Exports either a full or partitioned dataset to several file formats, creating the proper files.

1| > 1library() F sion 1|> 1ibrary() # Load the package into the current R n
2> 2>
3| > # Load the "emotions.arff" f ns.xml 3| > # Meta-data from three of the available datasets
4| > emotions <- mldr () 4| > available.mldrs() [c(1,16,20),]
5| > summary (emotions) 5| Name Description Instances Attributes Labels
6| num.attributes num.instances num.inputs num.labels num.labelsets num.single. URL
labelsets 6]1 bibtex Dataset with BibTeX entries 7395 1836
UE! 78 593 72 6 27 159 https://cometa.ml/public/full/bibtex.rds
4 7| 16 eurlexdc EUR-Lex directory codes dataset 19348 5000
8| max.frequency cardinality density meanIR scumble scumble.cv tes 412 https://cometa.ml/public/full/eurlexdc.rds
9|1 81 1.868465 0.3114109 1.478068 0.01095238 1.26456 9.364262 8| 20 imdb Dataset generated from the IMDB film database 120919 1001
10| > emotions$labels 28 https://cometa.ml/public/full/imdb.rds
11| index count freq IRLb1 SCUMBLE SCUMBLE.CV 9| >
12| amazed-suprised 73 173 0.2917369 1.526012 0.002159173 2.4782958 10| > # Load the bibtex dataset, downloading if it is not locally available
13| happy-pleased 74 166 0.2799325 1.590361 0.014332319 0.8916295 11| > databib <- bibtex()
14| relaxing-calm 75 264 0.4451939 1.000000 0.023786461 0.4848911 12 | Looking for dataset bibtex in the download directory
15| quiet-still 76 148 0.2495784 1.783784 0.023131538 0.6312293 13| Looking for dataset bibtex online...
16| sad-lonely 77 168 0.2833052 1.571429 0.016133470 0.8093536 14| pownloading dataset bibtex
17| angry-aggresive 78 189 0.3187184 1.396825 0.001331189 2.4947227 15| trying URL /1 /
18] > 16| content type / length 959692 bytes (937 KB)
19| > concurrenceReport (emotions) 17| downloaded 937 kB
20| pataset musicout: Mean SCUMBLE 0.01095238 with CV 1.26456 18] >
21 19| > summary(databib) # Ge summary traits of the data
22| SCUMBLE mean values by label: 20| num.attributes num.instances num.inputs num.labels num.labelsets
23| # relaxing-calm: 379 2101 1995 7395 1836 159 2856
24| # quiet-still: 0. 22| num.single.labelsets max.frequency cardinality density meanIR scumble
25] # sac 23|11 2199 471 2.401893 0.01510625 12.49826 0.09378705
26| &t 24| scumble.cv tes
27| # 25|1 1.365618 20.54143
28| # 26| >
29 27| # Retrieves citation information of a previously loaded dataset: emotions
30| Minority label quiet-still > cat (toBibtex (emotions))
31| # ng n (75, SCI @incollection{,
32| # y-ag 30| title =
33 31| author =
34| Minority label sad-lonely (77, SCUMBLE 0.01613347) interacts with: 32| booktitle =
354 ... 33
36| > 34|y
37| > res <- mldr_evaluate (emotions, predictions) 35| >
38| > str(res) 36| > # pivide the emotions dataset to 10 fo and write them using MULAN and CS
39| List of 20 37| > # file formats, taking into account the arsi 1
40| s accuracy : num 0.974 38| > write.mldr (random.kfolds (emotions, k=10), format=c(’)y
41| s example_auc : num 0.97 39| + sparse=sparsity (emotions) > 0.5, basename=)
42| s average_precision: num 0.965 40| wrote file emotions-1x10-tra.arff
43 e 41| wrote file emotions-1x10-tra.xml
44(s roc :List of 15 42| wrote file emotions-1x10-tra.csv
45| ..s percent : logi FALSE 43| Wwrote file emotions-1x10-tra_labels.csv
46| ..s sensitivities : num [1:3] 1 0.957 0 44| wrote file emotions-1x10-test.arff
47| ..s specificities : num [1:3] 0 0.981 1 45| wrote file emotions-1x10-test.xml
48 46| wrote file emotions-1x10-test.csv
47 | wrote file emotions-1x10-test_labels.csv
48 | wrote file emotions-2x10-tra.arff
Example 7. Sample mldr work session. 49

