
Received January 30, 2020, accepted February 19, 2020, date of publication March 10, 2020, date of current version March 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2979894

Formal Verification of SDN-Based
Firewalls by Using TLA+

YOUNG-MI KIM 1 AND MIYOUNG KANG 2
1Department of Computer and Radio Communication Engineering, Korea University, Seoul 02841, South Korea
2Graduate School of Information Security, Korea University, Seoul 02841, South Korea

Corresponding author: Miyoung Kang (mykang@formal.korea.ac.kr)

This work was supported in part by the Next-Generation Information Computing Development Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science and ICT under Grant 2017M3C4A7083676, and in part by NRF
Grant funded by the Korean Government (MSIT) under Grant NRF-2018R1A2B6009122.

ABSTRACT Software-defined networking (SDN) has generated increased interest due to the rapid growth in
the amount of data generated by the development of the Internet and communications, the commercialization
of 5G, and increasingly complex networks. While SDN is more advantageous than traditional networks
in terms of efficient network management, rapid deployment, and dynamic scalability, the correctness of
a network configuration must be ensured in advance. In other words, SDN components such as network
devices, SDN controllers, and applications need to be deployed correctly and must be free of rule conflicts,
particularly between various application policies; otherwise, it may result in network paralysis in the worst
case. This paper assumes that the SDN network is free of rule conflicts when the rules in the SDN switches
correctly obey firewall application or policies. To solve this problem, this paper proposes a verification
framework for SDN using TLA+. We show that the firewall rule behavior of switches can be formalized
using TLA+, and this is verified with the TLC model checker that uses TLA+ as the model description
language. We check two different types of topology models through our verification framework to ensure
that the same firewall rules are maintained even if the topology changes. The findings show that the firewall
rules may be inconsistent as the topology changes.

INDEX TERMS Firewall, formal methods, software-defined networking, TLA+.

I. INTRODUCTION
Software-defined networking (SDN) has been proposed to
address problems associated with traditional physical net-
work devices, such as difficult manageability, low configura-
bility, and limited scalability. Because SDN technology has
several advantages over physical networks, many technology
companies such as Google, Facebook, and Amazon have
adopted SDN to manage their networks [1]. SDN technology
separates physical network devices (the data plane) from the
control of network operations using an SDN controller situ-
ated between the network devices and network applications.
Network policies can be flexibly controlled and network con-
figuration can be quickly modified because software governs
network management in SDN.

However, SDN also has some disadvantages. For example,
because the applications for the application plane can issue
different packet-processing rules to the SDN controller, any

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Verticale .

inconsistencies among the rules may impair efficient SDN
operations. If conflicting rules transfer from the firewall
application to the SDN controller, the controller can become
stuck, paralyzing the entire network. Thus, a significant vol-
ume of academic and industry-based research has focused on
solving this rule conflict problem in SDN networks. Formal
methods have been suggested to mathematically prove that
the application rules are conflict-free. NICE [2], HAS [3],
Kuai [4], Veriflow [5], SDNRacer [6], and VeriSDN [7]–[9]
have leveraged formal methods to verify the correctness of an
SDN network. Our work uses formal methods to verify that
there are no rule conflicts in the SDN network in terms of
SDN switch rules that correctly implement firewall applica-
tions or policies.

In this paper, we propose a novel approach to prove the
correctness of an SDN network that there are no rule conflicts
using TLA+ [10]. TLA+ is a formal language based on
temporal logic and ordinary mathematics that can be used to
uncover design flaws in network systems. TLA+was initially
developed to specify and verify concurrent systems, but it was

52100 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5483-3698
https://orcid.org/0000-0003-2099-6688
https://orcid.org/0000-0001-7508-9706

Y.-M. Kim, M. Kang: Formal Verification of SDN-Based Firewalls by Using TLA+

FIGURE 1. SDN architecture. SDN separates the data plane from the
control plane so the network can change quickly and dynamically.
Modified from [14].

later demonstrated that it can be employed in the verification
of a wide class of systems, from program interfaces (APIs) to
distributed systems [10]. Many companies, including Ama-
zon, have used TLA+ to ensure the correctness of their
network [11], [12].

The main contribution of this study is that we propose
detailed rules for the specification of SDNnetwork configura-
tions using TLA+. This includes the specification of network
hardware components, packet switch rules, and SDN firewall
rules with TLA+. We also demonstrate the effectiveness of
our approach to verify the correctness of an SDN network by
specifying an example network into TLA+. The results prove
that the rules in the SDN do not conflict with the rules of the
firewall to be implemented by using the TLC tool [13], which
is a model checker incorporated into the TLA+ Toolbox.
This paper is structured as follows. Section 2 provides

background information on SDN and TLA+ and summarizes
past work related to our research. Section 3 proposes a ver-
ification framework presenting the rules on how to describe
SDN networks with TLA+, while Section 4 demonstrates the
verification process using the TLC model checker. Finally,
we provide conclusions in Section 5.

II. BACKGROUND
We briefly introduce SDN and TLA+ in this section. We also
describe previous work related to the formal analysis of SDN.

A. SDN
SDN is a technology that separates the data plane and the con-
trol plane in a network and controls the network using soft-
ware (Fig. 1). In contrast, in a traditional network, network
control and the data transfer are conducted together in one
network device. Because network control is programmable
in SDN, complicated network configurations are easily con-
figurable and network topology can be modified effectively.

As shown in Fig. 1, the core of an SDN network is the
SDN controller, which acts as a type of operating system
(OS). One side of the SDN controller is connected to the
network devices and the other side to the applications. The
controller uses a protocol such as OpenFlow to communicate
with the data plane. OpenFlow is an implementation of SDN

technology [15], [16]. An OpenFlow switch classifies a
packet by flow and transmits it to an adjacent switch that
maintains flow tables containing flow entries. The flow
entries include information about the packet delivery path and
method.

TABLE 1. Main components of a flow entry in a flow table (Source:
OpenFlow Switch Specification, Version 1.5.1 [15]).

When a packet arrives, the OpenFlow switch processes the
flow according to the flow entry if there is a matching flow
in the flow table, such as the match fields and instructions
presented in Table 1; if not, it sends the packet to the con-
troller. The controller passes the packet control information to
the OpenFlow switch. This information is stored in the flow
table, and the packet is processed according to the flow. The
controller determines the control information for the packet in
accordance with the policies of various applications. At this
time, conflicts between the policies of different applications
may occur. When multiple switches have rules based on the
network topology, rule conflicts maymean that packets are no
longer transferred to the next switch. As a basis for solving
this problem, we focus on rule conflicts as to determine
whether the rules on the SDN switch implement a single
application correctly.

B. TLA+

TLA+ is a formal specification language that employs ordi-
nary mathematics, such as propositional logic, sets, and pred-
icate logic, to design and model concurrent systems. Most
TLA+ specifications describing what systems may do have
the following simple form:

Spec 1
= Init ∧�[Next]vars (1)

where Spec denotes a specification of the system to be
described, Init is the initial condition, Next is the next-state
relation, and vars is the tuple of all variables [17]. Init is repre-
sented by a state formula describing the initial state(s). A state
is an assignment of values to the variables.Next is represented
by an action formula describing the allowed transitions of
a system. Next is usually the disjunction A1 ∨ A2∨ . . . ∨An,
where each Ai is a possible action. In (1), [Next]vars means
that Next has stuttering transitions that do not change the
values of the variables defined in tuple vars. The tuple
〈e1, e2, . . . , en〉 represents the n-tuple whose i-th element is
ei, and e[i] denotes the i-th element of tuple e. �F , where F
is a state predicate, is a temporal formula, and the temporal
operator � means that F is always true.
For any variable v, v has different meanings depending on

whether it is primed or not. A primed variable represents
its value in the successor state of the transition, whereas an
unprimed variable represents its value in the state before the
transition. As a result, the expression v′ = v indicates that
the value of v in the old state equals the value of v in the new

VOLUME 8, 2020 52101

Y.-M. Kim, M. Kang: Formal Verification of SDN-Based Firewalls by Using TLA+

state.UNCHANGED v in TLA+ is shorthand for the expression
v′ = v.

