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ABSTRACT The proportional integral and derivative (PID) controller is extensively applied in many
applications. However, three parameters must be properly adjusted to ensure effective performance of the
control system: the proportional gain (KP), integral gain (KI ) and derivative gain (KD). Therefore, the aim
of this paper is to optimize and improve the stability, convergence and performance in autotuning the PID
parameter by using a deterministic Q-SLP algorithm. The proposed method is a combination of the swarm
learning process (SLP) algorithm and Q-learning algorithm. The Q-learning algorithm is applied to optimize
the weight updating of the SLP algorithm based on the new deterministic rule and closed-loop stabilization
of the learning rate. To validate the global optimization of the deterministic rule, it is proven based on the
Bellman equation, and the stability of the learning process is proven with respect to the Lyapunov stability
theorem. Additionally, to demonstrate the superiority of the performance and convergence in autotuning
the PID parameter, simulation results of the proposed method are compared with those based on the central
position control (CPC) system using the traditional SLP algorithm, the whale optimization algorithm (WOA)
and improved particle swarm optimization (IPSO). The comparison shows that the proposed method can
provide results superior to those of the other algorithms with respect to both performance indices and
convergence.

INDEX TERMS Autotuning gain, central position control system, Q-learning algorithm, PID controller,
swarm learning process algorithm, optimal control.

I. INTRODUCTION
Nowadays, PID controllers are widely applied and represent
the most preferred choice of controller in many applications,
such as power plants, industrial and mechanical systems,
robotics [1]–[4], wind turbines [5], passive optical net-
works [6], [7], load frequency control (LFC) systems [8],
[9], hydraulic turbine regulation systems [3], and radial
active magnetic bearings [4], because they provide excel-
lent performance, reliability, and robustness and are charac-
terized by flexibility, low cost,a simple structure and ease
of design [3], [10]–[13]. To obtain good closed-loop per-
formance of PID controllers, appropriately adjusting three
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parameters, the proportional gain (KP), integral gain (KI ) and
derivative gain (KD), is integral to system control [4], [10].
In 1942, a method of tuning the PID parameter was pro-
posed by Ziglor-Nichlor [14]. After that, many methods
were proposed, for example, the Cohen-Coon, phase and
gain margin methods. These methods adjust the parameter
based on the experience of the designer and require time
for tuning. In practice, the system control is dynamic, and
these approaches are ineffective for high order system mod-
eling [7], [15], [16]. Recently, optimal tuning of the PID
parameter by applying artificial intelligence (AI) has been
implemented. This approach involves continuous tuning of
the parameter based on the dynamic system to obtain the best
system response by minimizing selection of the performance
indices [17], [18].
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At present, many AI methods have been proposed to
autotune the PID parameter, such as fuzzy logic [2], [10],
[19], [20], neural networks (NNs) [1], [7], [21], parti-
cle swarm optimization (PSO) algorithms [6], [22], [23],
hybrid firefly (FA) and pattern search [8], the ant lion
optimization (ALO) algorithm [24], the whale optimization
algorithm (WOA) [25], cuckoo search (CS) [10], [26], bac-
terial foraging optimization [27], genetic algorithms [28], the
cosine algorithm [29], the bat algorithm [12], ant colony opti-
mization (ACO) [13], [30], differential evolution (DE) [31],
World Cup optimization (WCO) [32], evaluation algo-
rithms (EAs) [33], [34], gray wolf optimization (GWO) [35],
nature-inspired algorithms [17], chaotic invasive weed opti-
mization [36], [37], flower pollination algorithm (FPA) [38]
and firefly algorithm (FFA) [39]. Although many AI methods
have been proposed to autotune the PID parameter, the chal-
lenges of long execution time and convergence persist. There-
fore, [14] proposed the novel algorithm called the swarm
learning process algorithm to improve the convergence and
performance in autotuning the PID parameter. This algorithm
is motivated by student learning in the classroom and applies
the concepts of the swarm algorithm and learning algorithm.
Achieving efficiency of the SLP algorithm requires adjusting
the weight according to the behavior of the system. Conven-
tionally, it is adjusted by a random process. Reinforcement
learning (RL) is a method that solves the searching problem
via interaction between an agent and the environment without
needing an exact model of the environment [40], [41]. The
agent receives the previous result of the learning environment
in the form of a reward and learns until achieving the goal of
learning. The Q-learning algorithm is an RL method that is
widely applied in various applications, i.e., industrial control,
robotics, time prediction, signal control, etc., because of the
search rapidity and high convergence.