Example 8. Sample mldr.datasets work session.
install.packages (“mldr.datasets”) in the
R console. The source code of the latest version of this soft-

ware, comprehensively described in [34], is always available Once installed, the library (“mldr.datasets”)
in the GitHub repository at github.com/fcharte/mldr.datasets. command will load it into the current R session. Afterward,
Based on the data structure defined in m1dr, the m1dr. the most common steps would be the ones summarized
datasets package provides the functionality needed to in Table 8. The following example shows how to use some
automatically download datasets from the Cometa repository, of them along the output they produced.
partitioning them according to different strategies, and export Once the package has been loaded, the meta-data from
them to several other file formats. A full set of informative three available datasets is retrieved and printed. By running
methods, able to extract data traits and citation data, are the available.mldrs () function, withoutthe [] opera-
provided as well. tor, a full list would be obtained. Then, one of these datasets is

50350 VOLUME 8, 2020

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

IEEE Access

automatically downloaded from Cometa. If the dataset were
available in the current working directory, it would be loaded
into memory without the previous step. After obtaining some
traits of the data, such as the number of labels, features, label
cardinality, etc., the BibTeX entry to cite a dataset is printed
into the console. Lastly, the dataset is partitioned and exported
to two different file formats.®

APPENDIX E

MLR

The m1r [47] package is among the best known by R users
when it comes to conducting machine learning experiments.
It was later extended to also face MLL tasks. These new abili-
ties are detailed in [49]. As most R packages, m1r is available
in the CRAN, so it can be installed as usual by issuing the
corresponding install.packages () command. Source
code and the latest version of this package is available at
github.com/mlr-org/mlr.

Although mldr provided methods to transform MLDs,
so that existing binary and multiclass learners could be used
with them, mlr was arguably the first package to fully
incorporate MLL methods into R. This package provides a
common working procedure, no matter the kind of duty to
perform, binary/multiclass/multilabel classification, regres-
sion, clustering, etc. Firstly a task from the original data
has to be created. Second, a learner is configured from the
task. Then, the learner is trained and used to obtain predic-
tions. Lastly, performance indicators are computed from these
predictions.

Table 9 summarizes the m1r commands that one user will
need to carry on an MLL experiment. This package does not
provide any method to load MLDs stored in MEKA, MULAN
or other file formats. Data have to be already loaded into an
R data. frame. Labels are expected to be stored as logical
vectors. Attributes have to be of numerical or factor
data types. The character data type (string of characters)
is not supported.

Assuming the MLD is loaded into a data.frame,
what the m1r package offers is essentially a set of mul-
tilabel classifiers. Specifically, it provides two adaptation-
based methods and five transformation-based ones. The
former group is made up of the multivariate random for-
est[50] (multilabel.randomForestSRC)and random
ferns [51] (multilabel.cforest) methods. The latter
one provides the basic binary relevant (BR) approach plus
four additional binary transformations, classifier chains (CC),
dependent binary relevance (DBR), BR stacking and nested
BR stacking.

Regarding the evaluation of predictive performance,
mlr implements the computation of a small subset
of common MLL metrics. These include Accuracy,

8The ARFF file format considers two sub-formats called dense and sparse.
The former enumerates all the attribute values in each sample, whereas the
latter provides the index and value of non-zero attributes. Based on the level
returned by the density/sparsity functions the user can decide which
one of these formats to use.

VOLUME 8, 2020

library(

We will create r task from an mldr.datasets MLD
applying g

1O U WN

> mld <- mldr.datasets::flags

> mldmlr <- data.frame(# Builds a data.frame changing the type of labe
ogica

8 | mldsdataset [, mld$attributesIndexes],

9| sapply (mld$dataset [,mld$labels$index], as.logical))

10>

11| > mldmlr(sapply (mldmlr, is.character)] <- # Change "character" columns to "
factor"

12| 1apply (mldmlr[sapply (mldmlr, is.character)], as.factor)

13| > mldtask <- makeMultilabelTask(id =

14| data = mldmlr, target = row.names(mld$labels))
15>

16| > mldtask # Explore e mlr task obj

17| supervised task: MLLTest

18| Type: multilabel

19| Target: red,green,blue,yellow,white,black,orange
20| observations: 194

21| Features:

