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ABSTRACT The influence of finite-length registers and the corresponding quantization effects on the
reconstruction of sparse and approximately sparse signals from a reduced set of measurements is analyzed
in this paper. For the nonquantized measurements, the compressive sensing (CS) framework provides highly
accurate reconstruction algorithms that produce negligible errors when the reconstruction conditions are
met. However, hardware implementations of signal processing algorithms inevitably involve finite-length
registers and quantization of the measurements. A detailed analysis of the effects related to the measurement
quantization, with an arbitrary number of bits, is provided in this paper. A unified novel mathematical model
to characterize the influence of the quantization noise and the signal nonsparsity on the CS reconstruction is
introduced. Using this model, an exact formula for the expected error energy in the CS-based reconstructed
signal is derived, while in the literature its bounds have been reported only. The theory is validated through
various numerical examples with quantized measurements, involving scenarios with approximately sparse
signals, noise folding effect, and floating-point arithmetics.

INDEX TERMS Compressive sensing, measurements, quantization, signal reconstruction, sparse signal
processing.

I. INTRODUCTION
Compressive sensing (CS) theory provides a rigorous math-
ematical framework for the reconstruction of sparse signals,
using a reduced set of measurements [1]–[10]. Advantages
of CS are directly related to the signal transmission and
storage efficiency, which is crucial in big data setups. More-
over, the problem of the physical unavailability of measure-
ments, or the problem of significant signal corruption, are
also potentially solvable within the CS framework. Since the
establishment of CS, phenomena related to the reduced sets
of measurements and sparse signal reconstruction have been
supported by the fundamental theory andwell-definedmathe-
matical framework, while the performances of the reconstruc-
tion processes have been continuously improved by newly
introduced algorithms, often adapted to performwell in a par-
ticular context, or to solve some specific problems [11]–[19].
In real applications, many signals are sparse or approximately
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sparse in a certain transformation domain. This makes the
CS applicable in various fields of signal processing [15].

Ideally, the measurements that are used for the reconstruc-
tion should be taken accurately, assuming a very large number
of bits in their digital format (providing high precision levels).
However, this could be extremely demanding and expensive
for hardware implementations [20]. In practice, the mea-
surements are quantized, meaning that they are represented
using a limited number of bits. Such measurements bring
robustness, memory efficiency and simplicity in the corre-
sponding hardware implementation (particularly in sensor
design). This paper investigates the influence of quantization
on the CS reconstruction with a simple yet rigorous charac-
terization of the related phenomena, through the derivation of
new and exact associated expected squared error expressions.
The results are supported by a relevant theoretical framework
and detailed statistical analysis, through extensive numerical
experiments.

The most extreme case of quantization is in limiting the
measurements to one bit only. In previous work [20]–[23],
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one-bit measurements are initially treated as the sign con-
straints, as opposed to the values to be matched in the mean
squared sense during the reconstruction process. Quantiza-
tion to one-bit measurements is suitable for hardware systems
since the quantizers do not suffer from dynamic range issues.
However, as the sign of measurements does not provide
amplitude information of the signal, it can be recovered up
to a constant scalar factor only. Moreover, the number of
measurements needed for a successful reconstruction based
on such systems exceeds the signal length. In this paper,
we focus on the general B-bit quantization of available mea-
surements and its influence on the reconstruction accuracy.

The quantization of measurements undeniably intro-
duces the error in the CS reconstruction result. The effects
associated with the quantization have been studied
recently [24]–[30]. The results of these studiesmainly include
the derivation of quantization error bounds and the adap-
tation of CS algorithms aiming to reduce the distortions
caused by the quantization [4], [5]. The upper bound of
the reconstruction error, for strictly sparse signals, has been
derived in [25]. Other reported results are focused on the
worst case analysis [26]. Exact asymptotic distortion rate
functions have been derived in [26] for scalar quantization,
where the reconstruction strategies have been adapted to
accommodate quantization errors. An overview of the quan-
tization phenomena in the compressive sensing context is
presented in [27]. Therein, the fundamental analysis provides
the performance bounds only, with an additional focus on the
Sigma-Delta quantization and the related theory. Recently,
the effects of quantization on the estimation of sparsity order,
and signal support have been considered with a large number
of Monte Carlo simulations in [28]. The most frequently
used algorithms in compressive sensing are adjusted to the
quantization effect in [29]. For the case of one-bit unlimited
sampling quantization approach the bounds of reconstruction
error are derived in [30]. The design of quantizer for ran-
dom measurements that minimize the distortion effects in
the reconstruction is considered in [31], [32]. Therein, it is
highlighted that minimizing the mean squared error (MSE) of
the measurements is not equivalent to minimizing the MSE
of the CS reconstruction. The quantization noise was studied
in [33], where the lower and upper bound for the ratio of
the reconstruction SNR and measurements SNR are derived
and related to the noise folding effects in CS on the signal
acquisition systems.