Due to the limitations of the SLP algorithm and the
usefulness of the Q-learning algorithm, this paper applies
the Q-learning algorithm to adjust the weight of the SLP
algorithm. Nevertheless, the advantages of the Q-learning
algorithm depend on the rule of updating the learning
state [40], [42]–[44]. This paper proposes a new determin-
istic Q-learning algorithm for improving the stability and
convergence performance in autotuning the PID parameter.
Additionally, to improve the stability in adjusting the weight
of the SLP algorithm based on the Q-learning algorithm,
this paper proposes closed-loop stabilization of the learning
rate, applied in the process of the Q-learning algorithm. The
sufficient condition of the closed-loop stability is proven
according to the Lyapunov stability theorem. Furthermore,
the optimization of the proposed method is proven based on
the Bellman equation. Finally, to show the superiority of the
proposed method in terms of convergence and performance,
a comparison with the simulation results of the traditional
SLP algorithm [14], the WOA [25] and IPSO [45] based
on the central position control (CPC) system is provided.
Therefore, the contributions of this paper can be summarized
as follows:

FIGURE 1. The structure of autotuning the PID controller.

1. The deterministic Q-SLP algorithm is proposed to auto-
tune the PID parameter. This algorithm is a combination of
the Q-learning algorithm and SLP algorithm. The Q-learning
algorithm is applied to adjust theweight of the SLP algorithm.

2. The deterministic Q-SLP algorithm improves the sta-
bility, convergence and performance in autotuning the PID
parameter.

3. A new rule for updating the process of the Q-learning
algorithm is proposed, and its global optimization is proven
based on the Bellman equation.

4. Closed-loop stabilization of the learning rate is proposed
to improve the stability in adjusting the weight of the SLP
algorithm based on theQ-learning algorithm. It is provenwith
respect to the Lyapunov stability theorem.

5. The superiority of the performance and convergence
time are verified by comparison with the simulation results
of the traditional SLP algorithm [14], the WOA [27] and
IPSO [47] based on the CPC system.

This paper is organized into 6 sections: Section 2 presents
the PID controller and objective design. The deterministic
Q-SLP algorithm is presented in section 3. Section 4 explains
the convergence analysis of the deterministic Q-SLP algo-
rithm. Section 5 presents the simulation results and a discus-
sion, and section 6 provides the conclusion.

II. PID CONTROLLER AND OBJECTIVE DESIGN
Generally, the structure of a PID controller combines three
control parameters, i.e., KP, KI and KD. Each parameter
affects a different response of the system: KP reduces the
error, KI increases the speed of response and reduces the
error when the operation of the system is changed but over-
shoot occurs, and KD reduces the overshoot from KI and
improves the stability of the system [7], [26]. The com-
mon closed-loop diagram of autotuning the PID controller is
shown in Figure 1.

From Figure 1, the common transfer function of the PID
controller (C(s)) is defined as follows:

C(s) = KP +
KI
s
+ KDs (1)

Therefore, the output of the controller (U (s)) can be defined
as follows:

U (s) = C(s)(R(s)− Y (s)) (2)

where P(s) is the transfer function of process control, R(s) is
the transfer function of reference input and Y (s) is a transfer
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function of system response. A(s) is the autotuning method
that this paper proposes, the deterministic Q-SLP algorithm.

Because the primary objective of the optimizing algorithm
is to find the proper value for achieving the objective func-
tion [29], the performance index of the optimal PID controller
is significant. The performance indices usually considered in
PID controller design are the integral of the absolute error
(IAE), integral of the time multiplied squared error (ITSE),
integral of the time multiplied absolute error (ITAE), mean
of the squared error (MSE) and integral of the squared error
(ISE) [12], [42]. The definition for each of the performance
indices is as follows:

IAE =
∫ τ

0
|e(t)|dt (3)

ITSE =
∫ τ

0
te(t)2dt (4)

ITAE =
∫ τ

0
t|e(t)|dt (5)

MSE =
1
t

∫ τ

0
(e(t))2dt (6)

ISE =
∫ τ

0
e(t)2dt (7)

where e(t) is the error in the time domain.
Although the above performance indices are generally

applied as the criteria of designing PID controllers because
evaluation is based on the frequency domain, they have many
disadvantages such as the response result based on IAE and
ISE having a long settling time and the derivation process
of ITSE being complex [46], [47]. Therefore, [46], [47] pro-
posed the new performance index given as Equation 8. It can
be evaluated in the time domain by considering the transient
response parameters, namely, the maximum overshoot (Mp),
settling time (ts), rise time (tr ) and steady state error (ess).
This paper applies it as the criterion of autotuning the PID
parameter and the basis of closed-loop stabilization of the
learning rate.