22| numerics factors ordered functionals
23] 10

24 | Missings: FALSE

25| Has weights: FALSE

26| Has blocking: FALSE

7| Has coordinates: FALSE

8| classes: 7

9| red green blue yellow white black orange
0] 153 91 99 91 146 52 26
1

32| > # Te one adap: on-based algorithm and one ansformation

1 <- makeLearner (

2 <- makeMultilabelBinaryRelevanceWrapper (

makeLearner (, predict.type =)

36| > modell <- train(classl, mldtask, subset = 1:150)

g > model2 <- train(class2, mldtask, subset = 1:150)

38| > predictl <- predict(modell, task = mldtask, subset = 151:194)

39| > predict2 <- predict (model2, task = mldtask, subset = 151:194)

40| > measures <- list(multilabel.hamloss, multilabel.fl, multilabel.acc, multilabel
. subset01)

1| > performance (predictl, measures = measures)

2| multilabel.hamloss multilabel.fl multilabel.acc multilabel.subset01

3| 0.2305195 0.7493930 0.6505952 0.7500000

4

5

6

> performance (predict2, measures = measures)
multilabel.fl
0.6511424

multilabel.hamloss
0.3051948
7| >

multilabel.acc multilabel.subset01
0.5324134 0.9090909

Example 9. Sample mir work session.

Hamming loss, F-measure and Subset 0/1. The full list
can be obtained by issuing at the R command line the
listMeasures (“multilabel”) statement.

The following example demonstrates how to use some of
mlr’s capabilities. Two MLL classifiers are used to process
an MLD retrieved from the m1dr . datasets package. The
first lines show how to apply the necessary changes to be used
for an m1r task.

APPENDIX F

UTIML

The ut im1 package [46] is the most recent addition to MLL
capabilities in R. Its goal is to facilitate implementations of
several multilabel classifiers. Unlike m1r, ut im1l has been
designed for working with this kind of data from the begin-
ning. It is available at CRAN, so it can be installed through
the install.packages () function. Their authors main-
tain the latest version of utiml in a code repository at
github.com/rivolli/utiml.

Just like the m1r package, ut im1 also lacks the functions
needed to read MLDs regardless of their format. It relies on
the methods provided by m1dr to do so. In fact, loading
utiml into R also loads m1dr. Once the data is available
in an m1dr object, the user can conduct preprocessing, par-
titioning, learning and evaluation tasks. These are the four
groups of functions provided by ut im1. The most relevant
ones are summarized in Table 10.

utiml provides the user with a comprehensive set of
transformation-based MLC methods. Some of them are not

50351

IEEE Access

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

TABLE 9. Most usual commands from the mir package.

Command Description

makeMultilabelTask Builds aMultilabelTask object from the multilabel data stored in a data . frame. Besides the data itself,
this method takes as input a target argument stating the names of the labels.

makeLearner Instantiates any of the learning methods supported by m1r, either algorithms adapted to work with multilabel

makeMultilabelXXXWrapper

train

predict

performance

data or standard ones to be used as binary classifiers. Takes the name of the algorithm and the type of prediction,
which usually is "prob" for MLL tasks, as inputs.

Taking a base binary classifier as input, this set of methods build a multilabel learner by applying some
kind of transformation. XXX can be BinaryRelevance, ClassifierChains, DBR, Stacking or
NestedStacking, depending on the transformation method to follow.

Trains the selected learner using the data associated to a task. All the instances in the data are used by default,
but a subset can be specified as additional parameter. This method returns the trained model as result.

Uses the model returned by train () to predict the relevant labels for a set of instances. These are taken from
a task, usually selecting a subset of them.

Evaluates the predictive performance of a model by computing one or more metrics. A list with the available
ones can be retrieved through the 1istMeasures () function.

TABLE 10. Most usual commands from the utiml package.

Command

Description

fill_sparse_mldata

remove_ XXX

replace_nominal_attributes

create_XXX_partition

br, brplus, cc, ctrl, dbr, ebr, ecc,

1lift,mbr, ns, prudent, rdbr
clr, rpc

eps, 1p, ppt, ps, rakel
ML-kNN

predict

XXX_threshold

multilabel_evaluate

"

Replaces NA values to 0 or "" depending on the attribute type.

Where XXX can be attributes, unique_attributes, labels, unlabeled_instances
or skewness_labels. These functions delete the chosen instances, attributes or labels from the
dataset.

Transforms a multivalued attribute to a set of binary ones.

Where XXX can be holdout or kfold. Partitions the MLD into two parts or a set of k folds for
cross-validation.

