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ABSTRACT The paper presents an accurate and simple method for the approximation of the nonlinear B-H
curves using expansion into complex exponential series. The least-squares fit of the model is obtained by
the application of the Moore-Penrose pseudoinverse. Due to the completeness of the orthogonal basis of
the approximation, any desired accuracy can be achieved with increasing the number of terms. Using the
measurements acquired by an automated system based on the PXI digitizer boards, the feasibility of the

method is proved.
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I. INTRODUCTION
The numerical methods like finite element method (FEM)
need accurate expressions representing the B-H curve.
Although it is possible to introduce hysteresis models like
Jiles-Atherton [1] or Preisach model of ferromagnetic mate-
rials into the FEM analysis [1]-[14], it is still relevant to
use the single-valued B-H curve in such an analysis. For the
magnetically soft materials, the hysteresis loops are relatively
narrow. Therefore, the single-valued B-H curve represented
by the initial magnetization curve adequately characterizes
such materials in many applications like the calculation of the
magnetic field in motors and generators [4]. Consequently,
the computational effort is reduced, and the speed of the
calculations is increased. In such a case, the losses are usu-
ally estimated using analytical formulae, while the nonlinear
problem is solved using the Newton-Raphson or succes-
sive substitution method [15]-[17]. The accurate modeling
of single-valued B-H curve is also important in equivalent
magnetic circuit modeling [18]. Moreover, the anhysteretic,
single-valued B-H models [19], [20] are important in the
analysis of magnetic recording systems [21], while the anhys-
teretic B-H curve is the basis of the Jiles-Atherton model of
the magnetic hysteresis [22].

The analytical expressions used for the single-
valued representation of a B-H curve are traditionally
based on empirical formulas [23]-[25] or power series
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representation [26], [27]. The other approaches include rep-
resentation by hyperbolas [26], transcendental functions [26],
exponential series or sums of exponentials [28], [29], and
rational functions [30]-[32]. The possibility of very accu-
rate modeling of the whole B-H curve (including Ralyeigh
region and saturation knee) launched the approximation
using Fourier series [26], [33]. The Fourier series approx-
imation converges well, and any desired accuracy can be
achieved [26]. However, the calculation of Fourier coeffi-
cients [34] needs the integration of the B-H curve, which is
available only at discrete (measured) points. Thus, the numer-
ical integration and the interpolation of the curve between the
points must be applied [33]. The Fourier analysis is widely
applied in the time to frequency transformations and repre-
sentation of signals and functions [35]. In the wider context,
the representation of the discrete-time systems and signals
using the z-transformation and finite impulse response (FIR)
models is a well-established discipline [35], [36]. Apply-
ing the Fourier transformation to the Lth-order FIR system
approximation

L
AR =) azt M
k=0
yields
2af
z=e X 2)
L _2nfk
A=), jae 7 3)
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which is a sum of complex exponentials. Here, f denotes
frequency, z is complex variable in z-transformation, a; is
set of coefficients x is sampling frequency, and A is the
approximation of the system function. The Fourier transform
of the FIR model is a periodic function of frequency with
period x [35]. In the sequel (section 3) it will be demon-
strated that the proposed complex exponential series form the
complete orthogonal system. The methods for the determi-
nation of the coefficients a, are well established [37], [38]
and thus can be applied in the proposed modeling of B-H
curve. While the system modeling usually imposes additional
requirements on the causality [39] or the real character of
the coefficients a;, these requirements are weakened in the
B-H curve modeling, which allows direct application of
the unconstrained least-squares methods in the evaluation of
the coefficients.

The main purpose of this paper is to present a method for
the approximation of the nonlinear B-H curves using expan-
sion into complex exponential series, where the least-squares
fit to the data is obtained by the application of the
Moore-Penrose pseudoinverse. The proposed approximation
easily allows use of the non-uniformly sampled points in
the measured B-H curve. Moreover, it is analytically deriv-
able, which can be applied in the calculation of the mag-
netic permeability and the energy stored in the magnetic
material [27], [28].