J (t) = (1− e−β )(mp + ess)+ e−β (ts − tr ) (8)

where β is the weighting factor, which is set by the designer.
If it is set to greater than 0.7, then the maximum overshoot
and steady-state error are reduced. If it is set to less than 0.7,
then the rise time and settling time are reduced.

III. DETERMINISTIC Q-SLP ALGORITHM
A. SLP ALGORITHM
The SLP algorithm was proposed by [14]. It applies the
concepts of the swarm algorithm and learning algorithm. Its
process consists of ()3 sub-processes of evaluation, selection
and learning. Evaluation involves checking that the students
in the class have a score corresponding to the criteria. If a
student’s score breaks the criteria, then that student is sorted
out of the class, and a new student is established. Selection
involves choosing the students for passing the class. A student
who passes the class is represented by the optimal value and
becomes the basis for new student establishment and training

of the students who remain in the class. Learning involves
training of the students in the class to achieve the criteria
of passing the class. Learning classifies the students into 2
groups: the good score group and the bad score group. The
good score group is trained based on self-knowledge and
students who pass the class, while the bad score group is
trained based on the good score group.

The process of establishing new students is defined as
follows:

S(K )new =

W (K )
N∑
n=1

fi(K )si(K )

N
(9)

where each student is represented by S(K );KP,KI andKD are
represented by K ; the score for each student is represented by
si; the number of students in the class is represented byN ; the
weight of training for each student is represented by W (K );
and the number of scores si in the class is represented by fi(K ).

The definition of the learning process for the good score
group is given in Equation 10.

S(K ) =

W (K )
N∑
n=1

si(K )

N
(10)

For the bad score group, the learning process is defined as
in Equation 11.

S(K ) =
W (K )(SBad (K )+ SGood (K ))

2
(11)

where SGood is the best score of the good score group and
SBad is the score of a student who is in the bad score group
and needs to learn.

The flow of the SLP algorithm, as shown in Figure 2, starts
with initial student randomization, in which each student is
represented by KP, KI and KD, and then, the score for each
student corresponding to the objective function is calculated.
Next, each student is evaluated by the score to determine
which students should remain in the class. If a student is
sorted out, then a new student is established. Finally, each
student is classified into 2 groups and trained until they can
pass the criteria of the class. In the learning process, students
are trained based on the Q-learning algorithm.

B. DETERMINISTIC Q-SLP ALGORITHM WITH A STABLE
LEARNING RATE
The Q-learning algorithm is an offline rule of reinforcement
learning (RL) [48], [49]. It approximates and updates the
current rule with the optimal action-value (Q∗) based on the
action-value (Q). This paper proposes the rule for updating
given in Equation 13. The pseudocode of the Q-learning
algorithm is presented as follows:

Initialization:
1: initial Q(x, u)
LOOP Process

2: while (episode does not end) do
3: Initialize state Si
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FIGURE 2. Flow chart of the SLP algorithm.

4: while (si does not reach the terminal state sI ) do
5: Perform action ui, and observe xi+1 and Ri+1
6: Update Q values as in Equation 13.
7: ui← ui+1

8: end while
9: end while

In the pseudocode, x is the observed state, and u is the action.
R is the reward for each episode i.
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FIGURE 3. Flow chart of the deterministic Q-SLP algorithm.
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The deterministic Q-SLP algorithm is a combination of
the Q-learning algorithm and SLP algorithm. The Q-learning
algorithm is used to adjust the weight of the SLP algorithm
as W (t) = Qi(x(k), u(k)), where Qi(x(k), u(k)) is the quality
of the Q-function for which the basic equation used is the
Bellman equation as follows: [49]

Qi(x(k), u(k))=J (x(k), u(k))+λmin(Qi(x(k + 1), u(k+1)))

(12)

where J (x(k), u(k)) is the reward received, which, in this
paper, is the value of the cost function, and λ is the learning
rate.