Summarizing the above-mentioned literature, there have
been only error bounds derived in the previous works. This
paper aims to fill the literature gap regarding the exact charac-
terization of the quantization in the CS, by deriving an explicit
and exact relation for the mean squared error, instead of the
reported error bounds. The error produced by the quantization
of measurements is analyzed from a practical signal process-
ing point of view. The paper gives an exact calculation of
the error produced by the applied reconstruction procedure.
The error appearing when an approximately sparse signal is
reconstructed under the sparsity constraint is examined in

detail. The analysis is expanded to include the effect of the
pre-measurement noise in the sparsity domain coefficients,
known as the noise folding [34]. The presented theory is uni-
fied by exact relations for the expected squared reconstruction
error, derived to take into account all the studied effects.
Moreover, we comment on the modifications of the derived
relations, required to include the floating-point arithmetics.

In numerical studies, we have performed reconstructions
with various numbers of bits, different sparsities, including
approximately sparse signals, and noise folding effects. Three
different methods of signal reconstruction are used to test
the analytic results. In total, for all the considered cases,
we performed about 150, 000 realizations with random signal
parameters to statistically test the presented theoretic results.
The formula for the mean squared error is used for the cases
when the reconstruction conditions for the signal are satis-
fied. We have also tested how the quantization influences
the reconstruction conditions by testing the probability of
misdetection for various sparsities and the number of avail-
able measurements. The misdetection statistical analysis is
performed on 10, 000 independent trials.

The paper is organized as follows. In Section II, basic CS
concepts and definitions are briefly presented. Section III
introduces a common approach to solve the CS reconstruction
problem, including a brief overview of relevant properties that
characterize possible solutions. Section IV puts the quantiza-
tion within the compressive sensing framework. In Section V,
the concept of nonsparse (approximately sparse) signals
reconstructed under the sparsity constraint is analyzed, lead-
ing to the reconstruction error equation which unifies the
studied effects. The theory is expanded, to take into account
the noise folding effect, in Section VI, while Section VII dis-
cusses the quantization in floating-point arithmetics. Numer-
ical results verify the presented theory in Section VIII. The
probability of misdetection is investigated in Section IX. The
paper ends with concluding remarks.

II. BASIC COMPRESSIVE SENSING DEFINITIONS
Definition: A discrete signal x(n), n = 0, 1, . . . ,N − 1

is sparse in one of its representation domains X (k) if the
number K of nonzero coefficients is much smaller than the
total number of samples N , that is,

X (k) = 0 for k /∈ K = {k1, k2, . . . , kK },

where K � N .
Definition:Ameasurement of a signal is a linear combina-

tion of its sparsity domain coefficients X (k),

y(m) =
N−1∑
k=0

am(k)X (k), m = 1, 2, . . . ,M , (1)

or in matrix form

y = AX, (2)

where y is an M × 1 (M -dimensional) column vector of
the measurements y(m), A is an (M × N )-dimensional mea-
surement matrix with the coefficients am(k) as its elements,
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and X is an N × 1 (N -dimensional) column sparse vector of
coefficients X (k). It is common to normalize the measure-
ment matrix such that the energy of its columns is 1. In that
case, the diagonal elements of the matrixAHA are equal to 1,
where AH denotes a Hermitian transpose of A.

By definition, a measurement of a K -sparse signal can be
written as

y(m) =
K∑
i=1

X (ki)am(ki). (3)

The compressive sensing theory states that, under certain
realistic conditions, it is possible to reconstruct a sparse
N -dimensional vector X from a reduced M -dimensional set
of measurements (M < N ), belonging to the vector y,

y = [y(1), y(2), . . . , y(M )]T . (4)

The reconstruction conditions are defined in several forms.
The most widely used are the forms based on the restricted
isometry property (RIP) and the coherence index [1]–[4].
Although providing tighter bounds, the RIP based condition
is of high calculation complexity. This is the reason why the
coherence based relation will be considered in this paper,
along with some comments on its probabilistic relaxation.
The reconstruction of a K-sparse signal representation,

X is unique if K < (1+ 1/µ) /2, where the coherence
index, µ, is equal to the maximum absolute off-diagonal
element of AHA, assuming its unity diagonal elements.

A simple proof will be provided later.
Formally, compressive sensing aims to solve the optimiza-

tion problem

min ‖X‖0 subject to y = AX, (5)

or its corresponding relaxed convex form. In this way,
the unknown sparse representation, X, of a signal whose
dimension isN , is obtained fromM measurements, y, bymin-
imizing its sparsity measure ‖X‖0. Amongst many others,
an approach based on matching the components correspond-
ing to the nonzero coefficients, can be used to solve (5). It is
further assumed that the CS reconstruction is based on a such
methodology. The solution is discussed in the next section,
since it will be used to model the quantization noise and other
studied effects.

III. PROBLEM SOLUTION
To perform the reconstruction, we use an iterative version of
the orthogonalmatching pursuit algorithm from [11]. Assume
first that K nonzero values X (k) are detected at the positions
k ∈ K = {k1, k2, . . . , kK }. The system of measurement
equations becomes

y = AMKXK . (6)

The system is solved for the nonzero coefficients X (k), k ∈ K
written in the vector form as XK , with K < M . The matrix
AMK is an M × K sub-matrix of the M × N measurement
matrix A, where only the columns corresponding to the

nonzero elements in X (k) are kept. The solution of the system
in (6) is

XK = (AH
MKAMK )−1AH

MKy = pinv(AMK )y, (7)

where pinv(AMK ) is the pseudo-inverse of the matrix AMK
and AH

MKAMK is known as a K × K Gram matrix of AMK .
Therefore, the CS problem solution can be split into two

steps:
1) detection of the positions of nonzero coefficients in X

and
2) calculation of the unknown coefficient values X (k) at

the detected nonzero positions.