For denotation of the power set of a set, the keyword
SUBSET is a built-in operator of TLA+. For example,
SUBSET {1, 2} is {{}, {1}, {2}, {1, 2}}. The unary operator
UNION, a built-in operator of TLA+, denotes the union of
the elements of a set. For example, UNION {{1}, {2}, {1, 2}}
is {1, 2}.

TLA+ provides miscellaneous constructs for the selection
of a value according to the conditions and for the definitions
to be used in a local context. The construct IF p THEN e1
ELSE e2means choosing e1 if p, otherwise e2, where p, e1 and
e2 are expressions. The construct LET d1

1
= e1 . . . dn

1
=

en IN emeans e in the context of the definitions, where each
di is a definition identifier and each ei is an expression. For
example, the operator

ExOp(x, y) 1
=

LET Rule 1
= 〈〈‘‘a’’, ‘‘r’’〉, 〈‘‘b’’, ‘‘s’’〉, 〈‘‘c’’, ‘‘u’’〉〉

op(a1, a2) 1
= IF a1 = Rule[a2][1]

THEN 〈Rule[a2][2]〉

ELSE 〈 〉

IN op(x, y)

defines a tuple Rule and an operator op with arguments
a1 and a2 in the LET/IN construct to return the second
element of an y-th pair in Rule if the first element of the
y-th pair in Rule equals argument x, and an empty tuple,
otherwise.

When we specify a system, multiple values occasionally
need to be grouped as a single expression. In this case,
a record expression is appropriate. In TLA+, the expression
[h1 : S1, . . . , hn : Sn] refers to the set of all records with the
hi field in Si. Mathematically, a record is a function whose
domain is a set of strings. In TLA+, the function expression
is f [x] but not f (x). It expresses the value that the function
f assigns to each element x of its domain. Thus, the h-field
of record e is represented by e[‘‘h’’], which has the same
meaning as e.h. The expression used to assign a value to each
field of a record is [field1 7→ value1, . . . ,fieldn 7→ valuen]
where fieldi is the identifier of the i-th field and valuei is its
value. The EXCEPT construct in TLA+ describes a function
that is almost the same as another function [10]. For any
function f , the expression [f EXCEPT ![c] = e] equals the
expression

[x ∈ DOMAINf 7→ IF x = c THEN e ELSE f [x]]

where c is any field of f , e is an expression and DOMAIN f
denotes the domain of f . The keyword DOMAIN is provided
in the TLA+ standard module. For any sets D and R, the set
of all functions whose domain equals D and whose range is
any subset of R is written as [D→ R].

More details on the syntax and semantics are described in
the TLA+ book [10].

C. RELATED WORK
A number of previous studies have applied formal methods
to SDN.

The Nox OpenFlow controller developed by NICE
Work [2] is an error detection tool for programs uploaded to
the OpenFlow controller. This tool combines model checking
and symbolic execution techniques to reduce the number of
states. This tool can check forward loops, the presence of
black holes, path reachability, and packet loss related to the
problems that occur when forwarding packets via devices in
SDN networks. Our work uses model checking to verify rule
conflicts between an SDN application and its implemented
switch rules.

As a static analysis tool, Header Space Analysis (HAS) [3]
uses the content of the packet header when analyzing network
operations. The validation attributes are forward loop, reach-
ability, and traffic segmentation. Our approach is also based
on an analysis of a packet header.

Veriflow [5] monitors the status of the network environ-
ment and data plane. When a forwarding rule is inserted,
it checks for invariance violations throughout the network and
tracks all forwarding state changes.

Kuai [4] monitors the given SDN properties in real time,
reducing state spaces while model checking uses a partially
ordered set. This tool uses Murphi [18] as an input language.
SDNRacer [6] is a dynamic analyzer that operates on actual
traces and can quickly detect concurrency issues such as the
root cause of many bugs.

VeriSDN [7], [9] is a framework verifying the fire-
wall application from among SDN applications by using
pACSR [9], an extension of the algebra of communicating
shared resources (ACSR) [19], [20]. It verifies the rule con-
flicts that occur due to the multiple applications executed
within the SDN controller. In VeriSDN, pACSR is used for
formal modeling, and its correctness is verified with the
VeriFM model checker. It can be used to formally model and
verify design sketches for OpenFlow in the early stages.

Our work uses the TLA+ specification language, which
can be used to specify network protocols for various tasks,
such as Paxos for solving consensus in distributed sys-
tems [21]. We also use the TLC model-checking tool for
TLA+ specifications to verify whether the rules in switches
are consistent with the application policies by changing only
the topology and the rules in TLA+.

Our work here is an extension of our previous
research [22]. Specifying SDN-based firewalls using TLA+
was first attempted in our previous work where we specified
the behavior of processing packets according to rules on a
single switch using TLA+ and verified that the behavior is in
accordance with the firewall policy.

In this study, we propose a framework for specifying and
verifying the behavior of rule-based processing of pack-
ets coming into multiple connected switches using TLA+.
We also use the proposed framework to verify whether the
same rules work consistently with the firewall policy even
if the topology changes; the rules in the SDN switches

52102 VOLUME 8, 2020

Y.-M. Kim, M. Kang: Formal Verification of SDN-Based Firewalls by Using TLA+

FIGURE 2. Verification framework. This verification framework consists of
the definition of the main components of SDN, the specification
describing the matching switch rules, and the verification of consistent
policies and rules.

can change only to branch the forwarding path by the
topology.

III. VERIFICATION FRAMEWORK FOR SDN USING TLA+

A. OVERVIEW
The SDN controller acts as a mediator for various applica-
tions and creates a flow table reflecting the policies estab-
lished by each application. The SDN controller sets rules
based on these policies. If a switch receives a packet whose
flow entry does not appear in the flow table, it sends a request
to the controller for the corresponding flow. The controller
then updates the flow table for that switch. In this paper,
we describe the operation of the flow table used by the SDN’s
southbound protocol OpenFlow. We assume that the flow for
all packets exists in the flow table, so flow requests from the
switch to the controller are not covered here. This paper also
assumes that there is a single flow table for each switch.

In Fig. 2, each switch has its own rules created by the SDN
controller according to its firewall policy and topology. Pack-
ets from Host A pass through the switches according to their
rules and arrive at Host B outside the network. We propose a
verification framework to check for consistency of the rules
with the policies using the TLC model checker after defining
the network components and specifying the handling of the
packets by switch rules using TLA+.

B. COMPONENTS OF THE FRAMEWORK
The main network components we are interested in are the
switches, topology, and packets. Each switch has its own
rules, and the decision to allow or drop a packet coming
into the switch is in accordance with these rules. Therefore,
we define the switches, packets, topology, and switch rules
to specify SDN-based firewalls behavior. We usually use
a record type that can contain various values and a tuple
type for the expression of the order to express the network
information. We have defined the framework’s components
as much as possible using the built-in operators of TLA+, but
we have also used some operators defined in TLA+ standard
modules, such asNaturals. StandardmoduleNaturals defines
operator . . and the other usual operators on natural numbers.
0. .n denotes the set of natural numbers from 0 to n. For
example, 1. .5 equals {1, 2, 3, 4, 5}.

In this section, we define the components of the framework
generally, so we do not describe all of the defined information
in a concrete specification, depending on the component,
such as the fields of a packet.

