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ABSTRACT For a broken rail detection system based on ultrasonic guided waves (UGW), the multimodal
and dispersion of UGW degrade signal-to-noise ratio (SNR) and range resolution. To improve SNR of
the received signals and range resolution, the pulse compression technique based on 13-bit Barker code
is presented in this work. Through a PSpice model of the pitch-catch setup, as well as performing field tests,
it is shown that coded UGW signals can efficiently improve SNR by 5 dB and have strong noise immunity.
As the detection distance increases, the mainlobe width increases linearly while the sidelobe peak levels
remain basically unchanged. In addition, to correctly and quickly identify the corresponding transmissions
at the receivers, an adaptive peak detection algorithm is proposed, which is based on a digital bandpass
tracking filter, moving averaging filters and Hilbert transform. By using some field tests under different
detection distances, it is found that compared to the previous works, the proposed adaptive peak detection
algorithm has stronger robustness and better anti-noise performance. In addition, the proposed method is
easy to integrate into a real-time detection system by proper software design.

INDEX TERMS Peaks detection, barker code, pulse compression, long rail breakages detection, UGW.

I. INTRODUCTION
Ultrasonic GuidedWaves (UGW)werewidely used in the last
years in various applications of defects detection in systems
such as concretes, pipelines, and rails [1]–[3]. Essentially,
UGW belongs to a mechanical wave and has some inher-
ent properties including long-range coverage, low detection
frequency, and high inspection efficiency. In recent years,
broken rail detections of continuous welded rails (CWR)
based on UGW have achieved rapid development [4], [5].
A broken rail real-time detection system based on UGW was
developed in [6]. In view of the UGW energy attenuation,
UGW dispersion and multimode propagation in long rails,
the amplitude and signal-to-noise ratio (SNR) of the received
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signal are low in practice. In addition, ambient factors, like
temperature, humidity, and rain, will further aggravate the
reduction of SNR. To obtain a good defect characterization
and localization in long rails broken detection based onUGW,
high SNR of the received signals is required.

Taking into account the previous considerations, some
limitations still exist though these improvements in hard-
ware development and signal processing were performed
in [7]–[11]. The amplitude increment of the emitted signal is
restricted due to the limitation of excitation voltage of piezo-
electric ultrasonic transducers [9]. Besides, some dispersion
compensation approaches were utilized to better obtain char-
acteristic information from the received signals [10], [11].
It is pointed out that the amplitude enhancement of the
received signal is still limited even if the dispersion effect
could be completely eliminated. Initially, to effectively
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extend the transmission time what enhanced SNR, encoding
excitation technique was used in some medical applications
based on ultrasonic detection technique. Zhang et al. [12]
utilized a Barker coded excitation in long bone detection to
generate UGW and it was found that Barker coded excitation
made the SNR of the received signal increase by 6.64 dB.
To improve ultrasonic imaging quality in terms of axial reso-
lution and SNR, a newBarker coded excitation based on a lin-
ear chirp carrier was proposed in [13]. Hereafter, the encoding
excitation technique was introduced in other ultrasonic detec-
tion applications. A signal processing approach of exploiting
chirp excitation in Lamb waves was proposed in [14] to
achieve defect detection and localization. Yucel et al. [15]
compared the maximal length sequences and linear chirp
excitation for achieving high-resolution UGW response.
Li and Zhou et al. [16] proposed the use of P4 Polyphase
sequences to code ultrasound in a non-destructive testing
system based on air-coupled piezoelectric transducers. For
the purpose of improving high-voltage impulses used in track
circuits, encoding excitations based on Kasami sequences
and LS codes were compared in [17]. However, the chirp
excitation requires complex circuits and the generation of
excitation based on P4 Polyphase sequences is also complex.
Compared with Barker code, Kasami sequences have a higher
auto-correlation range sidelobe level. It is worth noting that
Barker code has the lowest auto-correlation range sidelobe
level among all binary codes of the same length and just
needs a single transmission. Additionally, it has a low require-
ment for hardware. Thence, the encoding excitation technique
based on Barker code used in a long rail broken detection
system using UGW is utilized in this paper.

For a detection system using encoded excitation, the selec-
tion of bits and carrier cycles for Barker code will have
an influence on SNR and duration of the received signal.
Generally, pulse compression based on Barker code is accom-
plished by using a matched filter in the received end. Some
sidelobes will appear in the output results of the matched
filter, which is from the effects of UGW dispersion in rails,
effects of the used modulation techniques, bandwidth con-
straints, multi-path, and noise. Owing to these sidelobes,
the signal obtained through the matched filter is not perfect.
Therefore, it is vital to adopt peaks detection approaches
for the correct identification of maximum peaks. In previous
works, most maximum detection systems were based on a
fixed threshold [18], [19], but the disadvantage of using fixed
thresholds derived from the difficulty of adjusting its value to
detect signals under variable energy changing. To overcome
the problem, a dynamic threshold was employed to detect
maxima [20], which can fit at every moment to the energy
of the received signal, existing noise, and other factors.
Then a further investigation about the maxima identification
was found in the medical field for the detection of electro-
cardiogram (ECG) QRS complex [21]–[23]. An algorithm
using differentiation at the pre-processing stage combined
with a dynamic threshold to detect R peaks was proposed
in [21]. Manikandan and Soman [22] presented a new R-peak