A. INITIAL ESTIMATE
Detection of the positions of nonzero coefficients X (k) will
be based on the initial estimate concept. An intuitive idea for
the initial estimate comes from the fact that the measurements
are obtained as linear combinations of the sparsity domain
coefficients, with rows of the measurement matrix A acting
as weights. It means that the back-projection of the measure-
ments y to the measurement matrix A, defined by

X0 = AHy = AHAX, (8)

can be used to estimate the positions of nonzero coeffi-
cients. The back-projection of the available data is present
in an implicit or explicit way in all reconstruction algo-
rithms. In most of these algorithms (for example, orthogo-
nal matching pursuit - OMP, least absolute shrinkage and
selection operator - LASSO, or Bayesian reconstruction) the
back-projection is used as an initial estimate. However, this
relation contains more information about the reconstructed
signal than serving just as its initial estimate. It has been
shown that the crucial criteria for the reconstruction, like, for
example, the coherence index (as it will be shown later in
Remark 1) and the restricted isometry property can be derived
from this back-projection relation. In this paper this relation
will be used as a starting point to derive the error in the recon-
structed signal, assuming that the reconstruction conditions
are met (the accuracy of the main result will be demonstrated
on three quite different reconstruction methods).
For the coefficient at the kth position, its initial estimate

X0(k) takes the following form

X0(k) =
M∑
m=1

y(m)a∗m(k), (9)

or after y(m) is replaced by its value from (3) we get

X0(k) =
K∑
i=1

X (ki)µ(ki, k), (10)

where

µ(ki, k) =
M∑
m=1

am(ki)a∗m(k) (11)
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TABLE 1. Variances in the initial estimate for various types of the
measurement matrix for k 6= ki .

are the coefficients of mutual influence (interference) among
elements X (k). The coefficients µ(ki, k) are equal to the
corresponding elements of the matrix AHA, with

µ = max
k 6=l
|µ(l, k)|, (12)

and µ(k, k) = 1. Note that µ is referred to as the coherence
index.

For various values of ki, the off-diagonal elements µ(ki, k)
of matrix AHA act as random variables, with different distri-
bution for different measurement matrices. For the partial dis-
crete Fourier transform (DFT) matrix, distribution of µ(ki, k)
tends to a Gaussian distribution for 1� M � N , while for an
equiangular tight frame (ETF) measurement matrix, µ(ki, k)
takes only the values such that |µ(ki, k)| = µ. Distribution of
µ(ki, k) for other measurement matrices can also be derived.

The reduced set of measurements (samples) manifests as a
noise in the initial estimate, which therefore acts as a random
variable, with the mean-value and the variance given by

E{X0(k)} =
K∑
i=1

X (ki)δ(k − ki) (13)

var{X0(k)} =
K∑
i=1

|X (ki)|2var{µ(ki, k)} (1− δ(k − ki)) , (14)

where δ(k) = 1 for k = 0 and δ(k) = 0 elsewhere.
In the analysis of the reconstruction error, we are interested

in the variance of random variable µ(ki, k), that is

var{µ(ki, k)} = σ 2
µ.

For the partial DFT matrix, the variance is derived in [6].
For a real-valued ETF measurement matrix, the values ±µ
are equally probable, producing the variance σ 2

µ = µ2,
where, according to the Welch bound, µ2

= (N − M )/
(M (N − 1)) holds [14], [35]. For the Gaussian measurement
matrix, the variance is σ 2

µ = 1/M . The same value is obtained
for other considered random matrices. The variance σ 2

µ of
µ(ki, k) is presented in Table 1 for various measurement
matrices [6], [14]–[16].

B. DETECTION OF NONZERO ELEMENT POSITIONS
The initial estimate can be used as a starting point for a
thorough analysis of the reconstruction performance and its
outcomes. Potentially, such analysis can lead to the improve-
ments of the reconstruction process. The detection can be
done in one step or in an iterative way.
One-Step Detection: In an ideal case, matrix AHA should

be such that the initial estimate X0 contains K coefficients
higher than the other coefficients. Then, by taking the posi-
tions of the highest coefficients in (8) as the set K, the signal
is simply reconstructed using (7).
Iterative Detection: The condition that all K nonzero coef-

ficients in the initial estimateX0 are larger than the coefficient
values X0(k) at the original zero-valued positions k /∈ K, can
be relaxed using an iterative procedure. To find the position of
the largest coefficient in X, based on X0, it is sufficient that
the corresponding coefficient X0(k) has a value larger than
the values of the coefficients X0(k) at the original zero-valued
coefficient positions k /∈ K.
Remark 1 (Solution Uniqueness): The worst case for the

detection of a nonzero coefficient, with a normalized
amplitude 1, occurs when the remaining K − 1 coefficients
are equally strong (that is, with unit amplitudes). This is
the case of the strongest possible influence of other nonzero
coefficients to the initial estimate of the considered largest
coefficient. The influence of the kth coefficient on the coeffi-
cient at the ith position is equal to µ(ki, k), given by (11). Its
maximum possible absolute value is the coherence index µ.
In the worst case, the amplitude of the considered coefficient
in the initial estimate is 1− (K − 1)µ. At the position where
the original coefficient X (k) is zero-valued, in the worst
case, the maximum possible contributions µ of all K coef-
ficients sum up in phase to produce the maximum possible
disturbance Kµ. The detection of the strongest coefficient is
successful if