The paper is organized as follows: in Section II the
measurement system based on NI 4461 DAQ cards is
described. Section III presents the proposed method for the
B-H curve approximation. Section IV gives the results.
Finally, Section V are conclusions.

Il. MEASUREMENT SYSTEM

The measurement system is based on commercial National
Instruments PXI modular measurement system equipped
with digitizer board, Toellner TOE 7621 four-quadrant power
supply working in voltage-controlled mode, R-C integrator,
precise shunt and a ferromagnetic coil test sample.

The NI-PXI4461 (named hereafter as N14461) module is
used as a digitizer unit placed in PXI chasis. It is a dynamic
signal acquisition device equipped with two simultaneously
sampled input and output channels, integrating sigma-delta
A/D and D/A converters, both with 24-bit resolution and
sampling rates up to 204.8 kS/s. The PXI system generates
the excitation signal, which is fed to the input of the TOE
7621 power supply. The amplitude of the excitation current
is measured as voltage drop present on the shunt Rs. The
resistance of the shunt is considered constant, independent
of the ambient temperature and applied voltage.

The control of measurement process and measured data
processing is performed in LabVIEW environment. Aim was
to use fully automated measurement of the first magnetization
curve to prepare measured data for export in a format ready
for the import to a computer program for the B-H curve
approximation.
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FIGURE 1. Block diagram of the measurement system.
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FIGURE 2. C-core specimen.

Fig. 1 presents the block diagram of the measurement
system.

The measurement set-up is based on the IEEE standard
procedures for magnetic cores, where the RC integrator is
connected on the search (pick-up) coil. The single-valued
initial B-H curve is measured using the locus points of the
symmetric hysteresis cycles [40], [41]. Instead of using a
ring core specimen, measurements were performed using a
SU30 ferromagnetic C-core (Iskra). C-cores also have rea-
sonably uniform flux density and therefore are useful for the
B-H curve measurement [42]. Fig. 2 and Table 1 give the
dimension of the core.

The number of turns was N = 169 in both coils,
while the wire diameter was 0.3 mm. Using the Ampere’s law,
the magnetic field in the core is

Nug(t)
InRs
where I, is the average length of the flux lines, and ug(¢) is
the voltage drop across the shunt resistor Rs.

H(t) = @)
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TABLE 1. Dimensions of the core.

Dimension Standard values [mm]
b 30
c 9.9
f 10.1
a 52.7
g 10
e 32.5
The magnetic flux density is
RiC;
B(1) = —uc(1). ©)

NS
Here, S denotes the cross-section of the coil, R; is the
resistor value of the RC integrator, C; is the capacitance of the
capacitor in the RC integrator, and uc(¢) is the voltage across
the capacitor C. Using the data from the Table 1, the cross-
section and the average length of the flux lines is

S=c-f=938-10" m?
Iy =2(+¢g +cr =0.116m

In characterizing an analog-to-digital converter (ADC),
one of the important parameters is the integral nonlinearity
(INL). As this experiment was done at frequency of 20 Hz,
work provided in [43] declares INL that is below 1 ©V/V.

For simultaneous sampling of 1 V signal amplitude,
input range +1V and sampling frequency of 51.2 kS/s,
the NI4461 metrological characteristics are provided [44]:

- temperature coefficient of the magnitude is 7.4 uV/V-K,

- temperature coefficient of the phase is 0.000008°/K,

- standard deviation of the magnitude of the voltage ratio

is 2.3 uV/V,

- deviation of the magnitude of the voltage ratio from the

nominal value is within £3 uV/V,

- phase deviation is under 16 p°.

Following components:

- current shunt,

- integrator resistor,

- integrator capacitor
were measured in slow mode using the LCR Bridge Rohde &
Schwarz (Hameg) HM8118, applying the average and 4-wire
connection and the open-short calibration.

The resistance of the integrator resistor is

R; = (382.93 £ 0, 27) k2.