1) SWITCHES
Each switch is represented by a unique identifier, and all
switches within the network are defined as a set of switch
identifiers. When the entire switch set S is composed of n
switch identifiers, the set S is defined as

S 1
= {swId1, swId2, . . . , swIdn}

2) TOPOLOGY
The network topology represents the connections between the
switches in a network. Switches are connected to physical
ports. We use a record type for the connections between the
switches constituting a particular topology, and we call each
connection of a record type a connection record. A connection
record will contain information about the two target switches
(s and t) and their respective ports (sp and tp). The direction of
the switch connection is from s to t , which means that sp is an
output port on the s switch side and tp is an input port on the t
switch side. The physical ports (sp and tp) for the switches are
natural numbers ranging from 0 to the maximum number of
ports (Pmax) on the switches. The switches in the topology are
defined using the elements of switches set S. Some switches
in the topology are connected to devices outside the network.
In our study, we use NW instead of a switch identifier and
port number 0 to represent a port on a device outside the SDN
network.

We define C as the set of all possible connection records
for a set of switches as follows:

C 1
= [s : S ∪ {‘‘NW ’’}, sp : 0. .Pmax ,

t : S ∪ {‘‘NW ’’}, tp : 0. .Pmax]

We define a valid topology T as a subset of C that satisfies
the following conditions:
• T ⊆ C , where T 6= {}.
• at least one ingress switch exists: ∃c ∈ T : c.s =
‘‘NW ’’ ∧ c.sp = 0 ∧ c.t ∈ S ∧ c.tp ∈ 1. .Pmax .

• at least one egress switch exists: ∃c ∈ T : c.s ∈ S ∧
c.sp ∈ 1. .Pmax ∧ c.t = ‘‘NW ’’ ∧ c.tp = 0.

• no connection forms a loop: ∀c ∈ T : c.s 6= c.t
• there are no cycles: ¬(∃c1, c2, . . . , cn ∈ T : c1.s 6=
‘‘NW ’’ ∧ c1.t = c2.s ∧ c2.t = c3.s ∧ · · · ∧ cn−1.t =
cn.s ∧ cn.t = c1.s), where ci 6= cj and ci.s, ci.t ∈ S for
each connection ci and cj (1 ≤ i, j ≤ n).

• at least one path from an ingress switch to an egress
switch exists: ∃c1, c2, . . . , cn ∈ T : c1.s = ‘‘NW ’’ ∧
c1.t = c2.s∧ c2.t = c3.s∧ · · · ∧ cn−1.t = cn.s∧ cn.t =
‘‘NW ’’, where ci 6= cj and ci.s, ci.t ∈ S for each
connection ci and cj (1 < i, j < n).

For example, let’s suppose that there are switches swId1
and swId2 whose maximum port number is 2. The set of all

VOLUME 8, 2020 52103

Y.-M. Kim, M. Kang: Formal Verification of SDN-Based Firewalls by Using TLA+

connection records with these switches is the following:

[s : {‘‘swId1’’, ‘‘swId2’’, ‘‘NW ’’}, sp : 0. .2,

t : {‘‘swId1’’, ‘‘swId2’’, ‘‘NW ’’}, tp : 0. .2]

A valid topology for the above connections is shown
in Fig. 3.

FIGURE 3. An example of a topology that has connections between two
switches and to the outside of the network.

Fig. 3 presents a topology in which Ports 1 and 2 of the
switch swId1 are connected to NW and Port 1 of swId2,
respectively, and Port 2 of the switch swId2 is connected to
NW (an external network connection), so its topology ExT is
defined as follows:

ExT 1
= {[s 7→ ‘‘NW ’’, sp 7→ 0, t 7→ ‘‘swId1’’, tp 7→ 1],

[s 7→ ‘‘swId1’’, sp 7→ 2, t 7→ ‘‘swId2’’, tp 7→ 1],

[s 7→ ‘‘swId2’’, sp 7→ 2, t 7→ ‘‘NW ’’, tp 7→ 0]}

For the topology, we also define information on the ingress
switches to simplify our specification even though the ingress
switches can be extracted from a given topology T . We define
each ingress switch as a tuple consisting of a switch identi-
fier and an input port number. The definition of the ingress
switches information I is as follows:

I 1
= {〈c.t, c.tp〉 : c ∈ T ∧ c.s = ‘‘NW ’’ ∧ c.sp = 0}

3) PACKETS
A basic firewall decides whether to allow or drop a packet
based on the 5-tuple information of the packet, including the
source IP address, destination IP address, protocol, source
port, and destination port. To define a packet, we use the
5-tuple information of a packet and a record as the appropriate
data structure to contain the information.

Let PF be the set of all fields that we can use for a packet
record. The definition of PF is as follows:

PF 1
= {‘‘srcIP’’, ‘‘dstIP’’, ‘‘srcPort’’, ‘‘dstPort’’,

‘‘proto’’}

where ‘‘srcIP’’ represents the source IP address, ‘‘dstIP’’ is
the destination IP address, ‘‘srcPort’’ is the source port num-
ber, ‘‘dstPort’’ is the destination port number, and ‘‘proto’’ is
the protocol.

Let P be the set of possible packet records created with ele-
ments in PF . P is the union of the sets of records containing
different numbers of fields. The definition of P is

P 1
= {p ∈ UNION{[FS → UNION{VsrcIP, . . . ,Vproto}] :

FS ∈ SUBSETPF \ {}} :

∀d ∈ DOMAIN p :

(d = ‘‘srcIP’’ ∧ p[d] ∈ VsrcIP)

∨ · · · ∨

(d = ‘‘proto’’ ∧ p[d] ∈ Vproto)}

where FS is each domain of possible packet records, d is an
element of the domain of each packet record p, and each Vd
is a set of values corresponding to each element of PF . This
paper does not explicitly define the types of values for fields.
As an example, the packet field srcIP is defined not by an
actual IP address but by a number such as srcIPmapping to 1.
As shown in the P definition, it is not mandatory to use all
the elements defined in the set PF when we define a packet
record. In other words, we can define a packet record with
more than one field, if necessary. Our concrete specification
also shows that we are not using all packet fields. For exam-
ple, if the source IP address and the destination IP address of
a packet are 1 and 2, respectively, and the protocol is TCP,
the expression is

[srcIP 7→ 1, dstIP 7→ 2, proto 7→ ‘‘TCP’’]

where there are no definitions for ports srcPort and dstPort .

4) SWITCH RULES
An OpenFlow switch has an OpenFlow table that stores the
rules defined by the SDN controller. The flow entries in the
flow table consist ofmatch fields, priorities, counters, instruc-
tions, timeouts, cookies, and flags. In this paper, we describe
the match fields, priorities, and instructions directly related
to the handling of a packet according to the rules.

A rule can be defined by expressing it as a record, which
we call a rule record. Let RF be the set of possible fields of
rule records. The definition of RF is

RF 1
= {‘‘mf ’’, ‘‘a’’, ‘‘o’’}

where ‘‘mf ’’ is the match field, ‘‘a’’ is the instruction (i.e.,
an action), and ‘‘o’’ is a set of output ports. In this study,
we abstract the rule priority to ordered rules using a tuple in
which the preceding elements have higher priority than the
elements that follow. Therefore, even if we do not define the
priority value directly, the priority is indirectly reflected when
we express the rules as a tuple.