1− (K − 1)µ > Kµ,

producing the well-known coherence condition for the unique
reconstruction K < (1+ 1/µ) /2.
After the largest coefficient position is found and its

value is estimated, this coefficient can be subtracted and the
procedure can be continued with the remaining (K − 1)-
sparse signal. If the reconstruction condition is met for the
K -sparse signal, then it is met for all lower sparsities as
well.

The procedure is iteratively repeated for each coefficient.
The stopping criterion is that AMKXK = y holds for the
estimated positions {k1, k2, . . . , kK } and coefficients X (k).
The method is summarized in Algorithm 1.
Remark 2 (Solution Exactness): The coherence index

condition guarantees that the positions of the nonzero ele-
ments in X will be uniquely determined. Next, we will show
that the values of the nonzero coefficients will be exactly
recovered.
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Algorithm 1 Reconstruction Algorithm
Input: Vector y, matrix A, assumed sparsity K

1: K← ∅, e← y
2: for i = 1 do K
3: k ← position of the highest value in AHe
4: K← K ∪ k
5: AK ← columns of matrix A selected by set K
6: XK ← pinv(AK )y
7: yK ← AKXK
8: e← y− yK
9: end for

Output: Reconstructed XR = XK and positions K.

The system of linear equations in (10), for k ∈ K, can be
written in a matrix form as

X0K = BXK = XK + CK ,

where B is a K × K matrix with elements bpi = µ(kp, ki),
X0K is the vector with K elements obtained from the initial
estimate as X0K (i) = X0(ki), and XK is the vector with
K corresponding coefficients from the original signal. The
influence of the other K − 1 coefficients to the considered
coefficient is denoted by CK .
The reconstructed coefficients XR, at the nonzero coeffi-

cient positions, are obtained by minimizing ‖y− AKXR‖
2
2.

They are

XR = (AH
KAK )−1AH

K y, (15)

where AK is the matrix obtained from the measurement
matrix A by keeping the columns for k ∈ K. Since AH

K y =
X0K , according to (8), we can rewrite (15) as

XR = (AH
KAK )−1X0K . (16)

Since X0K = BXK , the reconstruction is exact if

(AH
KAK )−1 = B−1

holds. Indeed, the elements of matrix AH
KAK are equal

to βij =
∑M

n=1 a
∗
n(ki)an(kj) = µ(kj, ki), meaning that

AH
KAK = B. Therefore, XR = XK holds.
The reconstruction algorithm produces the correct coeffi-

cient values X (k) at the selected positions k ∈ K. It means
that the influence of other K − 1 coefficients to each
coefficient in the initial coefficient estimate X0(k), denoted
by C(k), is canceled out.

In summary, the reconstruction algorithm for a coefficient
at a position k ∈ K, works as an identity system to the original
signal coefficient in X0(k), eliminating the influence of other
coefficient at the same time, Fig. 1.

C. NOISY MEASUREMENTS
Assume next that the measurements are noisy

y+ ε = AX, (17)

FIGURE 1. Illustration of a system for the reconstruction of a sparse
signal XK = [X (k1), X (k2), . . . , X (kK )]T from the initial estimate
X0K = [X0(k1), X0(k2), . . . , X0(kK )]T .

with a zero-mean signal independent noise ε. The noise
variance of the assumed additive input noise ε is σ 2

ε and the
covariance is given by

E{εεH } = σ 2
ε I.

Noisy measurements will result in a noisy initial estimate
X0 = AH (y + ε). Variance of X0(k) due to the input noise
in measurements, is σ 2

X0(k)
= σ 2

ε , since it has been assumed
that the columns of A have unite energy,

E{X0XH
0 } − |E{X0}|

2
= E{AHεεHA} = σ 2

ε I.

The noise variance in the reconstructed coefficient is
(Remark 2 and Fig. 1)

var{XR(k)} = σ 2
ε .

Since the noise is independent in each reconstructed coeffi-
cient, the total mean squared error (MSE) in K reconstructed
coefficients is

E{
K∑
m=1

|XR(km)− X (km)|2}

= E{‖XR − XK‖
2
2} = Kσ 2

ε . (18)

If the partial DFT matrix is formed as a submatrix of the
standard inverse DFT matrix (with normalization 1/N ), then
we would get E{‖XR − XK‖

2
2} = KN 2σε

2/M , as shown, for
example, in [16]. The reconstruction error bounds are given
in [15].

IV. QUANTIZATION EFFECTS
Traditional CS theory does not consider the limitations in the
number of bits used for the representation of measurements.
This can affect the reconstruction performance of the standard
CS approaches.