The updating weight of the SLP algorithm is
W (t + 1) = Qi+1(x(k), u(k)), where Qi+1(x(k), u(k)) is the
iterative updating of the Q-function at arbitrary state x(k) and
control u(k), for which this paper proposes a new determinis-
tic optimal Q-function to define it. The deterministic optimal
Q-function is defined as follows:

Qi+1(x(k), u(k)) = J (x(k), u(k))+ λi((1− µ)Qi(x(k), u(k))

+αminQi(x(k + 1), u(k + 1))) (13)

where λi is the learning rate of theQ-function generated based
on the closed-loop stabilization of the learning rate of the
deterministic Q-learning algorithm as in Equation 15.µ is the
factor of the Q-function at iteration i. Note that the determin-
istic Q-SLP algorithm provides a quantitative methodology
for selecting the controller parameters to approach an optimal
transient response where the relative stability can be consid-
ered by the transient response in each time of tuning.

In the initialization, the proposed method is initiated as

Q0(x(k), u(k)) = ϒ(x(k), u(k)) (14)

where ϒ(x(k), u(k)) is a positive semi-definite function.
Theorem 1: At sampling time t, the system with PID con-

trol that is tuned according to KP, KI and KD by the deter-
ministic Q-SLP algorithm is stable if the learning rate of the
deterministic Q-function is generated as follows:

3ν(t)(
ρ(t)− ψ(t)+ β(t)
2tξ (t)+6ν(t)β(t)

) < λ ≤ 3ν(t)(
ρ(t)+ψ(t)+β(t)
2tξ (t)+6ν(t)β(t)

)

(15)
where

ρ(t) =

√
t$ (t)
υ(t)

+ 4NX (t)λ(t),

ν(t) =
t(W (t)W (t − 1)E2

pp(t))
2

υ(t)

and β(t) = NW (t)X (t).
Proof: The stability of the learning rate is proven

according to the Lyapunov function, which can be defined
as follows:

V (t) = ϕ
∫ t

0
tE2(t)dt + (1− e−β )(mp(t)+ E(t))

+e−β (ts(t)− tr (t)) (16)

The Lyapunov function can be changed as follows:

1V (t) = V (t + 1)− V (t)

= ϕ

∫ t

0
tE2(t + 1)dt − ϕ

∫ t

0
tE2(t)dt + ((1− e−β )

×(mp(t+1)+E(t + 1))+e−β (ts(t+1)−tr (t+1))

−(1− e−β )(mp(t)+ E(t))+ e−β (ts(t)− tr (t)))

(17)

= ϕ

∫ t

0
t1E2(t)dt + (1− e−β )(1mp(t)+1E(t))

+e−β (1ts(t)−1tr (t)) (18)

From the structure of the SLP algorithm as shown in Equa-
tion 10 and Equation 11,

1E(t) = 1W (t)Ep(t)

= −
(λ(t)W (t)−W (t − 1))Ep(t)

N
(19)

where Ep(t) =
∑M

i=1
∂Ei(t)
∂W (t) , andM is the number of students.

1mp(t) = 1W (t)Mpp(t)

= −
(λ(t)W (t)−W (t − 1))Mpp(t)

N
(20)

where Mpp(t) =
∑M

i=1
∂mpi(t)
∂W (t) .

1ts(t) = 1W (t)Tsp(t)

= −
(λ(t)W (t)−W (t − 1))Tsp(t)

N
(21)

where Tsp(t) =
∑M

i=1
∂Tsi(t)
∂W (t) .

1ts(t) = 1W (t)Trp(t)

= −
(λ(t)W (t)−W (t − 1))Trp(t)

N
(22)

where Trp(t) =
∑M

i=1
∂tr i(t)
∂W (t) .

Therefore, Equation 11 can be written as follows:

1V (t) = ϕ
∫ t

0
t(
(−λ(t)W (t)−W (t − 1)Ep(t))2

N
)dt

−
λ(t)W (t)−W (t − 1)

N
((1−e−β )(Mpp(t)−EP(t))

+e−β (Tsp(t)− Trp(t))) (23)

If at sampling time t , βI (t) > βM (t) < βA(t),

where βI (t) = t( (−λ(t)W (t)−W (t−1)Ep(t))2

N ), βM (t) =
λ(t)W (t)−W (t−1)

N ((1 − e−β )(Mpp(t) − EP(t)) and βA(t) =
e−β (Tsp(t) − Trp(t))), is satisfied, then the stability based
on Lyapunov stability is guaranteed. This means that the
learning of the deterministic Q-SLP algorithm is stable when
the learning rate (λ) satisfies Equation 15.

