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ABSTRACT The Kalman-filter-based algorithms as the mainstream algorithms of dynamic state estimation
of power systems have been extensively used to provide accurate data for power system applications.
However, few comparisons are made to show their advantages and disadvantages. In this paper, four Kalman-
filter-based algorithms (i.e., extended Kalman filter, unscented Kalman filter, cubature Kalman filter, and
ensemble Kalman filter) are compared to show their differences from implementation complexity, estimation
accuracy and calculation efficiency, the resistance tomeasurement errors, and the sensitivity to system scales.
Finally, the simulation results on the 3-machine, 10-machine, and 48-machine power systems show their
advantages and disadvantages.

INDEX TERMS Cubature Kalman filter, dynamic state estimation, ensemble Kalman filter, extended
Kalman filter, unscented Kalman filter.

I. NOMENCLATURE

a Admittance angle matrix
C Equal weight cubature points vector
D Damping coefficient
e Unit column vector
E EnKF sample set
f (·) State transition function
F Jacobian matrix of state transition function
h(·) Measurement function
H Jacobian matrix of measurement function
I Unit matrix
k Filtering gain
pe Electromagnetic power of the generator
pm Mechanical power of the generator
Pk Estimated error covariance
Pzz Innovation covariance matrix
Pxz The cross-covariance matrix
Q System noise variance
R Measurement noise variance

The associate editor coordinating the review of this manuscript and

approving it for publication was Wuhui Chen .

S Weighted Sigma points vector
T Inertia constant of the generator
u Constant control vector
v Measurement noise vector
V Voltage amplitude
w System noise vector
W c Weight vectors of covariance
Wm Weight vectors of mean
x State vector
Y Reduced node admittance matrix
z Measurement vector
δ Generator power angle
ω Generator speed
ωs Generator reference speed
ωδ System noise vector of generator power angle
ωω System noise vector of generator speed
h Difference step size
i, j The ith/jth generator
k Current time
n Number of generators
nen Number of samples
N Number of times
α, β, η, λ, l Setting parameters of UKF
∧,− Estimated/prediction value of variables
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II. INTRODUCTION
Power system state estimation as one of the keys of the
energy management system is paid much attention to, as it
can grasp the real-time state of the power system by filtering
the measurement data that cannot represent the actual state
of power systems due to the errors such as measurement
and transmission errors. In particular, the dynamic state esti-
mation (DSE) of power systems has become a very ‘hot’
topic in recent years [1]–[3]. ThemainstreamDSE algorithms
of power systems, such as extended Kalman Filter (EKF)
and unscented Kalman filter (UKF), are developed based
on Kalman-filter (KF) theory [4], [5] and has been studied
extensively.

The EKF algorithm as one of the most common KF-based
nonlinear algorithm is based on the Taylor series expansion.
In [6], the feasibility of EKF to power system applications
is addressed based on the data from the synchronized phasor
measurement unit (PMU), and at the same time, the estima-
tion performance of EKF is discussed in a 3-machine 9-bus
power system from sampling frequency, measurement error,
and the influence of fault and load change. A distributed
EKF method was proposed based on the Wide Area Mea-
surement System (WAMS) in [7], for which, the generator
rotor motion equation is decoupled from the external net-
work. However, because of ignoring the higher-order term
of Taylor expansion, EKF causes a large truncation error
and results in a decrease in filter performance in the case
of strong nonlinearity. Adaptive interpolation and adaptive
multi-step prediction are respectively proposed in [8] and [9]
and can reduce the influence of nonlinearity on the estima-
tion accuracy of EKF, but the complexity of the algorithms
increases greatly. The EKF algorithm achieves nonlinear state
estimation by approximating nonlinear function, while the
other KF-based algorithms, such as UKF, cubature Kalman
filter (CKF), and ensemble Kalman filter (EnKF), are to
approximate the posterior probability distribution of random
variables.