Produce classification models based on several variations of the BR transformation approach.

Produce classification models based on label-pairwise transformation.
Produce classification models based on the LP transformation approach.
Implements the ML-kNN method

Uses the model returned by any of the previous functions to predict relevant labels for a set of instances
given as parameter.

Where XXX can be fixed, lcard, mcut, pcut, rcut or scut. Applies a specific threshold to the
predictions in order to generate the corresponding bipartition.

Evaluates the predictive performance of a model, returning the chosen metrics.

available in other software packages. By contrast, only one
adaptation-based algorithm is included, ML-KNN. To train
any of these models, the corresponding function has to be
called, providing the training data partition as argument.
The underlying classifier to be used with each binary set
resulting from the transformation can also be specified.
A set of eight algorithms, including C5.0, KNN, SVM
and Random Forest, can be used. They need the installa-
tion of additional R packages, since they are not included
inutiml.

Once the model has been trained, the usual predict ()
function has to be called in order to obtain label predic-
tions for new sets of instances. These would be evaluated
through the multilabel_evalute () method. It usu-
ally takes three parameters, the set of ground-truth labels,

50352

the predicted ones, and a vector with the performance metrics
to be computed. The following code snippet shows how to
perform the outlined steps.

A remarkable characteristic of utiml is its capability
to run certain tasks in parallel. It relies on the parallel
R package to do so.

APPENDIX G
SCIKIT-MULTILEARN
The support for MLL in Python comes from the

scikit-multilearn library. It follows the path estab-
lished by scikit—-1learn, the set of machine learning tools
for data mining with Python, as it provides a comprehensive
collection of classifiers.

VOLUME 8, 2020

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

IEEE Access

TABLE 11. Most usual commands from the scikit-multilearn library.

Command Description

load_dataset
load_from_arff

BinaryRelevance, ClassifierChain,

LabelPowerset, RakelD rithms.

BRkNNaClassifier, BRkNNbClassifier,
ML-kNN, MLARAM, MLTSVM

Loads an MLD downloading it from the library’s own repository if needed.
Loads an MLD from a standard ARFF file.
Implementation of classifiers using the BR, CC, LP or RAKEL transformation-based algo-

Implementation for different adaptation-based MLL classifiers.

fit This method, provided by the classifiers produced by previous functions, trains the classifier
using the data given as parameter.

predict

sklearn.metrics.*

Each classifier has a predict method to return label predictions.

The functions in the standard sklearn.metrics module are in charge of computing
evaluation metrics.

> library (utiml)

>t G e emotio o pack p
> partitions <- create_holdout_partition(mldr::emotions, c(train = 0.7, test =
0.3))

classl <- ecc(partitions$train)
class2 <- ML-KNN(partitions$train)

> predictl <- predict(classl, partitions$test)
> predict2 <- predict(class2, partitions$test)

> measures <- c(. .)
>

multilabel_evaluate (partitionsStest, predictl, measures)

> multilabel evaluate (partitions$test, predict2, measures)

1| >>> from skmultilearn.dataset import available_data_sets
2| >>> from skmultilearn.dataset import load_dataset
3| >>> from skmultilearn.problem transform import BinaryRelevance

>>> for x in available_data_sets().keys():
8|>>> print(x)

(

(

(B

(-)
(

(

(

>>> emotions_X_train, emotioj _ = load_dataset (')

>>> emotions_X_test, emotions_Y_test, _, _ = load_dataset (,)

>>> classl = BinaryRelevance (classifier=svC(gamma=)
24 >>> classl.fit (emotions_X_train, emotions_Y_train)
= MLENN ()

fit (emotions_X_train, emotions_Y_train)

>>> class2

, metrics.hamming_loss (emotions_Y_test, prediction))
, metrics.accuracy_score(emotions_Y_test, prediction))

85148514851486

5| >>> prediction = class2.predict (emotions_X_test)
7| >>> print (, metrics.hamming_loss (emotions_Y_t
, metrics.accuracy_score (emotions_Y_te:

t, prediction))

>>> print(prediction))

) | Hamming loss: 0.30363036303630364
Accuracy: 0.13366336633663367

Example 11. Sample scikit-multilearn work session.

Assuming that Python and scikit-learn are already
installed in the system,” adding scikit-multilearn
is as simple as issuing the command pip install
scikit-multilearn arff inour operating system ter-
minal window.