FIGURE 1. Structure diagram of a broken rail real-time detection system
based on UGW [6].

detector based on Shannon energy envelope, Hilbert trans-
form, and moving average filter. An automated R-peaks
detection method based on wavelet transform and Hilbert
transform was described in [23]. Furthermore, by using dis-
crete wavelet transform and Hilbert transform, a novel adap-
tive peak detection algorithm for track circuits based on
encoded transmissions was shown in [24]. But these algo-
rithms either require some amplitude thresholds or have high
complexity which cannot meet the real-time requirement of
the broken rail detection systems based on UGW. Given
these considerations aforementioned, this work proposes an
adaptive peak detection algorithm for long rails broken detec-
tion using UGW, based on a digital bandpass filter (DBTF),
a triangle filter, and Hilbert transform. It is shown that Barker
coded UGW signals can efficiently improve SNR by 5 dB and
have a strong immunity to noise. In addition, 13-bit Barker
code modulated by using 20 carrier cycles can well satisfy
requirements of SNR and range resolution of the detection
of breakages in long rails. Compared to the previous works,
the proposed adaptive peaks detection algorithm has stronger
robustness and better anti-noise performance.

The rest of this paper is organized as follows:
Section 2 describes the PSpice model of a pitch-catch setup,
the Barker encoding, and the pulse compression scheme,
as well as the proposed adaptive peak detection algorithm;
Section 3 presents, both, simulated and experimental results
and discussions; finally, some conclusions are outlined in
Section 4.

II. MATERIALS AND METHODS
Generally, the pitch-catch mechanism is often used in ultra-
sonic detection systems especially in structural health moni-
toring (SHM). Fig. 1 shows a broken rail real-time detection
system based on UGW. The transmitter and the receiver are
separated by 1 km and the detection system performs the
crack assessment based on the characteristics of the received
signals.

The characterized UGW signal will be transmitted every
one minute. If the characterized signal is not received,
an alarm will be generated. Then, this alarm information
is sent to a GPRS module by wireless data transmission
modules inside tunnels or other locations with no GPRS
signal coverage; finally, it is transmitted to a remote server
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FIGURE 2. Schematic diagram of the PSpice model of a pitch-catch setup.

by GPRS modules. To obtain a good defect characterization
and localization, high SNR of the received signals and high
range resolution are required.

A. PSPICE MODEL OF THE PITCH-CATCH SETUP
Sandwiched piezoelectric ultrasonic transducers (SPUTs) are
usually used in long-range ultrasonic detection. This is due to
its advantages like high power, low cost, and easy tomanufac-
ture according to design requirements. It mainly consists of a
front mass, a back mass, a piezoelectric ceramic stack, metal
electrodes, and a high strength prestressed bolt. To perform
transient analysis for SPUTs under different encoding excita-
tions, a PSpice model of the pitch-catch setup is involved,
as shown in Fig. 2. The PSpice model was established
in [26] based on one-dimensional wave and transmission line
theories.

It composes of an emitted ultrasonic transducer, a received
ultrasonic transducer, transmission medium, a signal gener-
ator, and an oscilloscope. Since the back mass of SPUTs is
in contact with the air and the front mass is in contact with
the web of rails, the air load is taken into consideration to
model the acoustic load of the back mass in a SPUT. The
resistances R1 and R2 denote air load and then the air load
can be calculated as follows [25]:

R1 = R2 = ρ1v1A1 (1)

Here, ρ1 = 1.293 kg
/
m3 is the air density, v1 = 340 m/s

is the sound speed in the air, A1 = 1075.21mm2 indi-
cates the cross-sectional area of the back mass. Hence, it
can be obtained that the resistances R1=R2=0.472 �. Here,
the acoustic lossy transmission line is used to model the trans-
mission medium (CHN60 Rail). The acoustic lossy transmis-
sion line includes four parameters as follows [26]:

R =
ωL
Qm

, L = Aρ,G=0, C =
1

Aρv2t
(2)

where R is the resistance per unit length in �
/
m, L is the

inductance per unit length in H
/
m, G is the conductance per

unit length in S
/
m, and C is the capacitance per unit length

in F
/
m. Additionally, Qm represents the mechanical quality

factor, A indicates the cross-sectional area, ρ is the material
density, vt is the sound speed of longitudinal waves and ω
is detection angular frequency. The material parameters of
CHN60 Rail are listed in Table 1.

TABLE 1. The material parameters of CHN60 rail used in the simulation.

TABLE 2. Barker codes of different bits.

FIGURE 3. Block diagram of the pitch-catch setup based on Barker code.