While using the set of weighted sigma points transferred
by nonlinear function, the UKF algorithm can combine the
unscented transformation and KF to approximate the pos-
terior probability distribution of random variables without
calculating the Jacobian matrix [10]–[17]. In [13], by com-
biningWAMS data and the measurement data from the super-
visory control and data acquisition system, a UKF-based
DSE method of power systems is proposed in the case of
mixed measurement and verified on a 4-machine system.
In [15], a robust generalized maximum-likelihood UKF is
provided to handle unknown statistics, measurement noises,
and bad measurements. However, as the variable dimension
and nonlinearity increase, the algorithm cannot be recursive
due to the difficulty in maintaining the positive definiteness
of the covariance matrix of UKF. To improve the numerical
stability of UKF, a symmetric positive semi-definite matrix,
which is closest to the Frobenius-norm of the original matrix,
is generated to ensure the positive semi-definiteness of the
covariance matrix during iteration [17].

To approximate the posterior probability distribution of
random variables, UKF uses the set of weighted sigma
points transferred by nonlinear function, while CKF con-
siders the set of equal weight cubature points generated
according to spherical-radial rule [18]–[22]. As CKF is not
sensitive to variable dimensions, it is not necessary to set
cubature point parameters [18]. With the measurement data
from PMU and remote terminal unit, CKF was applied to
address the DSE of power systems in [19], and its supe-
riority is demonstrated in the 30-bus and 246-bus power
system compared with EKF and UKF. In [20], a robust
CKF method is proposed to estimate generator dynamics and
shows that the resistance to bad data can be improved at the
cost of computational efficiency. In [21], CKF and Huber’s
M-estimation are combined to detect outliers and gross
errors.

Different from the deterministic sampling strategy of UKF
and CKF, the EnKF algorithm uses random sampling to
generate the sample set that can be adjusted according to
actual requirements [23]–[29]. In this condition, the larger
the sample set is, the higher the approximate accuracy is.
In [23], EnKF was used for the DSE of power systems and
addressed from the accuracy of the initial value, model error,
and the sensitivity to sampling frequency. EnKF was also
used to estimate the power system harmonic state in [25]
and to calibrate the generator parameters to reduce the mis-
match between PMU measurement and the generator state
in [27].

The four KF-based algorithms mentioned above have been
widely used in the DSE of power systems. As the KF the-
ory was proposed based on the Gaussian distribution noise
to keep an optimal estimation with the unbiased minimum
variance [4], [5], the four KF-based algorithms remain this
distribution. The existing work has shown that the non-
Gaussian noises will result in the bad estimation performance
of these algorithms. For instance, in [3], non-Gaussian noises
make the estimation of UKF severely deviate from the true
values; in [21], it has been shown that the estimation of
CKF will be distorted, while Cauchy noise and Laplace noise
are used to assess its performance. Therefore, to show their
advantages and disadvantages, the four KF-based algorithms
are compared on the basis of Gaussian distribution. The main
contributions are shown, as follows:
• The four KF-based DSE algorithms are summarized
and compared to show their complexity from Jacobian
matrix calculation, parameter setting, and the sample
size.

• The advantages and disadvantages of the four algorithms
are shown from the calculation speed and accuracy,
the resistance to error, and the sensitivity to system
scales.

The remainder of this paper is arranged as follows.
In Section II, the model of DSE is provided. The four KF-
based algorithms are introduced and compared in Section III,
and simulation results are presented in Section IV. Finally,
the conclusion is drawn in Section V.

51036 VOLUME 8, 2020



H. Liu et al.: Comparisons on Kalman-Filter-Based DSE Algorithms of Power Systems

III. THE MODEL OF DYNAMIC STATE ESTIMATION
A. THE THEORY OF DYNAMIC STATE ESTIMATION
The equations of state and measurement for nonlinear
systems have the following expression:{

xk = f (xk−1,uk−1)+ wk−1
zk = h(xk )+ vk

(1)

where xk is n dimensional state vector, zk is m dimensional
measurement vector, the subscript k represents time, and
uk−1 is the control vector at time k − 1; f(·) and h(·) are the
state transition function and measurement function, respec-
tively; w and v are system noise vector and measurement
noise vector, respectively, which are usually assumed to be
uncorrelated Gaussian noise in (2).{

w ∼ N (0,Q)
v ∼ N (0,R)

(2)

where Q and R are the system noise variance and measure-
ment noise variance, respectively.