For match field mf , we use a record type, and the fields of
a defined packet are used to configure the matching field for
the rules. LetM be the set of records for a matching field that
we can create with elements in PF defined in the previous
section. The definition of M is

M 1
= {m ∈ UNION{[FS → UNION{VsrcIP, . . . ,Vproto}] :

FS ∈ SUBSETPF \ {}} :

∀d ∈ DOMAINm :

(d = ‘‘srcIP’’ ∧ m[d] ∈ VsrcIP)

∨ · · · ∨

(d = ‘‘proto’’ ∧ m[d] ∈ Vproto)}

where FS is each domain of possible matching field records,
d is an element of the domain of eachmatching field recordm,

52104 VOLUME 8, 2020

Y.-M. Kim, M. Kang: Formal Verification of SDN-Based Firewalls by Using TLA+

and each Vd is a set of values corresponding to each element
of PF . Additionally, when we set a rule, an action occasion-
ally needs to be applied to all packets. Therefore, we add
the field all, meaning all packets, to the matching field. The
value of the field all is fixed as ‘‘ ∗ ’’ and the expression is
[all 7→ ‘‘ ∗ ’’].
For action field a, we abstract the actions as ‘‘outport’’ and

‘‘drop’’ actions in this paper; ‘‘outport’’ and ‘‘drop’’ actions
mean forwarding packets to all next switch(es) connected
to the output ports in o and dropping packets at the current
switch, respectively. Field o is represented as a set because
there may be more than one output port. When the instruction
for a packet is an output port action, field o is defined as the set
of ports on the current switch to which a packet is forwarded.
For a drop action, field o is defined as {0}.
Let Rules be a set of all possible rule records we can create.

The definition of Rules is as follows:

Rules 1
= [mf : M ∪ {[all 7→ ‘‘ ∗ ’’]},

a : {‘‘outport’’, ‘‘drop’’}, o : SUBSET 0. .Pmax \ {}]

where Pmax represents the maximum port number of switches
as in the definition of topology.

Let Rs be the ordered rules for switch s. The priority is
the order in which rules are applied to packets when they
are processed. As we noted above, we use a tuple type as the
priority for the rules. The definition of Rs is as follows:

Rs
1
= 〈r1, r2, . . ., rm〉

where each ri denotes i-th element (rule) of them-tuple (rules)
and m represents the number of rules in switch s. Each rule is
an element of Rules.
Lastly, let SR be ordered rules for switches {s1, s2, . . . , sn}.

All switches used in the topology to analyze must define their
rules. The definition of SR is as follows:

SR 1
= [s1 7→ Rs1 , s2 7→ Rs2 , . . ., sn 7→ Rsn]

where each Rsi denotes the ordered rules for switch si.
The ExSR represents an example of defining the rules for

switches swId1 and swId2:

ExSR 1
= [swId1 7→ 〈[mf 7→ [srcIP 7→ 1],

a 7→ ‘‘outport’’, o 7→ {1}],

[mf 7→ [all 7→ ‘‘ ∗ ’’],

a 7→ ‘‘drop’’, o 7→ {0}]〉

swId2 7→ 〈[mf 7→ [dstIP 7→ 2],

a 7→ ‘‘outport’’, o 7→ {1, 2}],

[mf 7→ [all 7→ ‘‘ ∗ ’’],

a 7→ ‘‘drop’’, o 7→ {0}]〉]

C. SPECIFICATION OF FIREWALL RULES
For convenience, this section describes our long specification
of an SDN with firewall rules in two subsections.

1) CONSTANTS AND VARIABLES FOR SDN BEHAVIORS
The first requirement when specifying the behavior of a
switch is to identify which elements can be declared as con-
stants and which ones are variables. Fig. 4 presents the decla-
ration of the constants and variables required to describe the
SDN behaviors. We provide the specification for a network
with switches with a maximum port number of 5.

FIGURE 4. Declaration of constants and variables. Constants and
variables are declared before they are used.

The first line in Fig. 4 indicates that we use TLA+ standard
modules Naturals, Sequences, and FiniteSets in our spec-
ification. As mentioned in the previous section, the oper-
ator . . is defined in the Naturals module. The Sequences
module defines Seq(S), Append(s, e), and Head(s) for a
set S, a sequence s, and an element e. Seq(S) denotes the
set of all finite sequences of elements in S. Append(s, e)
denotes the sequence obtained by appending e to the end of
sequence s. Head(s) denotes the first element of sequence s.
The FiniteSets module defines the Cardinality(S) operator
denoting the cardinality of a given finite set S.

During the operation of an SDN-based firewall, the switch
receives the firewall rules for packet processing from the
SDN controller and stores them in the flow table. In this
study, it is assumed that the rules for all packet inputs are
stored at each switch. In other words, situations in which
the flow table information at a switch changes dynamically
is beyond the scope of this paper. Therefore, the required
information in this research is the packets to be processed,
the switches transmitting the packets, the topology depict-
ing the connection of the switches, and the rules for each
switch. This information is declared as constants Packet ,
Switch, Topology, and SwitchRule, respectively, because they
are considered to be unchanging when specifying the switch
operation. Additionally, we define the constant IngressSwitch
in relation to the topology, which denotes information about
the ingress switches.

Packets entering the network are matched with the rules
defined at each switch and processed according to these rules.
This matching function indicates whether the flow is defined

VOLUME 8, 2020 52105

Y.-M. Kim, M. Kang: Formal Verification of SDN-Based Firewalls by Using TLA+

in a rule. We declare it as the constant operator Match(_, _),
which matches two arguments and returns TRUE or FALSE.

In addition to the constants, several variable declarations
are needed to describe the packet handling behavior. The
variables used in the specification are sw for the status infor-
mation of the switch, swPkt for the packet to be processed
at each switch, swPkQ for the packets waiting for processing
at each switch, pendingPkt for packets waiting at the ingress
switch, and pktQ containing the processing result information
for all input packets. Because the packets are processed in
order, swPkQ and pktQ are tuples. Each processed packet in
pktQ is a record containing five fields:
• p as an incoming packet of a switch.
• i as the input port number for a switch.
• a as the action (i.e., the instruction for the packet).
• o as the output port number for the execution of action a.
• r as the tuple that stores identifiers of the switches
through which the packet passes.

Except for p, these fields represent information that changes
every time a packet passes through a switch, with the pro-
cessed packet information contained in pktQ representing
the last information to change. The type of variables in the
TLA+ specification is determined by Init described in the
next section.

We define the information in the declaration. To limit
the range of values assigned to variables according to our
needs, we define the sets PortNRange, Action, SwStatus and
ProPacket , which represent the range of ports, the action set
of rules, the status set of a switch and the form of packets
being processed, respectively. ProPacket is a record type
and contains information about the switches a packet passes
through so we can trace the packet after checking the model.

At the end of the declaration, arbitrary values that do
not belong to a specific value set, NoPacket , NoAction, and
NoTopology, are explicitly defined.

2) SPECIFICATION OF SDN BEHAVIORS
Packet processing in the switch consists of an action indicat-
ing the initial state and an action in which the state changes
over time or a stuttering situation occurs. The specification
Spec of packet processing in the switches is defined as
follows:

Spec 1
= Init ∧� [Next]vars

In TLA+, constants, variables, and operators must be
declared before they are used. The constants or variables, and
some operators that appear in this section are declared in the
previous section.
Init defines the initial states of the declared variables

(Fig. 5). The initial state of each switch is set to ‘‘rdy.’’
The variable swPkt for the packet to be processed in each
switch is defined as NoPacket because there is no packet
being processed at each switch in the initial state. In addition,
both the variables swPktQ for packets waiting for processing
in each switch and pktQ containing the processing result

FIGURE 5. Definitions of Init and TypeInvariant .

information for all input packets are defined as empty tuples
because there are no packets stored in the initial state.

Like ProPacket , PacketType is also the form of packets
being processed but it can represent the initial state.We define
PacketType simply to represent a type invariant.

The values of the declared variables are altered by the
Init and Next actions. We define TypeInvariant as a type
invariant to describe the values that the variables can assume
in a behavior that satisfies the specification. The state of
the switch must be an element of the defined SwStatus. The
swPkt of each switch should be an element of the union of
PacketType and {NoPacket} because the type of packet han-
dled by the switch is represented by ProPacket (which is the
same as PactketType, except for the set of values of the action
field), but the initial state is NoPacket . The queue of packets
to be processed in each switch and the processed packet
queue should be tuples composed ofProPacket(PactketType),
i.e., an element of Seq(ProPacket).
TheNext action is composed of actionsEnPacket , identify-

ing the packet entering the ingress switch, ExPacket , which
extracts packets waiting to be processed at the switch, and
SwAct , which processes each packet according to the rules
(Fig. 6). The Next action is formally expressed as follows:

Next 1
= ∃ s ∈ Switch :

∨ ∃ n ∈ PortNRange : EnPacket(s, n)

∨ ExPacket(s) ∨ SwAct(s)

The Next action will work if switch smeets the conditions for
some of the actions. However, to enable the EnPacket action,
input port number n on switch s into which the packet comes
is required.