B. BARKER CODE ENCODING AND PULSE
COMPRESSION SCHEME
Barker code is a kind of binary sequences that can be
expressed as

B [N ] = [c0, c1, . . . , cN−1] , ci ∈ {−1,+1} (3)

The autocorrelation function (ACF) is [27]

9AA [n] =

{
N , n = 0
0 or ± 1, n 6= 0

(4)

From (3), the peak of the autocorrelation is N , and the side-
lobe level (SLL) falls between+1 and -1. Note that goodACF
is very helpful for the identification of correlation peaks at the
receiver. The lengthN takes values that can be 2, 3, 4, 5, 7, 11,
and 13 and cannot be greater than 13 in practice. The Barker
codes of different bits are listed in Table 2.

The received signal in a broken rail detection system based
on UGW can be mathematically expressed as

y(t) = e(t) ∗ h(t)+ n(t) (5)

where ∗ is the convolution operator, e(t) is excitation pulse,
h(t) is system transfer function, y(t) is received signal, and
n(t) is additive noise. To better illustrate the process of encod-
ing and decoding of Barker code, a block diagram of the
pitch-catch setup is shown in Fig. 3.
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Actually, Barker code cannot be used directly to excite a
SPUT, since its baseband spectrum does not match with the
bandwidth of SPUTs. Hence, it is modulated with a carrier
using the BPSKmodulation technique. The transmitted signal
e[n] can be obtained as [13]:

e [n] = v [n] ∗ c [n] (6)

where v(n) represents the sample sequence of the carrier
denoted as v(t), and c[n] is the oversampled Barker code
sequence expressed by

c [n] =
N−1∑
k=0

ckδ [n− kTN fs] (7)

Here, {ck = ±1, k = 0, 1, . . . ,N − 1} is the original Barker
code sequence before oversampling, TN = Nc

/
f0 is the chip

duration of Barker code, Nc indicates cycles of the selected
carrier and fs is system sample frequency. The total duration
of the Barker coded sequence is T = NTN .
It is important to note that the excitation voltage of SPUTs

used in long-range detection is as high as thousands of volts.
From the perspective of the low complexity of hardware and
low cost, the square wave signal v(t) is chosen as the carrier
in this paper.

v(t) =
4
π

 sin(2π f0t)+
1
3
sin(6π f0t)+ · · ·

+
1
n1

sin(2n1π f0t)+ · · ·

 , 0≤ t≤TN
(8)

Here, f0 is the frequency of an excitation signal. Taking a
13-bit Barker code with Nc = 1 as an example, the encoding
process is shown in Fig. 4.

Long-range rail detection is different from small range
inspection such as long bone detection since it aims at obtain-
ing SNR as high as possible. Currently, the typical methods
of pulse compression include matched filter and mismatched
filter. The mismatched filter can achieve lower SLLs at the
cost of reducing SNR. For the case of a matched filter, its
transfer function H1(ω) can be obtained as [28]:

H1(ω) = k1E∗(ω) exp(−jωt0) (9)

where k1 is the normalized amplitude constant and E∗(ω) is
the complex conjugate of E(ω).
Through the inverse Fourier transform, the following equa-

tions can be achieved

h1(t) = k1e(t0 − t) (10)

From (10), the impulse response function h(t) of the matched
filter is obtained by shifting t0 the flipped version e(−t) of
the excitation signal e(t). Thus, the pulse compression signal
d(t) can be given as

d(t) = y(t) ∗ h1(t) (11)

For the performance evaluation of encoding transmission,
two metrics are used which include mainlobe width (MLW)

FIGURE 4. The Barker code encoding process, (a) sampled square wave
as the carrier, (b) oversampled 13-bit Barker code, (c) modulated Barker
code, and (d) its autocorrelation curve.

FIGURE 5. The corresponding PSL values of Barker codes of different bits.

and peak sidelobes level (PSL). The PSL formula in decibels
can be given as [29]

PSL = 10 log
[
max(Asidelobe)
max(Amainlobe)

]
(12)

Here, Asidelobe and Amainlobe represent peak values of side-
lobes and mainlobes in correlation results, respectively.
In addition, MLW can be defined as

MLW = t2 − t1 (13)

Here, [t1, t2] denotes the mainlobe width. In practice, MLW
determines the inspection resolution.

In light of Table 2 and (12), the corresponding PSL values
are obtained and shown in Fig. 5. According to Fig.5, it is
shown that 13-bit Barker code has the lowest PSL. This
indicates that it has the best suppression effect of pulse com-
pression sidelobes and high SNR. Therefore, 13-bit Barker
code is used to encode the carrier signal in this paper.
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FIGURE 6. Process block diagram of the proposed peak detection
algorithm.

C. THE PROPOSED PEAK DETECTION ALGORITHM
The peak detection algorithm has to consider that this type
of system must monitor in real-time and be implemented in
platforms with reduced resource availability. Fig. 6 shows
the process block diagram proposed for the peak detection
algorithm. It is composed of three main stages, namely,
the pre-processing, the smooth squaring transform (ST)
envelope extraction, and the peak identification. The follow-
ing subsections give a detailed explanation of each stage.