The capacitance of the integrator capacitor is

C; = (2.9752 £ 0,0176) uF.

The resistance of the current shunt is

Rs = (1.0084 + 0, 0041) .

Ill. COMPLEX FIT
Let have the set of M measured pairs (Hg, Bx), k = O, ...
M — 1, which satisfy

Hy € [0, Hpax] (6)
By € [0, Bmax] @)
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FIGURE 3. Non-overlapping replicas of the model.

Using the model representation given by the equation (3),
we seek the representation of the sampled nonlinear curve
using the approximation

Jj2khw

L
by =) ae ®)
k=0

where b denotes the modeled magnetic flux density and
h is the magnetic field strength. Moreover, {c_zk} is a set of
complex-valued coefficients, L is the order of the approxi-
mation, and x is a parameter that defines the periodicity of
the model in terms of the variable /.
The set of orthogonal functions
_ 2khm

e ©))

form the complete orthogonal system. It can be seen using the

substitution
_j2hm
z=e « (10)

where the expansion (8) yields the form of Laurent series.
In this way the completeness of the proposed approximation
follows from the completeness of Laurent series and Fourier
series [35, §14.1 and §9.4].

The model (8) is periodic in & with the period x, which is
easily obtained using the substitution

W=x+h (11)
which yields

_ j2kh' 7 _ Jj2km I _ j2khw
e me x AW _ (12)

The impact of the periodicity of the model on the upper
bound of the parameter x can be illustrated with Figs. 3 and 4.
In Fig. 3, Hmax is lower than x, and consecutive replicas
of the model does not overlap. In Fig. 4, Hmax exceeds x
and the consecutive replicas of the model overlap in the
intervals Hy. Thus, accurate modeling of the B-H curve can-
not be achieved in the pink regions, since the model function
cannot be uniquely defined for these regions. To ensure that
the model does not overlap in 4 the parameter x has to satisfy
the condition:

X > Hmax (13)
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FIGURE 4. Overlapping replicas of the model.

Nevertheless, the experiments with the varying the parame-
ter x from 1.1Hpyax to 2Hmax has shown that the quality of the
approximation gradually degrades for y lower than 1.5Hx.
Therefore, in all further presented modeling the parameter x
was chosen to be

X = 2Hmax (14)
It should be noted that the interval

(Hmax, X) (15)

forms the “don’t care’ interval, for which the approximated
function b is not defined.
If we define column vectors

T
A=[ay a a ... a_;] (16)
Chy = [1 e hix g=22wh/x e=it2mhix |
(17)

we can express the error function as [45], [46]
e(h) = b(h) — CT (WA (18)

Here, T denotes vector transpose. Equation (13) can be
expressed for M (By, Hy) pairs as

E=D-FA (19)
where

E=[eHy eH) eH) ... e(Hu-1)]" (20)
D=[By Bi By ... Bu-1]" 1)
F=[CHy) CH) CH) ..... cHu-n]" 2

The design problem is to minimize the sum of error
squares:

M—-1
ew =Y _ llethm)l? (23)
m=0

which can be expressed in matrix notation as:
FAZ=D (24)
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In the sequel we use the mathematical equivalence of
the least-squares problem (18) and the system of normal
equations [47]

(FIF)A = (FD) (25)

Here, H denotes the Hermitian conjugate transpose
operator.
Although it is tempting to solve (14) directly as

A= (FH F)fl FiD (26)

it is impossible for L <« M, since in this case F becomes
ill-conditioned [37], and a direct solution will probably have
large errors. Therefore we propose to solve the system using
the matrix pseudoinverse.

For a m x n matrix F, its pseudoinverse FT gives the
minimum-norm [48] solution to the least-squares problem

FAZXD 27)
as
A=F"D (28)

The explicit list of the properties of the Moore-Penrose
(MP) pseudoinverse can be found in [47]. The calculation of
the MP pseudoinverse is generally based on the singular value
decomposition, which is efficiently implemented in LAPACK
and also in LAPACK based MATLAB routine pinv (15).