The dynamic state estimation is to get the estimated
value x̂k by appropriately correcting the prediction value x−k ,
while obtaining the measurement zk , as shown in (3).{

x−k = f (x̂k−1,uk−1)
x̂k = x−k + kk (zk − h(x

−

k−1))
(3)

Therefore, with the measurement vector zk and the esti-
mated value x̂k−1, to calculate the filtering gain kk , we can
minimize the estimated error covariance as

min Pk = E((xk − x̂k )(xk − x̂k )T ) (4)

where xk is a true value vector.
Note that for the nonlinear equation (1), it is hard to find

the analytical solution of (4), but KF can provide an optimal
solution of the linear equation, as shown in (5) [30]:

kk = Pxz(Pzz + R)−1 (5)

When KF is extended to a nonlinear system, approxi-
mating the innovation covariance matrix Pzz and the cross-
covariance matrix Pxz is the essential difference among the
four KF-based algorithms discussed in Section III.

B. THE MODEL OF DYNAMIC STATE ESTIMATION OF
POWER SYSTEMS
The equation of generator rotor motion has the following
expression:

dδ
dt
= ωs(ω − 1)

dω
dt
=

1
T
(pm − pe − D(ω − 1))

(6)

where δ and ω represent the generator power angle and speed
respectively,ωs is the reference speed,T is the inertia constant
of the generator, pm is the mechanical power of the generator,
pe is the electromagnetic power of the generator, and D is the
damping coefficient.

The equation (6) can also be re-written as:{
δk = δk−1 + ωs(ωk−1 − 1)+ ωδ
ωk = ωk−1 + h ∗ (pm − pe,k−1 − D(ω − 1))/T + wω

(7)

where h is the difference step size, k represents time, ωδ and
ωω correspond to the system noise in (1). In a multi-machine
system, the electromagnetic power pe at time k satisfies

piek = V i

n∑
j=1

Y ijV jcos(δik − δjk − αij) (8)

where Y represents the reduced node admittance matrix,
i represents the generator number, and αij represents the
admittance angle. The generator power angle and speed are
considered as the measurement zk , i.e.,

zk = [δk ωk ] (9)

The constant control vector uk is:

uk = [Pm V ] (10)

IV. THE FOUR KF-BASED ALGORITHMS
A. EKF ALGORITHM
While linearizing (1) by using the first-order Taylor expan-
sion to obtain the analytical solution (5), the steps of EKF
include prediction step and the filtering step, as follows.

Prediction step:{
x−k = f (xk−1,uk−1), k ≥ 1
P−k = Fk−1Pk−1FTk−1 + Q

(11)

Filtering step:

Pzz = HkP−k H
T
k

Pxz = P−k H
T
k

kk = Pxz(Pzz + R)−1

x̂k = x−k + kk (zk − h(x
−

k ))
Pk = (I − kkHk )P−k

(12)

where Pk is the covariance matrix of the estimated value,
P−k is the covariance matrix of the predicted value x−k , and
Hk and Fk are subjected to (13).

Hk =
dh
dx
|x−k
, Fk =

df
dx
|xk−1 (13)

The EKF has been extensively used because of its simple
steps. However, solving the Jacobian matrix (13) is greatly
complicated for large-scale systems or complex equations.
Besides, the truncation error will increase due to ignoring the
higher-order terms of Taylor expansion, which degrades or
even diverges the estimation performance of the system with
the strong nonlinearity [17].
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B. UKF ALGORITHM
By combining unscented transformation and KF, UKF gener-
ates a set of weighted Sigma points to approximate the state
mean and covariancematrix in (5). Comparedwith EKF,UKF
does not calculate the Jacobian matrix and simultaneously
shows higher approximation accuracy, the steps of which are
as follows [17].