IV. CONVERGENCE ANALYSIS OF THE DETERMINISTIC
Q-FUNCTION
Definition 1 ( [40]): The convergence of the Q-function

can be proven by generating the sequence of the Q-function
(Qi(x, u)), where i ∈ Z+ + {0}; then,
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1. Q∗(x(k), u(k)) ≤ Qi+1(x(k), u(k)) ≤ Qi(x(k), u(k)) and
2. lim

i→∞
Qi(x(k), u(k)) = Q∗(x(k), u(k)).

Lemma 1: For iteration i ∈ Z++{0}, if Qi(x(k), u(k)) can
be updated with the learning rate corresponding to Equa-
tion 15 and Q0(x(k), u(k)) can be defined as Equation 14,
then Q∗(x(k), u(k)) ≤ Qi+1(x(k), u(k)) ≤ Qi(x(k), u(k)).

Proof: At sequence i = 0, Q0(x(k), u(k)) is initiated
with the positive semi-definite function given in Equation 14.
Therefore, the above holds for the case of Q0(x(k), u(k)) =
Q0(x(k), u(k)).

At sequence i+ 1, λi+1 = 1, and µ = 0.

Qi+1(x(k), u(k))

= J (x(k), u(k))+ λi+1((1− µ)Qi+1(x(k), u(k))

+αminu(k+1){Qi+1(x(k + 1), u(k + 1))}

= Qi(x(k), u(k))+ λ0((1− µ)Q0(x(k), u(k))

≤ Qi(x(k), u(k)) (24)

At sequence i, λi+1 = 1, and µ = 0.

Qi(x(k), u(k)) = J (x(k), u(k))+ αminu(k+1){Qi+1(x(k + 1),

×u(k + 1))}

≥ J (x(k), u(k))+ αminu(k+1){Q∗(x(k + 1),

×u(k + 1))}

= Q∗(x(k), u(k)) (25)

From Equations 24 and 25, we can conclude that
Q∗(x(k), u(k)) ≤ Qi+1(x(k), u(k)) ≤ Qi(x(k), u(k)).
Lemma 2: Let ζ (x(k), u(k)) = J (x(k), u(k)) + λmink→∞

(x(k + 1), u(k + 1))− µQ∞(x(k), u(k)), where x(k), u(k) 6=
0. Let φ be a small positive number; if ζ (x(k), u(k)) > 0,
then ζ (x(k), u(k)) − φ > 0, and if ζ (x(k), u(k)) < 0, then
ζ (x(k), u(k))+ φ < 0; then, Q∞(x(k), u(k)) is finite.

Proof: From Equation 13, in the case of lim
i→inf

λi 6= 0,

Q∞(x(k), u(k)) = J (x(k), u(k))+ (1− µ)Q∞(x(k), u(k))

+αminuk→∞(x(k + 1), u(k + 1)) (26)

Assumption 1: From Equation 26, it is assumed that if
lim
i→∞

λi = 0 is true, then lim
i→∞

Qi(x(k), u(k)) exist.

Given this,

ζ (x(k), u(k))=J (x(k), u(k))+αminu(k)→∞(x(k+1), u(k+1))

−µQ∞(x(k), u(k)) (27)

where ζ (x(k), u(k)) 6= 0 and x(k), u(k) 6= 0.
∀φ > 0 andN > 0, whereN ∈ R+−{0}, if ζ (x(k), u(k))+

φ and ζ (x(k), u(k))− φ have the same sign, then

ζ (x(k), u(k))− φ ≤ J (x(k), u(k))+ αQminu(k+1)(x(k + 1),

u(k + 1))− µQ(x(k), u(k))

= ζ (x(k), u(k))+ φ (28)

On the other hand, from Equation 13,

Qi+1(x(k), u(k)) = J (x(k), u(k))+ λi((1− µ)Qi(x(k), u(k)))

+αminu(k+1)Qi(x(k + 1), u(k + 1))

Qi(x(k), u(k)) = J (x(k),u(k))+λi−1((1−µ)Qi−1(x(k),u(k)))

+αminu(k+1)Qi−1(x(k + 1), u(k + 1))
...