Using the proposed approximation, the derivative of the b
with respect to A is

L
ab 27'[ _ J2khm
=i~ ];kgke x (29)
from which the permeability can be expressed as
_ab (30)
"= an

Remark: If the set of coefficients { c_zk} would be restricted
to real numbers, the magnitude of the model function would
be even function of parameter 4 [26]. In line with the
Whittaker-Shannon theorem this would impose a stronger
condition on the parameter x [49]-[51]:

X > 2H pax 31

IV. RESULTS

Using the proposed method, the approximation of a mea-
sured B-H curve was calculated. The measurements were
performed using the setup from Section 2. In the origin of
the b-h plane, the point (0,0) was added to measured pairs.
The overall number of data point was M = 1274, while the
order of the approximation was L = 100. Since the method
allows application of the non-equidistant sampling of the data
points (in k- or b-axis), the measurements were done with
denser sampling for lower values of the magnetic flux den-
sities. The algorithm for the approximation was programmed
in MATLAB, and the pseudoinverse was calculated using the
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FIGURE 5. Comparison of the measurements and the approximation.
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FIGURE 6. Difference between measurement and the model.

routine pinv. Fig. 5 presents the comparison of the measured
data and the approximation results. To avoid an imaginary
component in the model, produced by the numerical and
round-off errors, the absolute value of the model is used
in comparison. Since the two curves are indistinguishable,
the Fig. 6 presents the difference between measurement and
modeling.

V. COMPARISON WITH OTHER MODELS

The comparison of the proposed method and several estab-
lished methods for the approximation of the initial B-H curve
was based on the root-mean-square error (RMSE) criterion.
RMSE is defined as

(32)

where b; denotes the approximated value given by the model,
l}i denotes the measured value, and M denotes the number of
measured data points. The models used for the comparison
were [26]:
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FIGURE 7. Simple exponential model.
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FIGURE 8. Froelich’s model.

25 T T

05

measurements

‘
0 200 400 600 800 1000 1200 1400
H (A/m)

FIGURE 9. Inverse tangent approximation.

a) Simple exponential model

B = aH" (33)
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TABLE 2. Comparison of models.

Model RMSE [T]
Simple exponential (a) 0.2346
Froelich’s equation (b) 0.0951
Inverse tangent (c) 0.0456
Proposed model (complex 37313-10°

exponential series)

b) Froelich’s equation

|H |
Bl = —— (34)
ay+az|H|
¢) Representation by inverse tangent function
B = ajtan™! (a,H) (35)

The nonlinear regression for models (a-c) was performed
in MATLAB, applying the Levenberg-Marquardt algorithm
with the MATLAB function nlinfit. The same set of the
measured points was applied in the regression and the eval-
uation of all analyzed models. While Figs. 7-9 are giving a
graphical comparison of the measurement data and models,
Table 2 summarizes the quality of the modeling results based
on the RMSE criterion. It is shown that the proposed model
achieves the best fit (lowest RMSE), comparing to the ana-
lyzed established models. It should be noted that this is paid
by the higher complexity of the proposed model.

VI. CONCLUSION

An accurate and simple least-squares solution is presented
for the analytical approximation of single-valued B-H curves.
Applying the Moore-Penrose pseudoinverse, a larger number
of points in measurements can be used to obtain a lower order
approximation. Due to the completeness of the orthogonal
basis of the approximation, any desired accuracy can be
achieved with increasing the number of terms. In line with the
method of B-H curve modeling, an automated system for its
measurement is presented, allowing the remote measurement
through the arbitrarily number of points. In this way, a single
PXI platform can be shared between several users with their
own PC platforms. Thus, the measurements are performed
remotely, while the approximation is obtained locally.

Using the model, the derivation of B with respect to H is
easily obtained analytically, which is important in calcula-
tions of permeability and energy stored in the ferromagnetic
material.
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