The EnPacket action is enabled when the switch is in state
‘‘rdy’’ and is an ingress switch. Of course, information for
this switch and the input port number should be defined as
an ingress switch which exists in the topology. The ingress
switch is searched using our NextSW operator as follows:

NextSW (x, y) 1
=

IF ∃ to ∈ Topology : to.s = x ∧ to.sp = y THEN

52106 VOLUME 8, 2020

Y.-M. Kim, M. Kang: Formal Verification of SDN-Based Firewalls by Using TLA+

FIGURE 6. Definitions of actions EnPacket , Expacket , and SwAct .

CHOOSE to ∈ Topology : to.s = x ∧ to.sp = y

ELSE

NoTopology

The NextSW (x, y) operator selects the switch information
connected to the port number y of switch x from the defined
topology; otherwise, i.e. if there is no switch connected to
switch x in the defined topology, it is NoToplogy denoting
an arbitrary value that does not belong to Topology (Fig. 5).
When the EnPacket action is enabled, a packet arriving at the

ingress switch is stored in the processing packet queue of the
ingress switch. Following is the expression that belongs to
EnPacket in Fig. 6:

∃ p ∈ pendingPkt : swPktQ′ = [swPktQ EXCEPT

![s] = Append(@,NewPkt(p, n))]

We define the operator NewPkt setting values for a new
packet as follows:

NewPkt(x, y) 1
= [p 7→ x, i 7→ y, a 7→ NoAction,

o 7→ 0, r 7→ 〈 〉]

For NewPkt(x, y), fields p and i of the newly generated
packet of type ProPacket in the switch are set to input packet
information x and input port information y, respectively.
The other fields of the packet have default values NoAction,
0, and 〈 〉. The state of the switch satisfying the EnPacket
action becomes ‘‘rdyA’’ so the next action can be performed.
To distinguish where a packet is forwarded, we have defined a
different state for the switch to which the packet is forwarded.
The ‘‘rdyA’’ state in action EnPacket refers to the state of
the switch that queues packets coming from the outside of
SDN. The ‘‘rdy’’ state in action SwAct refers to the state
of the switch that queues packets coming from the inside of
SDN. As long as the switch is active, the packets continue to
flow into the wait queue, and the switch processes the packets
in the queued order (FIFO). Our specification abstracts the
behavior of the switch as the switch ready state ‘‘rdy’’ and
‘‘rdyA’’ and the operation state ‘‘busy.’’

The ExPacket action that extracts the packets to be pro-
cessed is enabled when there are packets to be processed
at the corresponding switch. Because the switch processes
packets in the order they are received, the first packet is
extracted and stored in variable swPkt . We specify that the
switch processes one packet at a time. Thus, the next state of
the switch becomes ‘‘busy’’ and pendingPkt and pktQ do not
change.

The SwAct action, which describes the processing behav-
ior of packets coming into the switch, is enabled when the
switch is in the ‘‘busy’’ state. Depending on the definition
of PacketRule(s, r), which finds the rule (from rules r of
switch s) corresponding to the packet to be processed at
switch s (Fig. 7), the packet is delivered to another switch
or dropped from the current switch according to the action
defined in the corresponding rule. Our specification does not
describe the communication with the SDN controller, so if
there is no rule, we define the action as ‘‘norule’’ and treat it
like a ‘‘drop.’’

In the SwAct action, the AddPktPath operator is used to
modify the variable pktQ regardless of the action of the rule
applied to a packet. Except when a packet is forwarded to the
next switches, the packet is stored in pktQ because the process
is complete for the current switch. If the current switch is
connected to an external network, where ns.t /∈ Switch for
the next switch ns.t (Fig. 6), the packet is also considered
to have been processed. The AddPktPath operator shows that

VOLUME 8, 2020 52107

Y.-M. Kim, M. Kang: Formal Verification of SDN-Based Firewalls by Using TLA+

FIGURE 7. Definition of the PacketRule operator used in the SwAct action.

the packet has been processed at the current switch and the
definition is

AddPktPath(x, y) 1
= [p 7→ x.p, i 7→ x.i, a 7→ x.a,

o 7→ x.o, r 7→ Append(x.r, y)]

where packet information x is an element of ProPacket and
switch y is an element of Switches. The AddPktPath(x, y)
operator modifies only the value of field r , for packet infor-
mation x, and the result is an element of ProPacket .
The variable swPktQ in the SwAct action does not change

when an action is ‘‘drop’’ or ‘‘norule’’, but it changes when an
action is ‘‘outport’’ because a packet at the current switch is
forwarded to all next switches connected to its ports in o at the
current switch; the next switches are searched with field o of
the rule processing the packet. Local function q in the SwAct
action computes the modified information of the switches
connected to the current switch. Function q requires a tuple
as the input, so we change the set of output port numbers to a
tuple by using operatorGetTuple(s, c) with arguments s and c
representing a set and the number of elements of the set. This
paper does not describe the details of the GetTuple operator
we defined, because that operator can be defined in different
ways by different authors.

In function q, the packet information forwarded to each
switch is modified. Input port i of the packet information
stores the port number of the switch connected to the current
switch, and both action a and output port o are initialized.
Operator SendPkt does this operation and the definition is

SendPkt(x, y) 1
= [p 7→ x.p, i 7→ y.tp, a 7→ NoAction,

o 7→ 0, r 7→ x.r]

where packet information x is an element of ProPacket and
next switch information y is an element of Topology. The
modified packet information is added to the packet to be
processed by the corresponding switch. Following is the
expression that belongs to SwAct in Fig. 6:

[q[i− 1] EXCEPT !.sQ[ns.t]

= Append(@, SendPkt(p, ns))]

Finally, the SwAct action initializes the packet information
to be processed by the current switch and changes the next

TABLE 2. Firewall rules.

switch state to the ready state ‘‘rdy’’ to process the next
packet.

As a result, all behaviors from this specification Spec
defined with the Init action andNext action always satisfy the
TypeInvariant defined above. We also define this as a theo-
rem that is verified using model checking in the verification
section:

THEOREM Spec⇒ �TypeInvariant

IV. VERIFICATION OF SDN-BASED FIREWALL RULES
In this section, we present an example of formal verification
using the TLA+ specification for SDN firewall rules. We use
the TLC model checker, which is a model-checking tool for
TLA+ specifications. More detailed information about TLC
can be found in [13].

For the example, we simplified the process to verify
whether the results for the packets passing through a switch
match the results when the SDN controller rules that were
created according to the firewall policy are applied to the
switches. This study does not cover how to apply the rules at
each switch. We assume that the SDN controller has firewall
rules and each switch has its own rules. Firewall rules must
survive any change in topology, and our goal is to check
whether this is the case. We verify chain topology and dia-
mond topology models for the same firewall rules.

A. SPECIFICATION OF SWITCH RULES
To check the specification for delivering a packet based on
the rules reflecting the firewall policy, we define the firewall
rules for an SDN controller. Then a model of the specification
must be given to TLC. To define the model, all declared
constants in the specification are set for TLC, and then map
the constants Switch, Topology, SwitchRule, IngressSwitch,
and Match(_, _), to the values.

1) FIREWALL POLICY FOR AN SDN CONTROLLER
We use the simplified rules determining whether to forward
a packet with the IP information as in [8], [9], [22]. Rules
are applied to each packet sequentially using the example of
firewall rules described in [8], [9], [22], which is modified
by adding the protocol information to rules, as summarized
in Table 2.