The n ∗ (2n + 1)-dimension weighted Sigma points are
generated by:

Sk−1 = xk−1 ∗ eT + η
[
0n,1

√
Pk−1 −

√
Pk−1

]
(14)

Prediction step:

S−k = f (Sk−1,uk−1)

x−k =
2n∑
i=0

W i
m ∗ S

−

i,k

P−k =
2n∑
i=0

W i
c(S
−

i,k − x
−

k )(S
−

i,k − x
−

k )
T
+ Q

S−xk = x−k ∗ e
T
+ η

[
0n,1

√
Pk−1 −

√
Pk−1

]
S−yk = h(S−xk )

y−k =
2n∑
i=0

W i
m ∗ S

−

i,yk

(15)

Filtering step:

Pzz =
2n∑
i=1

W i
c(S
−

yk − y
−

k )(S
−

yk − y
−

k )
T

Pxz =
2n∑
i=0

W2
c(S
−

i,k − x
−

k )(S
−

yk − y
−

k )
T

kk = Pxz(Pzz + R)−1

x̂k = x−k + kk (zk − y
−

k )
Pk = P−k − kk (Pzz + R)k

T
k

(16)

where e is the unit column vector;Wm andWc are the weight
vectors of mean and covariance respectively, subjected to:

W0
m =

λ

n+ λ

W i
m =

λ

2(n+ λ)
i = 1 · · · 2n

W0
c =

λ

n+ λ
+ (1− α2 + β)

W i
c =

1
2(n+ λ)

i = 1 · · · 2n

(17)

and η =
√
n+ λ, β≥ 0. The scale parameter satisfies

λ = α2 (n+ l)− n, where α and l are constants, 1 ≥ α > 0,
and l ≥ 0.
Compared with EKF, the covariance calculation is more

complex, although it is not necessary for UKF to calculate
the Jacobian matrix. At the same time, UKF needs to set the
parameter α, β, and l to modify the weight of Sigma points,
but the parameter setting lacks reference, which limits its
popularization.

C. CKF ALGORITHM
Because of using the spherical radial rule to generate equal
weight cubature points set, CKF has the following steps [19].

The n ∗ 2n-dimension equal weight cubature points are
generated by:

Ck−1 = xk−1 ∗ eT +
√
n
[√

Pk−1 −
√
Pk−1

]
(18)

Prediction step:



C−k = f (Ck−1,uk−1)

x−k =
1
2n

2n∑
i=1

C−i,k

P−k =
2n∑
i=1

(C−i,k − x
−

k )(C
−

i,k − x
−

k )
T
+ Q

(19)

Filtering step:

C−xk = x−k ∗ e
T
+
√
n
[√

P−k −
√
P−k

]
C−yk = h(C−xk )

y−k =
1
2n

2n∑
i=1

C−i,yk

Pzz =
1
2n

2n∑
i=1

(C−yk − y
−

k )(C
−

yk − y
−

k )
T

Pxz =
1
2n

2n∑
i=1

(C−i,k − x
−

k )(C
−

yk − y
−

k )
T

kk = Pxz(Pzz + R)−1

x̂k = x−k + kk (zk − y
−

k )
Pk = P−k − kk (Pzz + R)k

T
k

(20)

As shown in (17), for UKF, the weight of the sample
center point is larger than that of other sampling points.
Therefore, the closer the sample center point is to the true
value, the higher the approximate accuracy is. In contrast,
for CKF, there is no sampling center point, and the same
weight is kept for all sampling points. Therefore, the sampling
strategy of CKF is more conservative.

D. ENKF ALGORITHM
Unlike the deterministic sampling strategy of UKF and CKF,
EnKF generates a great number of sample set according to
the prior distribution of random variables. The larger the
sample set is, the higher the approximation accuracy is, but
the calculation burden will increase significantly. The steps
of EnKF are as follows [23].

When k = 1, the sample set is generated by:

Es = x0 ∗ eT + P0 ∗ randn(2n, nen) (21)

51038 VOLUME 8, 2020



H. Liu et al.: Comparisons on Kalman-Filter-Based DSE Algorithms of Power Systems

TABLE 1. Complexity comparison of four methods.