9 Anaconda (https://www.anaconda.com) is the preferred way of installing
Python along the main libraries, including the Jupyter Lab work
environment.

VOLUME 8, 2020

Table 11 summarizes the scikit-multilearn func-
tions and objects usually needed to load an MLD, create
and train a classifier, obtain and evaluate predictions. This
library does not provide as many MLL algorithms as other
packages, as can be seen in Table 4. However, it has other
interesting and exclusive capabilities. For instance, it offers
a couple of label embeddings algorithms able to find label
space manifolds, so that the original MLL problem can be
tackled with regression methods. It also considers generating
ensembles of classifiers from arbitrary label space divisions.
Lastly, a wrapper around MEKA opens the door to all the
existing functionality in this Java-based package (see the
corresponding appendix).

The code shown in Example 11 is part of a Jupyter note-
book which queries the scikit-multilearn datarepos-
itory, loads an MLD, for which training and testing partitions
are provided, and performs several operations over it, includ-
ing training and evaluating two classifiers, ML-kNN and BR.

REFERENCES

[1] M. Kuhn, “A short introduction to the caret package,” R Found. Stat.
Comput., vol. 1, pp. 1-10, Jan. 2015.

[2] Mathworks. (2019). Statistics and Machine Learning Toolbox. [Online].
Available: https://www.mathworks.com/products/statistics.html

[3] G. Holmes, A. Donkin, and I. H. Witten, “WEKA: A machine learning
workbench,” in Proc. 2nd Austral. New Zealand Conf. Intell. Inf. Syst.
(ANZIIS), 2002, pp. 357-361.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
pp. 2825-2830, Oct. 2011.

[5] D.Charte, F. Charte, S. Garcia, and F. Herrera, “A snapshot on nonstandard
supervised learning problems: Taxonomy, relationships, problem trans-
formations and algorithm adaptations,” Prog. Artif. Intell., vol. 8, no. 1,
pp. 1-14, Apr. 2019.

[6] F. Herrera, F. Charte, A. J. Rivera, and M. J. del Jesus, Multilabel Classi-
fication: Problem Analysis, Metrics and Techniques. Cham, Switzerland:
Springer, 2016.

[71 Z. H. Zhou, “Multi-instance learning: A survey,” Dept. Comput. Sci.
Technol., Nanjing Univ., Nanjing, China, Tech. Rep. 2, 2004.

[8] S.Sun, “A survey of multi-view machine learning,” Neural Comput. Appl.,
vol. 23, nos. 7-8, pp. 2031-2038, Dec. 2013.

[9] F. Charte, A.J. Rivera, M. J. del Jesus, and F. Herrera, “QUINTA: A ques-
tion tagging assistant to improve the answering ratio in electronic forums,”
in Proc. Int. Conf. Comput. Tool (EUROCON), Sep. 2015, pp. 1-6.

[10] S. D. Robinson, “Multi-label classification of contributing causal factors
in self-reported safety narratives,” Safety, vol. 4, no. 3, p. 30, 2018.

50353

IEEE Access

F. Charte: Comprehensive and Didactic Review on Multilabel Learning Software Tools

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

O. E. Dai, B. Demir, B. Sankur, and L. Bruzzone, “A novel system for
content-based retrieval of single and multi-label high-dimensional remote
sensing images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 11, no. 7, pp. 2473-2490, Jul. 2018.

T. Liu, L. Chen, and X. Pan, “An integrated multi-label classifier
with chemical-chemical interactions for prediction of chemical toxicity
effects,” Combinat. Chem. High Throughput Screening, vol. 21, no. 6,
pp. 403-410, Aug. 2018.

M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algo-
rithms,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819-1837,
Aug. 2014.

E. Gibaja and S. Ventura, “Multi-label learning: A review of the state of
the art and ongoing research,” Wiley Interdiscipl. Rev., Data Mining Knowl.
Discovery, vol. 4, no. 6, pp. 411-444, Nov. 2014.

E. Gibaja and S. Ventura, ““A tutorial on multilabel learning,” ACM Com-
put. Surv., vol. 47, no. 3, pp. 1-38, Apr. 2015.

F. Charte, A. J. Rivera, M. J. del Jesus, and F. Herrera, ‘“Addressing
imbalance in multilabel classification: Measures and random resampling
algorithms,” Neurocomputing, vol. 163, pp. 3—-16, Sep. 2015.