Q1(x(k), u(k)) = J (x(k), u(k))+λ0((1−µ)Q0(x(k), u(k)))

+αminu(k+1)Q0(x(k+1), u(k+1)) (29)

Therefore, it can be obtained that

Qi+1(x(k), u(k))

= J (x(k), u(k))+
i∑

j=0

λj(((1− µ)Qj(x(k), u(k)))

+αminu(k+1)Qj(x(k + 1), u(k + 1))) (30)

Let the limit of i approach∞. For x(k) and u(k),

Q∞(x(k), u(k))

= J (x(k), u(k))+
N−1∑
j=0

λj(((1− µ)Qj(x(k), u(k)))

+αminu(k+1)Qj(x(k + 1), u(k + 1)))

+

∞∑
i=N

λi(((1− µ)Qi(x(k), u(k)))+ αminu(k+1)

×Qi(x(k + 1), u(k + 1))) (31)

From Equation 28, J (x(k), u(k))+
∑N−1

j=0 λj(((1−µ)Qj(x(k+
1), u(k + 1))) + αminu(k+1)Qj(x(k + 1), u(k + 1))) +
(ζ (x(k), u(k))−φ)

∑
∞

i=N λi(Qi(x(k), u(k)))≤Q∞(x(k), u(k))
< J (x(k), u(k)) +

∑N−1
j=0 λj(((1 − µ)Qj(x(k + 1), u(k +

1)))+ αminu(k+1)Qj(x(k + 1), u(k + 1)))+ (ζ (x(k), u(k))+
φ)

∑
∞

i=N λi(Qi(x(k), u(k))). For
∑
∞

j=N λj → ∞, Q∞(x(k),
u(k)) > ∞; if ζ (x(k), u(k)) > 0, then ζ (x(k), u(k)) − φ > 0,
and if ζ (x(k), u(k)) < 0, then ζ (x(k), u(k))+φ < 0. This means
thatQ∞(x(k), u(k)) is finite. Therefore, Assumption 1 is true,
and the conclusion holds.
Theorem 2: Let Qi(x(k), u(k)) be updated as in

Equation 13, where i ∈ Z+ + {0}, the learning rate is
generated as in Equation 15 and 0 ≤ µ < 1. Qi(x(k), u(k))
can approach its Q∗(x(k), u(k)) of the Bellman equation for
all sequences i, where i = 1→∞. That is,

lim
i→∞

Qi(x(k), u(k)) = Q∗(x(k), u(k)) (32)

where Q∗(x(k), u(k)) = minu(k){Q(x(k), u(k)) + αQ∗(x(k +
1), u(k + 1))}.

Proof: FromLemma 2 and Equation 26, letN > 0, where
N ∈ R+; then,

Q∞(x(k), u(k))

= J (x(k), u(k))+ (1− µ)Q∞(x(k), u(k))

+αminuk→∞(x(k+1),u(k+1))

minQ∞(x(k), u(k))

= minuk (J (x(k), u(k)+ (1− µ)(J (x(k),

u(k))+ . . .+ (1− µ)(J (x(k + N ),

u(k + N ))+ αminu(x→k)(J (x(k + 1),
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FIGURE 4. The structure diagram of the CPC system with a PID controller.

u(k + 1))+ (1− µ)(J (x(k + N − 1),

u(k + N − 1))+ αminu(k→N )Q∞(x(k + N ),

u(k + N )))))))) (33)

With respect to the Bellman principle of optimization [50],
Equation 33 can be applied as follows:

lim
N→∞

(1− µ)Q∞(x(k + N ), u(k + N )) = 0 (34)

and

lim
N→∞

αminQ∞(x(k + N ), u(k + N )) = 0 (35)

From Definition 1 of the optimal Q-function, it can be
obtained that

Q∗(x(k), u∗(x(k)))≤minu(k+N )Q∞(x(k+N ),u(k+N )) (36)

According to Definition 1 and Equation 26,

Q∞(x(k), u(x(k)))= J (x(k), u(k))+ (1− µ)Q∞(x(k), u(k))

+αminu(k→∞)Q∞(x(k + 1),u(k+1))

= R(x(k),u(k))+αminu(k→∞)Q∗(x(k+1),

u(k + 1))

= Q∗(x(k), u(k)) (37)

This means that lim
i→∞

Qi(x(k), u(k)) = Q∗(x(k), u(k)) for

all sequences i. Therefore, Equation 15 can be proven as
optimal based on the Bellman equation. With respect to the
conclusion of Lemma 1 and Theorem 2, the convergence of
the new deterministic Q-function given in Equation 13 can be
proved according to Definition 1.

V. SIMULATION AND DISCUSSION
A. MODEL OF CENTRAL POSITION CONTROL
To verify the performance and convergence in autotuning the
PID parameter, this paper uses a CPC system as a platform
for the verification.

The CPC system is the most important part of a strip
steel manufacturing line. It improves the yield of the strip to
prevent transverse deviation of the strip. An electro-hydraulic
servo valve is used in the CPC system. The structure diagram
of the CPC systemwith a PID controller is shown in Figure 4.