The measurement quantization is particularly important
in the hardware implementation context. One-bit mea-
surements are the most extreme case, promising simple,
comparator-based hardware devices [20]. The one bit used
represents the sign of the sample, i.e. y = sign{AX}. How-
ever, a larger number of samples is required for an accurate
reconstruction, which is difficult to achieve using only the
sign of measurements [20], [21].

A more general form of the hardware implementation uses
a B-bit digital format of the measurements. We will assume
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that themeasurements are stored into (B+1)-bit registers (one
sign bit and B bits for the signal absolute value),

yB = digitalB{AX}, (19)

whereas the reconstruction of the coefficients X (k) is done
in a more realistic sense. The requirement for storage is
also significantly reduced for the measurements with a low
number of bits, since the total number of bits is reduced. Note
that, for a complex-valued signal x(n), the measurements yB
are also complex, formed as

yB = digitalB{<{AX}} + jdigitalB{={AX}} (20)

where both the real and the imaginary part of measurement
are quantized to B+ 1-bits.

A. QUANTIZATION ERRORS
Quantization influences the results of the compressive sens-
ing reconstruction in several ways:
• Measurement quantization error, described by an addi-
tive quantization noise. This influence can be modeled
as a uniform noise with values between the quantization
level bounds.

• Quantization of the measured sparse signal coefficients.
• Quantization of the results of arithmetic operations.
It depends on the way how the calculations are
performed.

• Quantization of the coefficients in the algorithm. How-
ever, being deterministic for a given measurement
matrix, this type of error is commonly neglected from
the analysis.

In order to perform an appropriate and exact analysis, some
standard assumptions are further made:
• The measurement quantization error is a white noise
process with a uniform distribution.

• The quantization errors are uncorrelated.
• The quantization errors are not correlated with the mea-
surement values.

The most important error source is the quantization of
the measurements y(m) and the quantization of the measured
sparse signal coefficients X (k), referred to as the quantization
noise folding. They will be analyzed next.

B. INPUT SIGNAL RANGES
Assume that registers with B bits, with an additional sign
bit, are used and that all measurements are normalized to the
range

−1 ≤ y(m) < 1.

The total number of bits in a register is b = B+ 1.
In that case, it is important to notice that the

sparse signal coefficients X (k) must be within the range
−min{

√
M/K , 1} < X (k) < min{

√
M/K , 1} so that y =

AMKXK does not produce a value with an amplitude greater
or equal to 1. For the partial DFT matrices, this condition
holds in a strict sense, while for the Gaussianmatrices it holds

in a mean sense (all values whose amplitude is greater than 1
are quantized to the closest level with amplitude below 1).
Note that the butterfly schemes for the measurements calcu-
lation (as in the quantized FFT algorithms) could extend this
bounds for X (k) so that the maximum range −1 < X (k) < 1
can be used.

C. MEASUREMENTS QUANTIZATION
In order to be stored into registers, the digital measurement
values yB are coded into a binary format. When the mea-
surement amplitude is quantized to B bits, the difference
between the true and the quantized signal value is called the
quantization error. This error is bounded by

|e(m)| < 1/2, (21)

where 1 is related to B through

1 = 2−B. (22)

The quantization error of a signal can be defined as an
additive uniform white noise affecting the measurements

y = yB + e, (23)

where e is the quantization error vector with elements e(m).
The mean and variance of the quantization noise are calcu-
lated as [14]

µe = E{e} = 0, (24)

σ 2
e = 1

2/12. (25)

In many real-world applications, in-phase and quadrature
component are used to represent real and imaginary part
of the complex valued signal. In mathematical notation and
derivation, they are considered as complex-valued, while in
the hardware implementation the real-valued (in-phase) part
and the imaginary (quadrature) part are stored in separate
registers, with appropriate combinations for arithmetic oper-
ations. Note that, for a complex-valued signal, both real and
imaginary part contribute to the noise. Therefore, in this case,
the variance of the quantization noise can be written as

σ 2
e = 212/12 = 12/6. (26)

Considering y as noisy measurements, the initial estimate
will result in a noisy X0(k). Since X0(k) is calculated from (9),
with the quantization noise in measurements, its variance will
be

σ 2
X0(k) = σ

2
e . (27)

Therefore, the noise variance in the output (reconstructed)
coefficients, for the system shown in Fig. 1, is equal to the
input noise variance

var{XR(k)} = σ 2
e . (28)

Since only K , out of N , coefficients are used in the recon-
struction, the energy of the reconstruction error is

‖XR − XK‖
2
2 = Kσ 2

e , (29)
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where for notation simplicity we have used ‖XR − XK‖
2
2 to

denote the expected value of the squared norm-two of the
vector XR − XK . The full and complete notation of the left
side of (29) would be E{‖XR − XK‖

2
2}.

D. SPARSITY TO NUMBER OF BITS RELATION
Based on the previous relations, influence of the quantization
with B bits can be related to the sparsity K . The error energy
in the reconstructed coefficients will remain the same if

Kσ 2
e = K

2−2B

6
= const. (30)

It means that the reduction from B to B − 1 bits will require
the sparsity reduction from K to K/4. The logarithmic form
of the reconstruction error is

e2=10 log
(
‖XR − XK‖

2
2
)
= 3.01 log2 K − 6.02 B− 7.78.