F. Charte, A. J. Rivera, M. J. del Jesus, and F. Herrera, “Dealing with diffi-
cult minority labels in imbalanced mutilabel data sets,” Neurocomputing,
vols. 326-327, pp. 39-53, Jan. 2019.

F. Charte, A. Rivera, M. J. del Jesus, and F. Herrera, “On the
impact of dataset complexity and sampling strategy in multilabel clas-
sifiers performance,” in Proc. 11th Int. Conf. Hybrid Artif. Intell. Syst.
(HAIS), in Lecture Notes in Computer Science, vol. 9648, Apr. 2016,
pp. 500-511.

P. Barot and M. Panchal, “Review on various problem transformation
methods for classifying multi-label data,” Int. J. Data Mining Emerg.
Technol., vol. 4, no. 2, pp. 45-52, 2014.

S. Godbole and S. Sarawagi, “Discriminative methods for multi-labeled
classification,” in Advances in Knowledge Discovery and Data Mining,
vol. 3056. Berlin, Germany: Springer, 2004, pp. 22-30.

M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, ‘““Learning multi-label
scene classification,” Pattern Recognit., vol. 37, no. 9, pp. 1757-1771,
Sep. 2004.

M.-L. Zhang and Z.-H. Zhou, ‘“Multilabel neural networks with applica-
tions to functional genomics and text categorization,” IEEE Trans. Knowl.
Data Eng., vol. 18, no. 10, pp. 1338-1351, Oct. 2006.

M.-L. Zhang, “ML-RBF: RBF neural networks for multi-label learning,”
Neural Process. Lett., vol. 29, no. 2, pp. 61-74, Apr. 2009.

P. Zhang, X. Zhou, P. Pelliccione, and H. Leung, “RBF-MLMR: A multi-
label metamorphic relation prediction approach using RBF neural net-
work,” IEEE Access, vol. 5, pp. 21791-21805, 2017.

F. Markatopoulou, V. Mezaris, and I. Patras, “Implicit and explicit concept
relations in deep neural networks for multi-label video/image annotation,”
IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 6, pp. 1631-1644,
Jun. 2019.

A. Clare and R. D. King, “Knowledge discovery in multi-label phenotype
data,” in Proc. 5th Eur. Conf. Princ. Data Mining Knowl. Discovery
(PKDD), vol. 2168. Berlin, Germany: Springer, 2001, pp. 42-53.

M.-L. Zhang and Z.-H. Zhou, “ML-KNN: A lazy learning approach to
multi-label learning,” Pattern Recognit., vol. 40, no. 7, pp. 2038-2048,
Jul. 2007.

G. Tsoumakas and I. Vlahavas, ‘“Random k-labelsets: An ensemble
method for multilabel classification,” in Proc. 18th Eur. Conf. Mach.
Learn. (ECML), in Lecture Notes in Computer Science, vol. 4701. Berlin,
Germany: Springer, 2007, pp. 406—417.

J. Read, B. Pfahringer, and G. Holmes, ‘““Multi-label classification using
ensembles of pruned sets,” in Proc. 8th IEEE Int. Conf. Data Mining,
Dec. 2008, pp. 995-1000.

G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient mul-
tilabel classification in domains with large number of labels,” in Proc.
ECML/PKDD Workshop Mining Multidimensional Data (MMD), 2008,
pp. 30-44.

J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for
multi-label classification,” Mach. Learn., vol. 85, no. 3, pp. 333-359,
Dec. 2011.

M. A. Tahir, J. Kittler, and A. Bouridane, ‘“Multilabel classification using
heterogeneous ensemble of multi-label classifiers,” Pattern Recognit. Lett.,
vol. 33, no. 5, pp. 513-523, Apr. 2012.

X. Z. Wu and Z. H. Zhou, “A unified view of multi-label performance
measures,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 3780-3788.

50354

(34]

[35]

(36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

(45]

[46]

(47]

(48]

[49]

(50]

(51]

PN,

F. Charte, A. J. Rivera, D. Charte, M. J. del Jesus, and F. Herrera, ““Tips,
guidelines and tools for managing multi-label datasets: The mldr.datasets
R package and the Cometa data repository,” Neurocomputing, vol. 289,
pp. 68-85, May 2018.

D. Dheeru and E. K. Taniskidou. (2017). UCI Machine Learning Reposi-
tory. [Online]. Available: http://archive.ics.uci.edu/ml

G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas,
“MULAN: A Java library for multi-label learning,” J. Mach. Learn. Res.,
vol. 12, pp. 2411-2414, Jun. 2011.