1) SIGNAL PRE-PROCESSING
The signal pre-processing stage is in charge of eliminating
noise or some interference. It includes four main steps: the
matched filter, bandpass filter (BPF), first-order forward dif-
ferencing, and amplitude normalization. To adapt the vari-
ation of the excitation frequency and satisfy the detection
requirement of remote control, a DBTF is designed using a
bilinear transform method. The standard transfer function of
a second-order analog bandpass filter can be expressed as

H (s) = HOBP

ω0
Q s

s2 + ω0
Q s+ ω

2
0

(14)

where ω0 = 2π f0 denotes the center angular frequency of
the bandpass filter, Q is quality factor and s = jω represents
complex angular frequency; HOBP indicates the bandpass
output gain at ω = ω0. In this paper, the bandpass output
gainHOBP equals one atω = ω0. Using the bilinear transform
method, (14) can be transformed as a transfer function H (z)
of an infinite impulse response (IIR) digital filter, which
has the same performance as the analog bandpass filter. The
transform formula is given as:

s =
2
Ts

1− z−1

1+ z−1
(15)

Here, Ts represents sample interval and z = esTs is a complex
variable. By substituting (15) into (14), the transfer function
H (z) can be derived as:

H (z) = c
1− z−2

1+ a1z−1 + a2z−2
(16)

To eliminate the frequency distortion from the bilinear
transform, a pre-correction process needs to be carried out.

These coefficients from (16) are obtained as [30]

c =
tan(ω0Ts2 )

Q+ tan(ω0Ts2 )+ Q tan2(ω0Ts2 )
(17)

a1 =
2Q tan2(ω0Ts2 )− 2Q

Q+ tan(ω0Ts2 )+ Q tan2(ω0Ts2 )
(18)

a2 =
Q− tan(ω0Ts2 )+ Q tan2(ω0Ts2 )

Q+ tan(ω0Ts2 )+ Q tan2(ω0Ts2 )
(19)

For the convenience of programming, the transfer function
from (16) can be re-expressed as

H (z) = c
1− z−2

1+ a1z−1 + a2z−2
=
b(z)
d(z)

(20)

Here, b(z) and d(z) represent the output and input for the
digital bandpass filter, respectively. Then considering d [n]
the input sequence of the filter and b [n] its output sequence,
the following equation can be obtained:

b [n]+ a1z−1b [n]+ a2z−2b [n] = cd [n]− cz−2d [n]

(21)

Based on the shifting property of the bilateral Z transform
from (22), (21) can be rewritten as (23).

z−nx(k) = x(k − n) (22)

b[n] = c[d[n]− d[(n− 2)]]− a1b[n− 1]− a2b[n− 2]

(23)

where n is the shifting length and has the value of n =
±1,±2,±3 · · · .
Thence, in light of (23), the frequency variation of the

received signals can be efficiently tracked only by changing
three main parameters composing of f0, Q and Ts. Fig. 7
shows the frequency response of the DBTF for f0 = 35kHz
as an example for different values ofQ. It can be seen that the
filter has a good frequency response within its bandwidth.

To further reduce some interference or low-frequency
noise, the first-order forward differencing is used. The dif-
ferentiation acts as a high-pass filter and it is expressed as

t [n] = b [n+ 1]− b [n] (24)

where b [n] indicates the output of the DBTF. The output of
the differentiator is a bipolar signal and so a rectification is
required to simplify the process of peak identification. Then
the differentiated signal t [n] is normalized using (25) before
squaring transform.

a [n] = norm(t [n]) =
t [n]

max(|t [n]|)
(25)

where a [n] represents the normalized signal.
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FIGURE 7. The frequency response of a DBTF at f0=35 kHz,
(a) magnitude, (b) phase.

2) SMOOTH UNIPOLAR ENVELOPE EXTRACTION
The extraction of the smooth unipolar envelope is to obtain
unique positive zero-crossing point in the transformed signal
by Hilbert transform (HT). If the extracted envelope is not
smooth that has many spikes, this will result in generating
extra positive zero-crossing points in the transformed signal.
This stage primarily includes squaring transform, triangle
filter, amplitude normalization, and moving average (MA)
filter. To enhance the mainlobe peak of output results of the
matched filter andmake the bipolar signal convert to unipolar,
a nonlinear transform is required. Squaring transform (ST)
and Shannon energy transform (SET) can be a better choice.
Their mathematical formulations are given as

ST : s [n] = a [n] · a [n] (26)

SET: s [n] = −(a [n])2 log((a [n])2) (27)

With the aim of choosing a suitable nonlinear transform,
the signal s [n] is calculated for ST and SET in Fig. 8a.
In Fig. 8a, it can be observed that ST gives a weighted
exponential response to the high-intensity components while
SET emphasizes medium intensity components. In addition,
Fig. 8b shows the result of applying ST and SET to a real
measured signal through a matched filter. From Fig. 8b,
ST greatly enhances mainlobe peak and decreases sidelobe
level compared with SET. Hence, ST is chosen as a nonlinear
transform in this work.