From Figure 4, the main system model is composed of
the electro-hydraulic servo valve, hydraulic cylinder and
displacement detection sensor. The transfer function of the
electro-hydraulic servo valve can be written as follows [45]:

Gsv(s) =
Q(s)
U (s)

=
Ksv

s2
ω2
sv
+

2ζsv
ωsv

s+ 1
(38)

FIGURE 5. Comparison of transient responses in the case of β = 0.5.

where Ksv is the gain of the servo valve with no load, which is
set as 0.00196 m3/(sA). ζsv is the damping ratio of the servo
valve, which is set as 0.7, and ωsv is the natural frequency
of the servo valve, which is set as 157 rad/sec. The transfer
function of the hydraulic cylinder obtained by neglecting the
load uncertainty and quality can be written as follows:

Gh(s) =
Xo(s)
Q(s)

=

1
Ap

s( s
2

ω2
h
+

2ζh
ωh
s+ 1)

(39)

where Xo is the displacement of the hydraulic cylinder. ωh is
the natural frequency of the hydraulic cylinder, which is set
as 88 rad/sec. ζh is the damping ratio of the hydraulic cylinder,
which is set as 0.3. Actually, the system is a combination of
complexity and many disturbances. Thus, for without loss of
generality and for easy analysis of the transient response in
each time of autotuning [45], the mathematical model of the
electro-hydraulic servo valve system can be just simplified by
neglecting the external noise and the load.

B. SIMULATION RESULT
In this paper, the performance and convergence in autotuning
the PID parameter are verified by comparing the simulation
results of the deterministic Q-SLP algorithm with those of
the traditional SLP algorithm [14], the WOA [25] and the
IPSO [45] based on the CPC system when changing the
constant of the objective function (β). The changing constant
of the objective function given in Equation 8 is set to β =
0.5, β = 1 and β = 1.5. In the simulation, the number of
nodes for each algorithm is 20, with the same initial value,
simulation time of 5 sec, and ranges of KP, KI and KD of
[0,20], [0,20] and [0,1]. The maximum number of iterations
is 150 iterations.

The comparison results of the performance and conver-
gence in the case of β = 0.5 are shown as Figures 5 and 6.
In the case of β = 1, the comparison results are shown in
Figures 7 and 8. Figures 9 and 10 show the comparison results
of the performance and convergence in the case of β = 1.5.
The comparative performance indices, such as Mp, ts,

tr and ess, based on CPC system for β = 0.5 are shown
in Figure 5, and Table 1. The comparison of the proposed
method yields ts = 0.113 sec, tr = 0.107 sec,Mp = 0.002 mm
and ess = 0.002 mm. The traditional SLP algorithm [14]
yields ts = 2.006 sec, tr = 0.220 sec, Mp 0.025 mm and
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FIGURE 6. Comparison of objective functions in the case of β = 0.5.

TABLE 1. Summary of the performance and convergence comparison for
β = 0.5.

FIGURE 7. Comparison of transient responses in the case of β = 1.

ess = 0.023 mm. The WOA [25] yields ts = 0.120 sec,
tr = 0.110 sec, Mp = 0.066 mm and ess = 0.003 mm.
Finally, the IPSO [45] yields ts = 0.449 sec, tr = 0.127 sec,
Mp = 0.045 mm and ess = 0.006 mm. The compara-
tive convergence curve between the proposed method, the
traditional SLP algorithm [14], the WOA [25] and the
IPSO [45] is shown in Figure 6 and Table 1. The minimiz-
ing result of the fitness function for the proposed method
is 0.0052 and takes 20 iterations; for the traditional SLP algo-
rithm [14] is 0.517 and takes 50 iterations; for theWOA [25]
is 0.082 and takes 54 iterations; for the IPSO [45] is 0.216 and
takes 45 iterations.

The comparative performance indices, such as Mp, ts,
tr and ess based on CPC system for β = 1 are shown
in Figure 7, and Table 2. The comparison of the proposed
method yields ts = 0.403 sec, tr = 0.102 sec,Mp = 0.001 mm
and ess = 0.001 mm. The traditional SLP algorithm [14]
yields ts = 1.789 sec, tr = 0.189 sec, Mp = 0.023 mm and
ess = 0.021 mm. The WOA [25] yields ts = 0.417 sec,
tr = 0.117 sec, Mp = 0.003 mm and ess = 0.001 mm.

FIGURE 8. Comparison of objective functions in the case of β = 1.