In Table 2, flow entries are identified with R1, R2, R3, and
R4, and packets are compared with the rules in the order of
R1, R2, R3, and R4 to determine whether to allow or drop
the packet. According to the firewall rules, packets for which
the source IP address is not 1, and the destination IP address

52108 VOLUME 8, 2020

Y.-M. Kim, M. Kang: Formal Verification of SDN-Based Firewalls by Using TLA+

is 2 or the protocol is TCP; that is, srcIP 6= 1 ∧ (dstIP =
2 ∨ proto = TCP), must reach the destination through
a switch connected outside the network and other packets
must be dropped, even if the packets pass through multiple
switches according to the topology.

We define the rules in Table 2 with TLA+ to determine
if the firewall rules are followed when the topology changes.
The firewall rules FR are defined as follows:

FR 1
= 〈[mf 7→ [srcIP 7→ 1, proto 7→ ‘‘TCP’’],

a 7→ ‘‘drop’’],

[mf 7→ [dstIP 7→ 2], a 7→ ‘‘allow’’],

[mf 7→ [proto 7→ ‘‘TCP’’], a 7→ ‘‘allow’’],

[mf 7→ [all 7→ ‘‘ ∗ ’’], a 7→ ‘‘drop’’]〉

2) SWITCHES
The network consists of four switches identified as s1, s2, s3,
and s4:

Switch 1
= {‘‘s1’’, ‘‘s2’’, ‘‘s3’’, ‘‘s4’’}

3) TOPOLOGY
We employ the chain and diamond topology models to deter-
mine whether rule consistency is maintained when the topol-
ogy changes, as in [8], [9]. These two models are the simplest
ones to check for rule consistency while maintaining mini-
mal changes to the components other than topology, such as
switches and switch rules. Thesemodels are depicted in Fig. 8
and Fig. 9, respectively. Each topology is abstracted in a
unidirectional flow, as reflected in the the definition of the
topology.

FIGURE 8. Switches connected in a chain topology. The ingress switch is
s1 and the egress switch is s4; thus, the packets will pass through s1, s2,
s3, and s4 in order.

Fig. 8 presents the chain topology (CT), in which switches
are sequentially connected from s1 to s4. CT is expressed
based on the topology definition as follows:

CT 1
= {[s 7→ ‘‘NW ’’, sp 7→ 0, t 7→ ‘‘s1’’, tp 7→ 1],

[s 7→ ‘‘s1’’, sp 7→ 2, t 7→ ‘‘s2’’, tp 7→ 1],

[s 7→ ‘‘s2’’, sp 7→ 2, t 7→ ‘‘s3’’, tp 7→ 1],

[s 7→ ‘‘s3’’, sp 7→ 2, t 7→ ‘‘s4’’, tp 7→ 1],

[s 7→ ‘‘s4’’, sp 7→ 2, t 7→ ‘‘NW ’’, tp 7→ 0]}

Fig. 9 displays the diamond topology (DT), in which s1 is
connected to s2 and s3 and these two switches are connected
to s4. Switch s1 is connected to s2 and s3 through output ports
2 and 3 of s1, respectively.
DT is defined as follows:

DT 1
= {[s 7→ ‘‘NW ’’, sp 7→ 0, t 7→ ‘‘s1’’, tp 7→ 1],

[s 7→ ‘‘s1’’, sp 7→ 2, t 7→ ‘‘s2’’, tp 7→ 1],

FIGURE 9. Switches connected in a diamond topology. The ingress switch
is s1 and the egress switch is s4; thus, the packets go through s1, s2 or s3,
and s4 sequentially.

[s 7→ ‘‘s1’’, sp 7→ 3, t 7→ ‘‘s3’’, tp 7→ 1],

[s 7→ ‘‘s2’’, sp 7→ 2, t 7→ ‘‘s4’’, tp 7→ 1],

[s 7→ ‘‘s3’’, sp 7→ 2, t 7→ ‘‘s4’’, tp 7→ 3],

[s 7→ ‘‘s4’’, sp 7→ 2, t 7→ ‘‘NW ’’, tp 7→ 0]}

Additionally, for both chain and diamond topology,
we define the constant IngressSwitch as follows:

IngressSwitch 1
= {〈‘‘s1’’, 1〉}

4) PACKETS
For a concrete packet, we use only the packet fields necessary
for switch rules from among the packet fields defined in the
packet definition section. And we use the minimum set of
packets that we can make using the fields and their values that
appear in Table 2. That is, we abstract a packet to the source
and destination IP address and the protocol, and define the
constant Packet as the following eight packets:

Packet 1
= {[srcIP 7→ 2, dstIP 7→ 2, proto 7→ ‘‘TCP’’],

[srcIP 7→ 2, dstIP 7→ 2, proto 7→ ‘‘UDP’’],

[srcIP 7→ 1, dstIP 7→ 1, proto 7→ ‘‘TCP’’],

[srcIP 7→ 1, dstIP 7→ 1, proto 7→ ‘‘UDP’’],

[srcIP 7→ 1, dstIP 7→ 2, proto 7→ ‘‘TCP’’],

[srcIP 7→ 1, dstIP 7→ 2, proto 7→ ‘‘UDP’’],

[srcIP 7→ 2, dstIP 7→ 1, proto 7→ ‘‘TCP’’],

[srcIP 7→ 2, dstIP 7→ 1, proto 7→ ‘‘UDP’’]}

When we define packets, the number of packets should
be minimized as much as possible, because it affects the
execution time of model checking. Defined packets should
traverse all possible paths generated by rules. If the rules are
very simple, we can easily create the minimum set of packets
manually. However, rules are usually not so straightforward
that we can create packets manually. Therefore, we need to
automate the generation of packets.

For automation, we have written an algorithm that gen-
erates packets. This algorithm requires firewall rules FR as
input. Then it gets match fields of rules used inFR except ‘‘∗’’
denoting all packets and computes the set of possible values
in the rules for each field. Finally, the algorithm outputs the
Cartesian product of the sets of field-value pairs for each
field. Our eight packets are the result of {srcIP 7→ 1, srcIP 7→
2} × {dstIP 7→ 1, dstIP 7→ 2} × {proto 7→ ‘‘TCP’’, proto 7→
‘‘UDP’’}.

VOLUME 8, 2020 52109

Y.-M. Kim, M. Kang: Formal Verification of SDN-Based Firewalls by Using TLA+

5) SWITCH RULES
We modify the example of switch rules in [8], [9] to fit our
firewall policy and define it according to TLA+. However,
it is beyond the scope of this paper to describe how policies
are decomposed into individual switch rules. The rules for
each switch have a record structure and are distinguished by
a switch identifier.
SwitchRule represents switch rules for the chain switch

topology according to the definition in the previous section:

SwitchRule 1
=

[s1 7→ 〈[mf 7→ [dstIP 7→ 2], a 7→ ‘‘outport’’, o 7→ {2}],

[mf 7→ [proto 7→ ‘‘TCP’’],

a 7→ ‘‘outport’’, o 7→ {2}],

[mf 7→ [all 7→ ‘‘ ∗ ’’], a 7→ ‘‘drop’’, o 7→ {0}]〉,

s2 7→ 〈[mf 7→ [srcIP 7→ 1, proto 7→ ‘‘TCP’’],

a 7→ ‘‘drop’’, o 7→ {0}],

[mf 7→ [all 7→ ‘‘ ∗ ’’], a 7→ ’’outport’’, o 7→ {2}]〉,

s3 7→ 〈[mf 7→ [dstIP 7→ 2], a 7→ ‘‘outport’’, o 7→ {2}],

[mf 7→ [proto 7→ ‘‘TCP’’],

a 7→ ‘‘outport’’, o 7→ {2}],

[mf 7→ [all 7→ ‘‘ ∗ ’’], a 7→ ‘‘drop’’, o 7→ {0}]〉,

s4 7→ 〈[mf 7→ [dstIP 7→ 2], a 7→ ‘‘outport’’, o 7→ {2}],

[mf 7→ [proto 7→ ‘‘TCP’’],

a 7→ ‘‘outport’’, o 7→ {2}],

[mf 7→ [all 7→ ‘‘ ∗ ’’], a 7→ ‘‘drop’’, o 7→ {0}]〉]

The rules for the diamond switch topology are defined
using the switch rules for the chain switch topology except
that the outport of switch s1 is set to {2, 3} to branch the
forwarding path. Because the specification reflects both the
chained and diamond switch topologies, it is possible to
model a variety of topologies by modifying the definitions
of the constants Topology and SwitchRule while maintaining
the definitions of the other constants.