After ST, the transformed signal s [n] passes through a
triangle filter to obtain a smooth envelope. The triangle filter

FIGURE 8. The comparison of ST and SET, (a) comparison of energy
values, (b) comparison of signal s[n].

consists of two cascaded Moving Average (MA) filters. The
MA filter acts as a low pass filter, essentially, it is a window-
based averaging filter and easy to achieve by programming.
The mathematical formulation of MA filters is given as:

m [n] =
1
Nw

[
s(n− (Nw − 1))+ s(n− (Nw − 2))
+ · · · + s(n)

]
(28)

where Nw denotes the window length. For getting better
performance, a suitable selection of the window length is
crucial. In general, the window length is taken as much as
the mainlobe width of correlation results [24]. If the win-
dow length is too small, then it generates multiple envelopes
for a single correlation peak, resulting in producing extra
positive zero-crossing points in the transformed signal by
using HT. On the contrary, it involves some useless informa-
tion. Finally, the impulse response of the triangle filter tf [n]
can be expressed as:

tf [n] = m [n] ∗ m [n] (29)

Here, ∗ represents the convolution operator.
Additionally, the amplitude normalization, squaring trans-

form, and MA filtering from (30), (31), (32), are used for the
filtered signal tf [n] to smoothen the envelope extraction.

a1 [n] =
tf [n]

max(|tf [n]|)
(30)

s1 [n] = a1 [n] · a1 [n] (31)

m1 [n] =
1
Nw

[
s1(n− (Nw − 1))+ s1(n− (Nw − 2))
+ · · · + s1(n)

]
(32)
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FIGURE 9. Illustration of peak detection by positive zero crossing point.

3) HILBERT TRANSFORM-BASED PEAKS IDENTIFICATION
This stage introduces a novel automatic peak-detection logic
exploiting the property of HT. The HT is extensively used in
analyzing the instantaneous amplitude and frequency of the
signal. The HT definition of a real signal x(t) can be given
as [22]

x̂(t) = H [x(t)] =
1
π t
∗ x(t) =

1
π

∫
∞

−∞

x(τ )
t − τ

dτ (33)

where ∗ indicates the convolution operator. From (33), it can
be found that the HT in the time domain is obtained by
performing the convolution between the signal x(t) and 1

/
π t .

In the frequency domain, the HT can be expressed as

X̂ (f ) = F
[
1
π t

]
· F [x(t)] = −jsgn(f )X (f ) (34)

where X (f ) is the Fourier transform of the signal x(t), j is
the imaginary unit. Then the HT of the signal x(t) can be
calculated as:

x̂(t) = IFT
[
X̂ (f )

]
where

{
X̂ (f ) = jX (f ), f < 0
X̂ (f ) = −jX (f ), f > 0

(35)

Here, IFT denotes the inverse Fourier transform.
To illustrate the maxima finding logic using HT, an even

Gaussian function is taken as an envelope model because its
shape is very similar to an envelope of the signalm1 [n]. If HT
is applied to the Gaussian function the resulting process is
shown in Fig. 9. It can be observed that the HT generates a
positive zero crossing point in the transformed signal corre-
sponding to a peak of the signal m1 [n]. Hence, by detecting
positive zero-crossing points, the peak of the signalm1 [n] can
be identified accurately.

Using this technique, there is no need for any amplitude
threshold to detect the peaks. After the HT, only by extracting
positive zero-crossing points of the transformed signalHt [n],
the corresponding peaks of the signal m1 [n] are identified.

III. RESULTS AND DISCUSSION
A. THE ANALYSIS OF BARKER CODE
Firstly, a comparison of single-pulse excitation (8 cycles
square wave pulse) and Barker coded excitation is performed

FIGURE 10. The comparison of the received signals for single pulse
excitation and Barker coded excitation.

FIGURE 11. The illustration of filed test, (a) schematic diagram,
(b) experimental platform based on pitch-catch.

by experiments based on 1 m CHN60 rail in the lab. The
excitation voltage is 20 V and the number of carrier cycles
is 8 for Barker coded excitation. The comparative result of
two excitations is shown in Fig. 10. From Fig. 10, it is found
that the amplitude of the received signal is larger when Barker
coded excitation is used. The amplitude values of single-pulse
excitation and Barker coded excitation are 0.55 V and 1.75 V,
respectively. The definition of SNR is given as

SNR = 10 · log10

(
As
An

)
(36)

Here, As is the signal amplitude and An = 0.01V is the noise
amplitude. From (36), it is found that SNR of the received
signal is increased by 5 dB when Barker coded excitation is
used.