V. NONSPARSITY INFLUENCE
Due to many circumstances, majority of signals in real-world
scenarios are only approximately sparse or nonsparse. This
means that a signal, in addition to the K largest coefficients,
has N −K coefficients which are small but nonzero. Assume
such an approximately sparse (or nonsparse) signal X. The
signal is reconstructed under the K -sparsity constraint using
Algorithm 1, with the reconstruction conditions being sat-
isfied in the CS sense, thus allowing that the algorithm can
detect the largest K coefficients.
The reconstructed signal XR then has K reconstructed

coefficients with amplitudes XR(k1), XR(k2), . . . ,XR(kK ).
The remaining N − K coefficients, which are not recon-
structed, are treated as a noise in these K largest coefficients.
The variance from a nonzero coefficient, according to (14),
is |X (kl)|2 σ 2

µ.The total energy of noise in theK reconstructed
coefficients XR will be

‖XR−XK‖
2
2 = Kσ 2

µ

N∑
l=K+1

|X (kl)|2 , (31)

where XK is the sparse version of the original (nonsparse)
signal, that is, a signal with the K largest coefficients fromX,
and others set to zero. Denoting the energy of the remaining
signal, when the K largest coefficients are removed from the
original signal, by

‖X− XK‖
2
2 =

N∑
l=K+1

|X (kl)|2 (32)

we get

‖XR−XK‖
2
2 = Kσ 2

µ ‖X− XK‖
2
2 . (33)

For the partial DFT measurement matrix, the result will be

‖XR−XK‖
2
2 = K

N −M
M (N − 1)

‖X− XK‖
2
2 . (34)

In the case when the signal is strictly K -sparse, that is,
X = XK , and when the reconstruction is performed with the
non-quantized measurements, the reconstruction is ideal and

the error is ‖XR−XK‖
2
2 = 0 (or negligible). Since the mea-

surements are quantized to B-bits, the error of the form (29)
will be introduced.

In the case of a nonsparse signal, a general expression is
obtained by combining (29) and (33) to get

‖XR−XK‖
2
2 = Kσ 2

µ ‖X− XK‖
2
2 + Kσ

2
e . (35)

This result will be validated by examples in the next section,
by calculating the signal-to-noise ratio (SNR) of each result

SNRth = 10 log
(

‖XK‖
2
2

Kσ 2
µ ‖X− XK‖

2
2 + Kσ

2
e .

)
(36)

and comparing it with the statistical SNR given by

SNRst = 10 log
(
‖XK‖

2
2

‖XR−XK‖
2
2

)
. (37)

VI. NOISE FOLDING QUANTIZATION
In this section, the results will be extended to the
noise-folding effects. Here, it his assumed that the sparse
valuesX are already sensed and storedwithin the finite-length
registers, before the measurement matrix is applied,
[33], [34]. This quantization is modeled by the quantization
noise z in the signal coefficients X, prior to taking the
measurements. In this case, the measurements are of the form

yB + e = A(X+ z), (38)

which can be rewritten as

yB + v = AX, (39)

where v = e−Az, and the total quantization noise, affecting
the measurements, is denoted by e, with covariance σ 2

e I. The
quantization noise vector z is random with covariance σ 2

z I
being independent of e. Therefore, the resulting noise v is
characterized by a covariance matrix

C = σ 2
e I+ σ

2
z AA

H . (40)

If the considered measurement matrix A is formed as the
partial Fourier matrix, the relation AAH

=
N
M I holds. The

variance of v is then

σ 2
v = σ

2
e +

N
M
σ 2
z , (41)

with the covariance matrix C = σ 2
v I.

Each reconstructed coefficient can be written as

XR(km) = X (km)+ v(km),

according to Fig. 1, where the variance of noise v(n) is given
by (41). For the sparse case, the quantization error is present
in K nonzero elements of X, only, yielding

E{
K∑
m=1

|XR(km)− X (km)|2}

= ‖XR−XK‖
2
2=E{

K∑
m=1

|v(km)|2} = Kσ 2
v = Kσ 2

e +
KN
M
σ 2
z .

(42)
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For the nonsparse signal and the partial DFT matrix,
the term K (N −M )/(M (N − 1)) ‖X− XK‖

2
2 is added to the

right side of (42)

‖XR − XK‖
2
2 = Kσ 2

e +
K
M σ

2
z + K

N−M
M (N−1) ‖X− XK‖

2
2 ,

(43)

where it is assumed that the quantization of K the largest ele-
ments in X is dominant in that part of the error. All previous
relations, for various measurement matrices, can be applied
to this case.

VII. FLOATING POINT REGISTERS
In floating point registers, the quantization error is modeled
by a multiplicative error

yB(m) = y(m)+ y(m)e(m), (44)

where e is the quantization error vector with elements e(n).
As in classical digital signal processing, for the analysis
of floating point arithmetics, it will be assumed that the
sparse coefficients X (ki), i = 1, 2, . . . ,K , are independent
random variables, with the variance σ 2

X and the mean µX .
The coefficients X (ki) are statistically independent from the
measurement matrix A elements am(k). The mean value of
the quantization error is

E{y(m)e(m)} = 0.