6) MATCHING A PACKET TO A RULE
We define the match operator in relation to the switch rules.
According to our abstraction for the rules, packets coming
into the switch are either forwarded to other switches or
dropped at the current switch depending on the rules for
the switch. To make this decision, the operator that matches
the packet to the rules for each switch is defined as the
constant Match(,), for which the names of the arguments
are undefined while the count of the arguments is defined.
The operation of Match(_, _) is defined when we define a
model for TLC. We define it based on the packet and rule
structure.

The constant Match(,) is as follows:

Match(A,B) 1
=

LET C 1
= DOMAIN A.p ∩ DOMAIN B.mf

IN ∨ (∧ ‘‘all’’ ∈ DOMAIN B.mf

∧ B.mf [‘‘all’’] = ‘‘ ∗ ’’)

∨ (C 6= {} ∧ ∀x ∈ C : A.p[x] = B.mf [x])

InMatch(A,B), the first argument, A, of the match operator
is the packet information that is dealt with at the switch and
the second argument, B, is one of the ordered rules for the
switch. The operator returns TRUE if the rule holds true for
the packet, and FALSE otherwise.

B. VERIFICATION OF THE FIREWALL RULES
We have specified the handling of packets according to the
rules for each switch, and we have defined a model for
that specification. This section describes how we check the
defined models using the TLC model checker included in the
TLA+ Toolbox.
To check the model, we employed TLA+ Toolbox Version

1.5.7 for Windows using the Windows 10 operating system,
an Intel i7-7700 CPU with four physical cores, and eight
threads at 3.6 GHz with 16 GB of RAM. The execution
time for our model depended on the number of packets and
was around 5 seconds for 4 packets when checking the type
invariants in this environment.

Wefirst checked themodels for the invariantTypeInvariant .
Using TLC, we found some errors, corrected them, and ran
TLC again. When an error was detected, TLC displayed the
error and stopped operating. We then checked the models
with the invariant PRuleConsistency. For the diamondmodel,
errors were detected because the invariant was violated. In the
next two sections, we describe the process of checking these
invariants.

1) VERIFICATION OF THE TYPE INVARIANCE
OF THE VARIABLES
In the TLA Toolbox model creation screen, the invariant
TypeInvariant is registered as one of the invariants for which
the formula must be true in every reachable state. When
we checked the invariant, we found that we had initially
incorrectly defined the invariant; thus, TLC reported that
TypeInvariant was violated. When the error was fixed and
TLC restarted, the model checking process was completed
without error. We checked both the chain and the diamond
topologymodels.We considered TypeInvariant to be satisfied
if no violation was found. As a result, we were able to
conclude that Spec implies �TypeInvariant .

2) VERIFICATION OF FIREWALL RULE CONSISTENCY
For verification, our work focuses on whether the packets that
passed through the SDN switches were dropped or allowed
according to the firewall policy. Even if there are multiple
paths to forward packets within an SDN network, if there
are paths that allow or drop packets that must be dropped
or allowed according to the firewall policy, we assume that
there is rule conflict between the firewall policy and the
SDN switch rules. We do not consider rule conflicts for each
forwarding path.

52110 VOLUME 8, 2020

Y.-M. Kim, M. Kang: Formal Verification of SDN-Based Firewalls by Using TLA+

One of the goals of this study is to determine whether the
firewall rules are maintained and do not come in conflict
with the switch rules when the topology changes. In other
words, when the topology changes, we must verify that
the results generated when applying the rules to a packet
are the same. To accomplish this, we define the invariant
PRuleConsistency:

PRuleConstistency 1
= pktQ 6= 〈〉 ⇒

∀i ∈ 1..Len(pktQ) :

LET pr 1
= GetPktRule(pktQ[i],FR)

pa 1
= IF pktQ[i].a = ‘‘outport’’ THEN

‘‘allow’’

ELSE ‘‘drop’’

IN pa = pr .a

The invariant PRuleConsistency determines whether the
results are the same when the previously defined firewall
rules (FR) are applied to a packet and when the packet passes
through each switch. In our specification, we store the pro-
cessed packets in pktQ according to switch rules SwitchRule
to compare these action results. If action a of a packet in the
processed packets pktQ is ‘‘outport,’’ the action for the packet
is ‘‘allow.’’ We ultimately compare the action results for FR
and SwitchRule.
TheGetPktRule operator used in PRuleConsistency is sim-

ilar to the PacketRule operator defined in our specification
except for finding an action corresponding to the target packet
in FR:

GetPktRule(p, r) 1
=

LET f [i ∈ 1..Len(r)+ 1] 1
=

IF i = Len(r)+ 1 THEN

[a 7→ ‘‘drop’’]

ELSE

IF Match(p, r[i]) THEN [a 7→ r[i].a]

ELSE f [i+ 1]

IN f [1]

This work uses the GetPktRule operator we defined in [22].
The GetPktRule operator returns action information of the
rulematching a packet p in the ordered rules; if there is no rule
matching packet p, we consider that the action for the packet
is ‘‘drop.’’ The operatorMatch is defined in the specification
section.

We check for consistency with the firewall rules using the
invariant PRuleConsistency for the previously defined chain
topology and diamond topologymodels. IfPRuleConsistency
is violated, an error is detected and displayed in the error trace
section of the model-checking results.

Fig. 10 presents the results for the diamond topology
model. As can be observed, the invariant PRuleConsistency
was violated and the violated state was displayed in the
error-trace area. The error trace shows the eight states created

FIGURE 10. The model-checking result of the diamond topology. In the
diamond topology, the invariant PRuleConsistency is violated. The error
trace shows the state that violated the invariant. A packet for which the
destination IP address is 2, the source IP address is 1, and the protocol is
TCP reached the final switch s4 even though this packet should have been
dropped earlier.

by actions, such as EnPacket , ExPacket , and SwAct , from
the initial state to the error state. According to the firewall
rules defined in the SDN controller, the rules unconditionally
drop a packet whose source IP address is 1 and the proto-
col is TCP even if the destination IP address is 2. In the
chained topology (Fig. 8), packets sequentially pass through
connected switches s1, s2, s3, and s4. In the chained topology,
a packet whose srcIP is 1 and protocol is TCP is filtered
at s2, but a packet that should be dropped in accordance
with the first switch rule at s2 is passed when the topology
changes to branch from s1 to both s2 and s3 (Fig. 9). In the
two topologies, switch rules at s3 do not filter a packet

VOLUME 8, 2020 52111

Y.-M. Kim, M. Kang: Formal Verification of SDN-Based Firewalls by Using TLA+

whose srcIP is 1 and protocol is TCP. Consequently, it passes
through the network with the diamond topology in a way that
does not conform to the firewall rules. As a result, the invari-
ant is violated, and the violated state shows that the packet
[srcIP 7→ 1, dstIP 7→ 2, proto 7→ ‘‘TCP’’] passed through
switches s1, s3, and s4, in turn.
This problem arises when the topology changes in a net-

work that is currently operating successfully, such as one
with a chain topology, and only the ‘‘outport’’ value of the
switch rules changes according to the topology. In reality,
this problem can occur when appropriate rules are created
and applied to each switch managed with the SDN controller.
The results could be disastrous for network administrators.
Therefore, it is important to check whether consistency with
the firewall rules is maintained when the topology changes
before the rules are applied to the switches. The proposed
method described in this paper can help solve this problem.