Moreover, the selection of carrier cycles, noise perfor-
mance, and the effect of propagation distance on pulse
compression are investigated by utilizing simulations and
experiments. The illustration of a field test is shown
in Fig. 11. In Fig. 11a, TR1 represents transmitters and REi
(i = 1, 2, 3, 4) denotes receivers. The test distances include
50 m, 100 m, 200 m, and 500 m. A pitch-catch experimental
platform is established in Fig. 11b, which consists of SPUTs,
batteries, CHN60 Rail, driving circuit board, and waveform
recorder MR8875-30 (HIOKI E.E. CORPORATION). Here,
the driving circuit board is used to excite SPUTs, which
is designed based on full-bridge topology. The waveform
recorder saves the data from received signals.
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FIGURE 12. The comparison of simulated and measured results, (a),
(b) matched filtering under 10 and 20 cycles, (c), (d) normalized
envelopes comparison under 10 and 20 cycles.

1) THE SELECTION OF CARRIER CYCLES OF
BARKER CODE MODULATION
A square wave is chosen as a carrier to reduce the complexity
and cost of the hardware. The carrier frequency is 35 kHz
in this system. For the detection of breakages in long rails,

the number of carrier cycles takes values of 10 and 20 to
ensure the UGW signal received by a receiver. Based on the
PSpice model of the pitch-catch setup from Fig. 2 and the
experimental platform from Fig. 11b, the effect of the number
of carrier cycles on pulse compression is analyzed when the
rail length is 50m. Fig. 12a and Fig. 12b present the simulated
and measured pulsed compression results, respectively, for
10 and 20 carrier cycles. The main lobe peak is greatly
increasedwith 20 cycles comparedwith the case of using only
10 cycles. Fig. 12c and Fig. 12d shows the corresponding nor-
malized envelopes. It is seen that the larger number of carrier
cycles, the larger MLW and the lower PSL. It is also shown
that the simulated results are in agreement with the measured
ones. Note that a small MLW and low PSL are required to
guarantee good range resolution and high SNR in practice.
If carrier cycles keep increasing, MLW and the duration of
the received signal will be increased, which leads to taking
more time to process the received signal and decreasing range
resolution. Therefore, the number of carrier cycles will take
20 in this study.

The difference between the simulated results and the mea-
sured ones can be well explained as follows. Firstly, SPUTs
in the PSpice model are built based on one-dimensional wave
and transmission line theories, but the radial mode exists in
practice. Furthermore, the rail in the PSpicemodel is achieved
by using a lossy transmission line. Finally, SPUTs used to
transmit and receive signals are identical in the PSpice model
while this is very difficult to achieve in practice.

2) THE PERFORMANCE OF THE BARKER CODE WITH NOISE
The detection equipment of broken rails is often in a high
noise environment. In general, high SNR is required in the
detection. Hence, the analysis of the performance of the
Barker code with noise is necessary. The test distance used is
50 m and the number of carrier cycles is 20. Gaussian noises
with SNR=−10 dB and −20 dB are added to the measured
received signals. In this situation, the received signals cannot
be distinguished in the received transmissions, as can be seen
in Fig. 13. Nevertheless, after matched filtering, the correct
correlation peak can still be found. It is concluded that 13-bit
Barker code has a strong immunity to noise, which can well
satisfy the requirements of the broken rail detection system.

3) THE EFFECT OF PROPAGATION DISTANCE OF
UGW ON PULSE COMPRESSION
The dispersion and multimode transmission of UGW are
closely related to the geometry shape of structures and to
the propagation distances. For this reason, the analysis of
the effect of the propagation distance on the pulse compres-
sion is carried out. The number of carrier cycles is 20 and
the test distances are 50 m, 100 m, 200 m, and 500 m,
respectively. The corresponding normalized envelopes are
extracted in Fig. 14a and the MLW and PSL are calculated
and presented in Fig. 14b, to conveniently compare pulse
compression results under different propagation distances.
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FIGURE 13. The analysis of noise performance of Barker code,
(a) SNR=−10 dB, (b) SNR=−20 dB.

FIGURE 14. The comparison of pulse compression results under different
propagation distances, (a) normalized envelopes comparison, (b) MLW
and PSL.

According to Fig. 14, with the increase of propagation distan-
ces, MLW increases linearly while PSL is almost unchanged.

The reason is that the dispersion of UGW can cause the
wave-packets to spread out in space and time as it prop-
agates through structures. Additionally, the duration of the
wave-packet increases linearly with the propagation dis-
tance [31]. All that limits the range resolution that can be
obtained in a long-range detection system based on UGW.

B. THE ANALYSIS OF THE PROPOSED PEAKS
DETECTION ALGORITHM
In order to validate the accuracy and stability of the pro-
posed peaks detection algorithm, the real measured signals

are analyzed under different window lengths of MA filter and
propagation distances, adding Gaussian noise with SNR=-
20 dB. The specific analysis is detailed in the subsections
below.