The variance is

var{y(m)e(m)} = var{y(m)}var{e(m)}.

For y(m) =
∑K

i=1 X (ki)am(ki) we get

var{y(m)} = σ 2
X

K∑
i=1

E{|am(ki)|2},

for all measurement matrices with the normalized energy
columns, when their elements am(k) are equally distributed.
This means that the quantization noise y(m)e(m) has the
variance σ 2

Xσ
2
e K/M and we can write (see Remark 2

and Fig. 1)

σ 2
X0(k) =

K
M
σ 2
Xσ

2
e (45)

with

‖XR − XK‖
2
2 =

K 2

M
σ 2
Xσ

2
e . (46)

All formulas, in various considered scenarios, can now be
rewritten, including the cases of nonsparse signals and noise
folding.

For example, if the measurements are normalized such that
E{y2(m)} = σ 2

XK/M = 1 then ‖XR − XK‖
2
2 = Kσ 2

e , that is
the floating-point arithmetics produces the same results as the
fixed-point arithmetics. However, if the range of the measure-
ment values is lower, for example, E{y2(m)} = σ 2

XK/M =
1/10, then the floating-point arithmetics will produce ten
times lower error, ‖XR − XK‖

2
2 = Kσ 2

e /10.

FIGURE 2. Reconstruction results for N = 256-dimensional signal whose
M = 128 measurements are stored into registers with b = B + 1 = 7 bits.
Reconstruction of a sparse signal with K = 10 nonzero coefficients (top).
Reconstruction of a nonsparse signal assuming its sparsity K = 10
(bottom). The original signal is colored in black, while the reconstructed
signal is denoted by red lines and crosses.

VIII. NUMERICAL RESULTS
In this section, we have performed reconstruction with var-
ious number of: bits, sparsities (included approximately
sparse signals), and available samples. Various real-valued
and complex-valued measurement matrices are considered:
(1) Partial DFT, (2) Random partial DFT, (3) Equiangu-
lar thigh frame (ETF), (4) Gaussian random, (5) Uniform
random, and (6) Bernoulli matrix. Three different methods
of reconstruction: (a) orthogonal matching pursuit (OMP),
(b) Iterative hard thresholding (IHT), and (c) Bayesian-based
reconstruction are used to test the theoretic results. An algo-
rithmic form of all considered reconstruction methods is
provided for readers to easily reproduce the results. In total,
for all the considered cases, we have performed about 150 000
realizations to statistically test the presented theoretic results,
with random signal parameters.
Example 1: One realization of a sparse and nonsparse sig-

nal will be considered as an illustration of the reconstruction.
a) Consider an N = 256-dimensional signal of sparsity
K = 10, whoseM = N/2 available measurements are stored
with B = 6 bits. The measurements matrix is a partial DFT
matrix with randomly selected M out of N rows from the
full DFT matrix, with columns being energy normalized (for
hardware realization of the DFT see, for example, [41], [42]).
The sparsity domain coefficients are assumed in the form

X (kp) =


√
M
K

(1− ν(p)), for p = 1, . . . ,K

0, for p = K + 1, . . . ,N ,
(47)

where ν(p) is a random variable with the uniform distribution
from 0 to 0.4.
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FIGURE 3. Reconstruction error for the measurements quantized to B bits for various sparsity K and the numbers of measurements M. Partial DFT
measurement matrix is used. Statistical results are marked by black dots, while the theoretical results are shown by dot-dashed lines. The sparsity value is
varied from K = 5 to the maximum K indicated in the panels, with a step of 5. (a)-(c) Reconstruction error (theory and statistics) for the sparse signals
when only the measurements y are quantized to B bits (to fit b = B + 1 fixed-point registers). (d)-(f) Reconstruction error (theory and statistics) for
nonsparse signals when only the measurements y are quantized to B + 1 bit fixed-point registers. (g)-(i) Reconstruction error (theory and statistics) for
nonsparse signals when both the measurements y and the noisy input coefficients X are quantized to B bits (quantization noise folding with additive
input noise).

Since this signal is sparse, the reconstruction error is def-
ined by (29). The SNR is defined by (36) with ‖X− XK‖

2
2 =

0. The original signal and the reconstructed signal are shown
in Fig. 2(top). The statistical SNR is SNRst = 42.35 dB and
the theoretical value is SNRth = 42.56 dB.

b) The signal from a), withK = 10 significant coefficients,
is considered here. However, we will also assume that the
remaining N − K coefficients are small but not zero-valued,