TABLE 2. Summary of the performance and convergence comparison for
β = 1.

Finally, the IPSO [45] yields ts = 0.473 sec, tr = 0.130 sec,
Mp = 0.066 mm and ess = 0.004 mm. The compara-
tive convergence curve between the proposed method, the
traditional SLP algorithm [14], the WOA [25] and the
IPSO [45] is shown in Figure 8 and Table 2. The minimiz-
ing result of the fitness function for the proposed method
is 0.112 and takes 18 iterations; for the traditional SLP
algorithm [14] is 0.499 and takes 96 iterations; for the
WOA [25] is 0.113 and takes 22 iterations; for the IPSO [45]
is 0.171 and takes 115 iterations.

The comparative performance indices, such as Mp, ts,
tr and ess based on CPC system for β = 1.5 are shown
in Figure 9, and Table 3. The comparison of the proposed
method yields ts = 0.117 sec, tr = 0.100 sec,Mp = 0.002 mm
and ess= 0.002 mm. The traditional SLP algorithm [14]
yields ts = 2.006 sec, tr = 0.220 sec, Mp = 0.025 mm and
ess = 0.023 mm. The WOA [25] yields ts = 0.120 sec,
tr = 0.110 sec, Mp = 0.066 mm and ess = 0.003 mm.
Finally, the IPSO [45] yields ts = 0.450 sec, tr = 0.127 sec,
Mp = 0.045 mm and ess = 0.0064 mm. The compara-
tive convergence curve between the proposed method, the
traditional SLP algorithm [14], the WOA [25] and the
IPSO [45] is shown in Figure 10 and Table 3. The minimiz-
ing result of the fitness function for the proposed method
is 0.0069 and takes 14 iterations; for the traditional SLP
algorithm [14] is 0.209 and takes 35 iterations; for the WOA
[25] is 0.082 and takes 16 iterations; for the IPSO [45]
is 0.216 and takes 98 iterations.

From the comparative results, it can be clearly observed
that the proposed method can provide 4 performance indices
and convergence superior to those of the traditional SLP
algorithm [14], the WOA [25] and IPSO [45].
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FIGURE 9. Comparison of transient responses in the case of β = 1.5.

FIGURE 10. Comparison of objective functions in the case of β = 1.5.

TABLE 3. Summary of the performance and convergence comparison for
β = 1.5.

Remark 1: According to the comparative performance
indices based on the transient response analysis and the con-
vergence result for 3 cases study, the proposed method is
lowest the value of performance indices, objective function
and iteration of tuning since in every time of autotuning, the
proposed method records the current of the PID parameter
and the current value of objective function to the database
and uses it to determine the new PID parameter. Further-
more, in the PID parameter autotuning processing, the pro-
posed method adjusts the PID parameters by considering the
learning rate with the current transient response as Equation
15. Note that the traditional SLP algorithm [14] autotunes
the PID parameters under the random processing while the
WOA [25] and the IPSO [45] autotune the PID parameters
under the neighbor value and the initial value. Therefore,
it can be concluded that the PID controller which is auto
tuned by using deterministic Q-SLP algorithm with fitness
function as Equation 8 based on CPC control system has a
high performance, more stable and faster tuning than the other
algorithm.

VI. CONCLUSION
In this paper, a deterministic Q-SLP algorithm is proposed to
optimize and improve the stability, convergence and perfor-
mance in autotuning the PID parameter. It differs from the
traditional SLP algorithm [14], and the scheme of adjusting
the weight of the SLP algorithm is presented based on the new
deterministic Q-learning algorithm. The global optimization
of the proposed method is proven based on the Bellman equa-
tion. Additionally, this paper proposes closed-loop stabiliza-
tion of the learning rate to improve the stability of the learning
process of the Q-learning algorithm, for which the stability is
proven according to the Lyapunov stability theorem. To con-
firm the performance and convergence, the simulation results
of autotuning the PID controller for the CPC system are
compared. The comparison shows that the proposed method
can produce better results than the traditional SLP algorithm,
theWOA [24] and the IPSO [45]. According to the simulation
results, it can be concluded that the theoretical approach in
this paper achieves the performance indices, i.e, ts, tr , Mp
and ess, and convergence of the optimal autotuning of the
PID parameter suitable for practical applications. However,
the time-delay and the disturbance can be easily found in
many real physical control problems which may make the
system convergence and the system performance out of con-
trol. Therefore, the new deterministic Q-SLP algorithm for
an uncertain nonlinear system with time-varying delay can
be investigated in future research work.
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