Prediction step:

E−s = f (Es,uk−1)+ Q ∗ randn(2n, nen)
z−k = h(E−s ,uk−1)

x−k =
1
nen

nen∑
i=1

Ei−s

y−k =
1
nen

nen∑
i=1

zi−k

(22)

Filtering step:

Pzz =
1
nen

nen∑
i=1

(zi−k − y
−

k )(z
i−
k − y

−

k )
T

Pxz =
1
nen

nen∑
i=1

(Ei−s − x
−

k )(z
i−
k − y

−

k )
T

kk = Pxz(Pzz + R)−1

Ez = zk + R ∗ randn(2n, nen)
x̂k = E−s + kk (Ez − z

−

k )

(23)

where nen is the number of samples, which is usually not
below the dimension of variables.

E. COMPARISONS OF FOUR KF-BASED METHODS
As shown in Table 1, the four KF-based algorithms are
compared from the Jacobian matrix, the number of setting
parameters, and the size of sample.

From Table 1, EKF needs to calculate the Jacobian matrix,
while CKF, EnKF, and UKF do not consider the Jacobian
matrix. This means that the computation burden of EKF is
heavier than that of CKF, EnKF, and UKF, especially for
the highly complicated system. Regarding setting parame-
ters, the more the number of setting parameters is, the more
difficult determining parameter values for the current system
and error distribution is. Therefore, it is harder for UKF to
set parameter values in comparison to EKF, CKF, and EnKF.
For EKF, the sample is not considered due to using the Taylor
expansion. In contrast, the sample set must be used to achieve
the estimation for CKF, EnKF, and UKF. There is no standard
for determining the EnKF sample size, but the trial and error
on the sample size can be used to ensure the calculation
efficiency and estimation accuracy of EnKF. Compared with
EnKF, the sample sizes of CKF and UKF are dependent on
the size of nonlinear systems.

V. SIMULATIONS AND DISCUSSIONS
Under the MATLAB R2016a environment, the simu-
lations are performed with a computer with an Intel
Core i7-7700 CPU and 8 GB memory. To imitate the field
PMU dada, we here superimpose the Gaussian distribution
noises into the data from the Power System Toolbox [31]
which are widely used in the literature such as [15], [17]. The
parameters are set in detail, as follows.

a. The sampling frequency of PMU is 50Hz, and the mea-
surements include the generator power angle and speed;

b. A three-phase ground fault occurs at 0.1 s, and the fault is
set at the first end of the line with the largest branch power
flow and removed after 0.18 s;

c. The initial covariance matrix P0 of the four algorithms
is a diagonal matrix with the diagonal elements of 10−6,
the system noise covariance matrix Q is a diagonal matrix
with the diagonal elements of 0.012, and the diagonal
elements of the measurement noise covariance matrix R
are set to 0.01 for power angle and 0.001 for generator
speed.

Besides, we assume that for UKF, α = 1, β = 2, l = 3−n,
while EnKF has the sample size of nen = 200.

A. ESTIMATION ACCURACY AND CALCULATION
EFFICIENCY
The root-mean-square error is defined as the comparison
standard of the estimated accuracy of the four algorithms,
as follows.

ex =

√√√√√ n∑
i=1

N∑
k=1

(xesti,k − x
true
i,k )2

nN
(24)

where n indicates the number of generators, N is the number
of times, and xesti,k and xtruei,k represent the estimated and true
values of the ith generator at time k , respectively.

As shown in Fig. 1, the four KF-based algorithms
can show good estimation results on a 3-machine 9-bus
system. However, the estimation accuracy and calcula-
tion efficiency of the four algorithms will change signifi-
cantly with the increase of the system size, as illustrated
in Fig. 2 and Fig. 3.

The estimation accuracy of UKF and CKF is similar but
better than that of EKF and EnKF. With the increase of the
system scale, CKF, EnKF, and UKF can keep the relatively
stable estimation performance for all scale systems, as shown
in Fig. 2. However, the estimation accuracy of EKF decreases
dramatically for the 48-machine power system due to the
truncation error of the Taylor expansion.