1) THE EFFECT OF THE WINDOW LENGTH OF THE MA
FILTER ON PEAK DETECTION
The smooth envelope is obtained by using a triangle fil-
ter, which is composed of two cascaded MA filters. The
smooth envelope is crucial for the achievement of positive
zero-crossing points by using HT. Here, the analysis of the
effect of the window length Nw of the MA filter on peak
detection is conducted, for the case of 20 carrier cycles and a
test distance of 500 m. In this case, the mainlobe width of the
pulse compression result is around 2.4 ms and the sampling
frequency is 500 kHz, so the mainlobe width, in samples,
is 1200. Consequently, the window lengths considered are
Nw = 100, 1200, 2000 samples, respectively.
Fig. 15 presents the peak detection results under these

different window lengths. Fig. 15a shows that the signal after
the triangle filter generates multi-peaks when the window
length is Nw = 100 samples. This leads to the appearance of
unexpected positive zero-crossing points. In addition, it can
be observed that if the peak value of the filtered signal
tf [n] is small, the positive zero-crossing point cannot appear
by using HT. Considering also the results of Fig. 15b and
Fig. 15c, only one positive zero-crossing point is obtained
when the window length is Nw = 1200, 2000 samples,
respectively. Besides, the normalized envelopes of the filtered
signal tf [n] under the three window lengths are compared
in Fig. 15d. It is shown that, compared to Nw = 1200
samples, the peak of the envelope will generate a larger shift
if Nw = 2000 samples. This leads to some time difference
in identifying the received transmissions. Hence, the window
length of the MA filter selected is normally equal to the
mainlobe width of the pulse compression results.

2) THE DETECTION OF PEAKS UNDER DIFFERENT
PROPAGATION DISTANCES
Through the above analysis in subsection B.1, it is shown that
as long as the window length of the MA filter is similar to
the mainlobe width of the pulse compression results, only
one positive zero-crossing point is obtained. In this section,
the performance of the proposed peak detection method for
different distances is analyzed. Note that the number of car-
rier cycles is unchanged regarding the previous subsection
B.1 and the test distances considered are 50 m, 100 m, 200 m,
and 500 m, respectively.

Fig. 16 presents the peak detection results under different
test distances, showing that only one positive zero-crossing
point is obtained for all the test distances. Furthermore, it is
also shown that small peaks in the filtered signal tf [n] have no
influence on the extraction of positive zero-crossing points.
These results can well demonstrate that the proposed method
for the detection of peaks has strong robustness.

VOLUME 8, 2020 48537



X. Wei et al.: Adaptive Peak Detection Method for Inspection of Breakages in Long Rails by Using Barker Coded UGW

FIGURE 15. The analysis of the effect of the window length of the MA
filter on the peak detection, (a) Nw =100, (b) Nw =1200, (c) Nw =2000,
(d) comparison of normalized envelopes.

3) THE DETECTION OF PEAKS UNDER ADDING GAUSSIAN
NOISE AND DIFFERENT PROPAGATION DISTANCES
Strong immunity to noise is required for a real-time broken
rail detection system, especially in the detection of breakages
for long rails in service. Gaussian noises with SNR=−20 dB
are added in the received signals of different test distances.

FIGURE 16. The analysis of peak detection under different test distances,
(a) 50 m, (b) 100 m, (c) 200 m, (d) 500 m.

As can be seen in Fig. 17, after the proposed processing,
including filtering, envelope extraction, and HT, the positive
zero-crossing points corresponding to the mail peaks are
obtained under the different test distances. It is shown that
the proposed peak detection algorithm has strong anti-noise
performance. With the increase of the propagation distance,
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FIGURE 17. The analysis of peak detection results under Gaussian noise
with SNR=−20dB, (a) 50 m, (b) 100 m, (c) 200 m, (d) 500 m.

the influence of the dispersion of UGW onMLW is gradually
increasing. Note that the lower theMLW, the higher the range
resolution.

4) COMPARATIVE ANALYSIS OF THE PROPOSED PEAK
DETECTION ALGORITHM AND THE PREVIOUS WORKS
The comparison of the proposed peak detection algorithm and
the novel adaptive peak detection method proposed in [24]

FIGURE 18. The scheme of DWT decomposition of the UGW signal.

FIGURE 19. The analysis of peak detection algorithm based DWT for the
case of 20 carrier cycles and a test distance of 50 m, (a) DWT
reconstructed signal, (b) peak detection results by using HT.

is performed. This peak detection method is mainly based
on the discrete wavelet transform (DWT), on a moving
average filter, as well as on the Hilbert Transform. Gener-
ally, the selection of appropriate wavelet has a great influ-
ence on the performance of signal processing algorithms
based on wavelet transform. It should be noted that the
choice of wavelet is only application dependent. In this work,
db1wavelet is used to decompose into four levels. According
to Nyquist’s rule((fs ≥ 2fm) where fs represents the sample
rate and fm is the highest frequency of the signal), the fre-
quency components of the Barker coded UGW signal will
be in the range of 0 Hz-250 kHz. A specific description of
the frequency range of each level decomposition is presented
in Fig. 18. The frequency of Barker coded excitation is
35 kHz, from Fig. 18, the detail coefficients of D3 and D4 can
capture this frequency information. Then the reconstruction
operation is performed by D3 and D4.