V. CONCLUSION
The correctness of the SDN network is a critical fac-
tor in guaranteeing the successful operation of a network.
To address this, we proposed a novel approach to formally
verify the correctness of an SDNfirewall policy using TLA+.
We first presented the rules for translation of SDN networks
and firewall policies into a TLA+ model and then showed
that the TLA+ specification could be formally verified by
the TLCmodel checker. Our example demonstrated how type
invariance and rule conflict between rules in SDN switches
and SDN controller policies could be identified using our
approach. It was also noted that TLA+ and the TLC model
checker are well-suited to the specification and verification
of SDN firewall policies.

In future research, we intend to write TLA+ specifica-
tions of flow rules that reflect security and QoS policies that
are created by various SDN applications and automatically
generate models to inspect SDN controller policies and rules
for consistency. The automatically generated model can be
checked directly by using TLC, so even non-experts in formal
methods can benefit from the use of formal tools. Further,
we will improve our research to work with firewall poli-
cies that take into account the forwarding paths in the SDN
network.

REFERENCES
[1] L. Doyle. (2015). The SDN Network as a Competitive Advantage.

Accessed: Oct. 30, 2018. [Online]. Available: https://www.networkworld.
com/article/2977018/software-defined-networking/the-sdn-network-as-a-
competitive-advantage.html

[2] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford, ‘‘A NICE
way to test openflow applications,’’ in Proc. 9th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2012, pp. 127–140.

[3] P. Kazemian, G. Varghese, and N. McKeown, ‘‘Header space analysis:
Static checking for networks,’’ in Proc. NSDI, vol. 12, 2012, pp. 113–126.

[4] R. Majumdar, S. Deep Tetali, and Z. Wang, ‘‘Kuai: A model checker
for software-defined networks,’’ in Proc. Formal Methods Comput.-Aided
Design (FMCAD), Oct. 2014, pp. 163–170.

[5] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, ‘‘Veriflow: Verifying
network-wide invariants in real time,’’ in Proc. 1st Workshop Hot topics
Softw. Defined Netw., 2012, pp. 49–54.

[6] A. El-Hassany, J. Miserez, P. Bielik, L. Vanbever, and M. Vechev,
‘‘SDNRacer: Concurrency analysis for software-defined networks,’’ ACM
SIGPLAN Notices, vol. 51, no. 6, pp. 402–415, Jun. 2016.

[7] M.-K. Shin, K.-H. Nam, and J.-Y. Choi. (2012). Formally Verifiable Net-
working Framework for SDN. Accessed: Oct. 30, 2018. [Online]. Avail-
able: https://tools.ietf.org/html/draft-shin-sdn-formal-specification-00

[8] M. Kang, J.-Y. Choi, H. H. Kwak, I. Kang, M.-K. Shin, and J.-H. Yi,
‘‘Formal modeling and verification for SDN firewall application using
pACSR,’’ in Electronics, Communications and Networks IV. Boca Raton,
FL, USA: CRC Press, 2015, p. 155.

[9] M. Kang, J.-Y. Choi, I. Kang, H. H. Kwak, S. J. Ahn, and M.-K. Shin,
‘‘A verification method of SDN firewall applications,’’ IEICE Trans. Com-
mun., vol. 99, no. 7, pp. 1408–1415, 2016.

[10] L. Lamport, Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Boston, MA, USA: Addison-Wesley, 2002.

[11] C. Newcombe, ‘‘Why Amazon chose TLA+,’’ in Proc. Int. Conf. Abstract
State Mach., Alloy, B, TLA, VDM, Z. Springer, 2014, pp. 25–39.

[12] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, ‘‘How Amazon Web services uses formal methods,’’ Com-
mun. ACM, vol. 58, no. 4, pp. 66–73, Mar. 2015.

[13] Microsoft. (2010). The TLA Toolbox. Accessed: Oct. 30, 2018. [Online].
Available: https://lamport.azurewebsites.net/tla/toolbox.html

[14] What is Software Defined Networking (SDN)? Accessed: Jan. 7, 2019.
[Online]. Available: https://www.sdxcentral.com/sdn/definitions/what-
the-definition-of-software-defined-networking-sdn/

[15] ONF. (2015). OpenFlow Switch Specification-Version 1.5.1. Accessed:
Oct. 30, 2018. [Online]. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf

[16] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[17] S. Merz, ‘‘The specification language TLA+,’’ in Logics of Specification
Languages. Springer, 2008, pp. 401–451.

[18] D. L. Dill, ‘‘The Murφ verification system,’’ in Proc. Int. Conf. Comput.
Aided Verification. Springer, pp. 390–393.

[19] I. Lee, P. Bremond-Gregoire, and R. Gerber, ‘‘A process algebraic approach
to the specification and analysis of resource-bound real-time systems,’’
Proc. IEEE, vol. 82, no. 1, pp. 158–171, Jan. 1994.

[20] H. Ben-Abdallah, J.-Y. Choi, D. Clarke, Y. S. Kim, I. Lee, and H.-L. Xie,
‘‘A process algebraic approach to the schedulability analysis of real-time
systems,’’ Real-Time Syst., vol. 15, no. 3, pp. 189–219, 1998.

[21] L. Lamport, ‘‘Fast paxos,’’ Distrib. Comput., vol. 19, no. 2, pp. 79–103,
Oct. 2006.

[22] Y.-M. Kim, M. Kang, and J.-Y. Choi, ‘‘Formal specification and verifica-
tion of firewall using TLA+,’’ in Proc. Int. Conf. Secur. Manage. (SAM),
2017, pp. 247–251.

YOUNG-MI KIM received the M.S. degree from
the Department of Computer, Korea University,
Seoul, SouthKorea, in 2001, where she is currently
pursuing the Ph.D. degree with the Department
of Computer and Radio Communication Engineer-
ing. From 2001 to 2015, she worked as a Web
Programmer in SouthKorea. Her research interests
include formal methods, networks, SDN security,
and software testing.

MIYOUNG KANG received the M.S. degree
from the Department of Computer Science and
Engineering, Dongguk University, and the Ph.D.
degree from the Department of Computer Sci-
ence and Engineering, Korea University, Seoul,
South Korea. She is currently a Research Professor
with the Graduate School of Information Security,
Korea University, Seoul. Her research interests
include formal methods, process algebras, SDN,
and network security.

52112 VOLUME 8, 2020

	INTRODUCTION
	BACKGROUND
	SDN
	TLA+
	RELATED WORK

	VERIFICATION FRAMEWORK FOR SDN USING TLA+
	OVERVIEW
	COMPONENTS OF THE FRAMEWORK
	SWITCHES
	TOPOLOGY
	PACKETS
	SWITCH RULES

	SPECIFICATION OF FIREWALL RULES
	CONSTANTS AND VARIABLES FOR SDN BEHAVIORS
	SPECIFICATION OF SDN BEHAVIORS

	VERIFICATION OF SDN-BASED FIREWALL RULES
	SPECIFICATION OF SWITCH RULES
	FIREWALL POLICY FOR AN SDN CONTROLLER
	SWITCHES
	TOPOLOGY
	PACKETS
	SWITCH RULES
	MATCHING A PACKET TO A RULE

	VERIFICATION OF THE FIREWALL RULES
	VERIFICATION OF THE TYPE INVARIANCE OF THE VARIABLES
	VERIFICATION OF FIREWALL RULE CONSISTENCY

	CONCLUSION
	REFERENCES
	Biographies
	YOUNG-MI KIM
	MIYOUNG KANG