For the calculation efficiency, EKF decreases slightly with
the increase of system scale, while CKF, UKF, and EnKF
decrease dramatically, as shown in Fig. 3. The detailed com-
parison results are shown in Table 3-Table 5 in the Appendix.
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FIGURE 1. Estimations on a 3-machine 9-bus system.

FIGURE 2. Estimation accuracy for different scale systems.

B. THE RESISTANCE TO MEASUREMENT ERRORS
Measurement errors are inevitable, because the measuring
accuracy is affected by temperature, instrument aging, and
interference, etc. The resistance ability to measurement errors
is one of the important indicators to evaluate the effectiveness
of the algorithm. The decline ofmeasurement level is imitated
by increasing the error standard deviation Rz, which is super-
imposed on the true value.

As shown in Fig. 4, the estimation performance of the four
KF-based algorithms decreases with the increase of measure-
ment error. As the truncation error of the Taylor expansion
increases with errors, EKF shows the worst performance in
estimation accuracy. Compared with EnKF, UKF and CKF
with the similar estimation results achieve better estimation
accuracy. Please see the detailed data in Table 6 and Table 7 in
the Appendix.

FIGURE 3. Calculation efficiency for different scale systems.

FIGURE 4. Estimation accuracy for different error standard deviations.

C. THE SENSITIVITY TO SYSTEM SCALES
As shown in Fig. 2, the estimation accuracy of EKF drops
sharply for the 48-machine system. This is because the esti-
mation results of some generators are divergent due to the
large truncation error of the Taylor expansion, as illustrated
in Fig. 5. Compared with EnKF, CKF and UKF can still
achieve good estimation results.

As the root-mean-square error ex cannot directly reflect
the divergence of the estimation results of each generator,
a coefficient index Rxy is introduced, as follows.

Rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2
(25)

where xi and yi are the estimated values and real values
respectively, x̄ and ȳ are their correspondingmean values, and
Rxy satisfies 0 < Rxy < 1.

Note that, the closer the value of Rxy is to 1, the stronger
the correlation between x and y is, and the better estimation
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FIGURE 5. Estimation results of the 45th generator in a 48-machine
power system.

TABLE 2. The unqualified variables for four algorithms.

TABLE 3. Precision and computation efficiency of four methods on a
3-machine 9-bus system.

performance is. If Rxy < 0.8, the estimation value is consid-
ered as unqualified. The number of unqualified variables is
used to evaluate the performance of the algorithms.

As illustrated in Table 2, for the 3-machine system and the
10-machine system, there is no estimation distortion. How-
ever, in the 48-machine system, EKF has the most amount
of distortion, while UKF and CKF have the least distortion.
Therefore, UKF and CKF have less sensitivity to the system
size, compared with EnKF and EKF.

VI. CONCLUSION
In this paper, to show the advantages and disadvantages of
the four KF-based mainstream algorithms (i.e., EKF, UKF,
EnKF, and CKF), we compare them from algorithm complex-
ity, calculation speed and accuracy, the resistance to measure-
ment errors, and the sensitivity to system scales.

TABLE 4. Precision and computation efficiency of four methods on a
10-machine 39-bus system.

TABLE 5. Precision and computation efficiency of four methods on a
48-machine 140-bus system.

TABLE 6. The estimation accuracy of generator angles for four methods.

TABLE 7. The estimation accuracy of generator speeds for four methods.

The EKF algorithm shows high calculation efficiency but
cannot be used for large-scale power systems due to the
complicated Jacobian matrix calculation and the sensitivity
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to measurement errors and system sizes. Although the UKF
algorithm is insensitive to measurement errors and system
sizes, the parameter setting is dependent on experience, and
at the same time, the calculation efficiency decreases with the
size of power systems. With the relatively low sensitivity to
measurement errors and system sizes, the EnKF algorithm
may be used for the applications with low estimation accu-
racy. In contrast, the CKF algorithm shows the best perfor-
mance among these algorithms in achieving high estimation
accuracy and the insensitivity to measurement errors and
system sizes.

Therefore, the work of this paper can facilitate selecting
state estimation algorithms for the solution to the DSE prob-
lems under different applications.

APPENDIX
See Tables 3–7.
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