Fig. 19 and Fig. 20 show the peak detection results of
two peak detection algorithms. From Fig. 19b and Fig. 20b,
it is obvious that the two peak detection algorithms can accu-
rately identify the peaks. In addition, compared to the peak
detection method based on DWT [24], the signal amplitude
through theMAfilter is larger for the proposed peak detection
algorithm. The total processing time for two peak detection
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FIGURE 20. The analysis of peak detection algorithm based DBTF for the
case of 20 carrier cycles and a test distance of 50 m, (a) filtered signal by
using DBTF, (b) peak detection results by using HT.

TABLE 3. The comparison of processing time for the peak detection
method based on DWT [24] and this work.

methods and the processing time of DWT and DBTF are
calculated by using the following platform:
• Processer and RAM: Inter (R) Core (TM) i7-5500U
CPU @ 2.4 GHz, 8 GB;

• Operation system: 64-bit Windows 7;
• Analysis software: MATLAB 9.7.

These time values are listed in Table 3. According to Table 3,
the total processing time of the proposed peak detection
algorithm is shorter.

In order to perform further comparison for two peak
detection methods, four performance factors [23] namely,
sensitivity (Se), positive predictivity (+P), error rate (Er),
accuracy (Acc) are used in this work. The definition of these
factors is given as

Se =
TP

TP+ FN
(37)

+P =
TP

TP+ FP
(38)

Er =
FP+ FN

TP
(39)

Acc =
TP

TP++FN + FP
(40)

Here, TP is the number of correctly detected peaks, FN is
the number of missed peaks, and FP is the number of false
peaks. The Gaussian noise with SNR = −20 dB is added in

TABLE 4. The performance comparison of the peak detection
method [24] and this work for the case of 20 carrier cycles and a test
distance of 100 m, Gaussian noise SNR=−20 dB.

TABLE 5. The performance comparison of the peak detection
method [24] and this work for the case of 20 carrier cycles and a test
distance of 200 m, Gaussian noise SNR=−20 dB.

TABLE 6. The performance comparison of the peak detection
method [24] and this work for the case of 20 carrier cycles and a test
distance of 500 m, Gaussian noise SNR=−20 dB.

the received signals under the test distances of 100 m, 200 m,
and 500 m. For each of the above cases, TP, FN, and FP are
counted for 10 times peak detection results. The performance
comparison of two peak detection methods for every case is
listed in Table 4, Table 5, and Table 6. According to Table 4,
Table 5, and Table 6, it can be concluded that the performance
of the proposed peak detection algorithm is superior.

In general, the power of a broken rail detection system
based on UGW is supplied by using solar energy. Hence,
the processing algorithm should be simple as soon as possible
which is conducive to saving energy. In summary, compared
to the previous works, the proposed peak detection algorithm
has the following advantages:
• Not requiring any amplitude threshold;
• Less time cost;
• It is suitable for other encoding transmissions;
• It is easy to accomplish by programming;
• It is easy to integrate into a real-time detection system;

However, to sufficiently exploit the pulse compression tech-
nique and improve range resolution, compensation of dis-
persion of UGW is essential. In addition, it can be found
that the mainlobe width of pulse compression results is a
prerequisite for the decision of window length of the MA
filter, so the online calculation of the mainlobe width of pulse
compression results is necessary. These will be expected to
further investigate in subsequent work.

IV. CONCLUSION
In this work, Barker coded UGW signals are analyzed by
simulations using a PSpice model of a pitch-catch setup
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and by real experimentations with a test platform of pitch-
catch. Based on the aforementioned encoded transmissions,
an adaptive peak detection algorithm without any amplitude
threshold is proposed by DBTF, MA filter, and HT. To vali-
date the accuracy and robustness of the proposed peak detec-
tion method, the measured signals under Gaussian noise with
SNR=−20 dB and different test distances from 50m to 500m
are analyzed. In summary, according to the above analysis,
the following conclusions can be obtained:

(1) It is shown that Barker coded UGW signals can effi-
ciently improve SNR by 5 dB and have a strong immu-
nity to noise. For 13-bit Barker code, with the increase
of the number of carrier cycles, PSL is decreased
while MLW is improved. However, as the detection
distance increases, MLW is linearly increased while
PSL is basically unchanged. In addition, 13-bit Barker
code modulated using 20 carrier cycles can well sat-
isfy requirements of SNR and range resolution of the
detection of breakages in long rails.

(2) The window length of the MA filter has a great influ-
ence on the extraction of positive zero-crossing points
for peak detection using HT. When the window length
is too small, unexpected positive zero-crossing points
will appear. On the other hand, the maximum peak of
the envelope of the filtered signal tf [n] will generate
shift when the window length is too large. Hence,
the window length of theMAfilter is normally selected
similar to the mainlobe width of the pulse compression
results.

(3) It is shown that compared to the previous works,
the proposed adaptive peak detection algorithm has
stronger robustness and better anti-noise performance.
Additionally, it is easy to accomplish by program-
ming and to integrate into a real-time detection sys-
tem. To improve the performance of the proposed peak
detection algorithm, online measurement of window
length of theMAfilter and the dispersion compensation
of UGW in long rails will be investigated in future
works.
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