J. Read, P. Reutemann, B. Pfahringer, and G. Holmes, “MEKA: A multi-
label/multi-target extension to WEKA,” J. Mach. Learn. Res., vol. 17,
pp. 21:1-21:5, Jan. 2016.

C. Vens, J. Struyf, L. Schietgat, S. DZeroski, and H. Blockeel, “Decision
trees for hierarchical multi-label classification,” Mach. Learn., vol. 73,
no. 2, pp. 185-214, Nov. 2008.

J. Xu, J. Liu, J. Yin, and C. Sun, “A multi-label feature extraction algorithm
via maximizing feature variance and feature-label dependence simultane-
ously,” Knowl.-Based Syst., vol. 98, pp. 172-184, Apr. 2016.

F. Charte and D. Charte, ““Working with multilabel datasets in R: The mldr
package,” R J., vol. 7, no. 2, pp. 149-162, 2015.

P. Szymanski and T. Kajdanowicz, ““Scikit-multilearn: A Python library for
multi-label classification,” J. Mach. Learn. Res., vol. 20, no. 6, pp. 1-22,
2019.

J. T. Tomas, N. Spoladr, E. A. Cherman, and M. C. Monard, ““A framework
to generate synthetic multi-label datasets,” Electron. Notes Theor. Comput.
Sci., vol. 302, pp. 155-176, Feb. 2014.

O. Luaces, J. Diez, J. J. del Coz, J. Barranquero, and A. Bahamonde,
“Synthetic datasets for sound experimental evaluation of multilabel classi-
fiers,” Universidad de Oviedo, Oviedo, Spain, Tech. Rep., 2012, pp. 1-16.
[Online]. Available: https://www.aic.uniovi.es/mlgroup/repository/
ml_generator/

J. M. Moyano, E. L. Gibaja, and S. Ventura, “MLDA: A tool for analyzing
multi-label datasets,” Knowl.-Based Syst., vol. 121, pp. 1-3, Apr. 2017.
K. Sechidis, G. Tsoumakas, and I. Vlahavas, “On the stratification of
multi-label data,” in Machine Learning and Knowledge Discovery in
Databases. Berlin, Germany: Springer, 2011, pp. 145-158.

A. Rivolli and A. C. P. L. F. de Carvalho, “The utiml package: Multi-label
classification in R,” R J., vol. 10, no. 2, pp. 24-37, 2018.

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus,
G. Casalicchio, and Z. M. Jones, “MLR: Machine learning inR,” J. Mach.
Learn. Res., vol. 17, p. 170:1-170:5, 2016.

F. Charte, A. J. Rivera, M. J. del Jesus, and F. Herrera, “REMEDIAL-
HwR: Tackling multilabel imbalance through label decoupling and data
resampling hybridization,” Neurocomputing, vols. 326-327, pp. 110-122,
Jan. 2019.

P. Probst, Q. Au, G. Casalicchio, C. Stachl, and B. Bischl, ‘“Multilabel
classification with R package MLR,” R J., vol. 9, no. 1, pp. 352-369, 2017.
M. Segal and Y. Xiao, ‘““Multivariate random forests,” WIREs Data Mining
Knowl. Discovery, vol. 1, no. 1, pp. 80-87, Jan. 2011.

M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint recogni-
tion using random ferns,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32,
no. 3, pp. 448-461, Mar. 2010.

FRANCISCO CHARTE (Member, IEEE) received
the T.Eng. and B.Eng. degrees (Hons.) in computer
science from the Universidad de Jaén, in 2008 and
2010, respectively, and the M.Sc. degree in soft
o~ computing and computational intelligence and the
Ph.D. degree from the Universidad de Granada,
in 2011 and 2015, respectively.

He is currently an Assistant Professor with
the Computer Science Department, Universidad
de Jaén, Spain. He is the author of more than

120 books, including the book Multilabel Classification. Problem Analysis,
Metrics and Techniques (Springer), and authored more than 20 JCR research
articles and 25 contributions to international conferences. His main research
interests include multilabel learning, imbalanced and high-dimensionality
problems, and representation learning through deep learning techniques.
He was a recipient of the Extraordinary Award for the T.Eng. and B.Eng.
degrees and the 1st National Award for Excellence in Academic Performance
from the MECD, in 2010.

VOLUME 8, 2020