X (kp) =


√
M
K

(1− ν(p)), for p = 1, . . . ,K
√
M
K

exp(−p/K ), for p = K + 1, . . . ,N ,

(48)

with ν(p) being a random variable with uniform distribution
from 0 to 0.4 as in a) and N = 256. The number of bits
in the registers where the measurements are stored is b =
B + 1 = 7. The original signal and the signal reconstructed
under sparsity constraint, using M = N/2 measurements,
are shown in Fig. 2(bottom). The statistical SNR is SNRst =
33.33 dB and the theoretical is SNRth = 33.68 dB.
Example 2: Statistical analysis of the sparse signal recon-

struction, whose form is given in (47), is performed in this
example. Random uniform changes of the coefficient ampli-
tudes ν(p) are assumed from 0 to 0.2. The numbers of quan-
tized measurements M = 192, M = 170, and M = 128 are
considered. Typical cases for the measurements quantization
to B ∈ {4, 6, 8, 10, 12, 14, 16, 18, 20, 24} bits are analyzed.
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FIGURE 4. Reconstruction error for various measurement matrices. (a)-(c) Sparse signal with measurements quantized to fit the registers with b = B + 1
bits for various sparsities using the uniform, Gaussian, and ETF measurement matrices, respectively. (d)-(f) Nonsparse signal with the measurements
quantized to fit the registers with B + 1 bits for various sparsity K using the uniform, Gaussian, and ETF measurement matrices, respectively. (g)-(i)
Nonsparse signals when both the measurements y and input coefficients X are quantized to B + 1 bit fixed point registers (quantization noise
folding)using the uniform, Gaussian, and ETF measurement matrices, respectively.

Signals with sparsity levels K ∈ {5, 10, 15, 20, 25, 30}
are considered. The average statistical signal-to-noise ratio,
SNRst , and the theoretical signal-to-noise ratio, SNRth, values
over 100 realizations are presented in Fig. 3(a)-(c). Black
dots represent the statistical results, SNRst , and the dash-dot
lines show the theoretical results, SNRth. The agreement is
high.

For nonsparse signals we used the model in (48). Random
changes of the coefficient amplitudes ν(p) are assumed from
0 to 0.2, while the amplitudes of the coefficients X (k) for
kp /∈ K are of the form X (kp) = exp(−p/(8K )) in order
to reduce its influence to the quantization level. With such
amplitudes of the nonsparse coefficients, the quantization

error dominates in the reconstruction up to B = 14, while
the nonsparse energy is dominant for B ≥ 16, as it can be
seen in Fig. 3(d)-(f). Statistics is again in full agreement with
the theoretical results.

Finally, the noise folding effect is included, taking into
account that the input coefficientsX (k) are quantized, in addi-
tion to the quantization of measurements y(m). Since the fold-
ing part of the quantization error is multiplied by K/M � 1
in (42), the results do not differ from those presented
in Fig. 3(a)-(c). In order to test the influence of noise folding
we assumed that the quantized input coefficientsX (k) contain
an additional noise. An input additive complex-valued i.i.d.
Gaussian noise, with the variance σz = 0.0001, is added to
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these coefficients. This noise is of such a level that it does
not influence the quantization error for B < 14. However,
for B ≥ 14, it becomes larger than the quantization error
and its influence becomes dominant. The results with the
quantization and the noise folding, with the additional noise,
are shown in Fig. 3(g)-(i).
Example 3: The statistical analysis is extended to other

forms of the measurement matrices, namely, to the ETF,
the Gaussian, and the uniform random matrix. All three
forms of the signal and the quantization error are considered
here with M = 128 measurements. Sparse and nonsparse
signals, described in Example 2, are used in the analy-
sis. The reconstruction error with various number of bits
B = {4, 6, 8, 10, 12, 14, 16, 18, 20, 24} used in the quan-
tization, and various assumed sparsity levels K is shown
in Fig. 4(a)-(c). The results for nonsparse signals,
reconstructed with the assumed sparsity, are presented
in Fig. 4(d)-(f). The noise folding is analyzed for a reduced
number of bits in the quantization of X (k) and presented
in Fig. 4(g)-(i).
Example 4: The analysis of quantization effects is done

with the assumption that the quantization errors are uncor-
related. This condition is met for all previously considered
matrices. However, in the case of the Bernoulli measurement
matrix and a small signal sparsity this condition does not hold,
meaning that we cannot expect quite accurate estimation of
the statistical error using the previous formulas. To explain
this effect, we will start with the simplest case of the signal
whose sparsity is K = 1. The measurements are y(m) =
am(k1)X (k1). For all previously considered matrices y(m) and
y(n) are different for m 6= n and the quantization errors
are independent. However, for the Bernoulli measurement
matrix, we have y(m) = ±X (k1)/

√
M . These measurements

will produce only two possible quantization errors for allm =
1, 2, . . . ,M . It means that M/2 errors in the initial estimate
will sum up in phase, producing the mean squared error with
variance var{XR(k)} = M

2 σ
2
e . This is significantly higher than

var{XR(k)} = σ 2
e in other cases. For K = 2, we get the

measurements y(m) = (±X (k1) ± X (k2))/
√
M , producing

four possible values for y(m) and only four possible values
of the quantization error. For large K , the number of possible
levels increases and the result for the variance converges to
the one for uncorrelated quantization errors, var{XR(k)} =
σ 2
e , obtained under the assumption that all M measurements
y(m) are different. The results for the Bernoulli measurement
matrix, with the described correction for a smallK , are shown
in Fig. 5.
Example 5: The results in previous four examples

are obtained based on the OMP reconstruction method
(Algorithm 1), which is also used for the derivation of the
theoretical results. Here we will show that we may expect
similar results for other reconstruction methods, as far as
the reconstruction conditions are met. The simulations for
the reconstruction with the partial DFT measurement matrix
with sparse and nonsparse signals, including noise fold-
ing, are repeated with the iterative hard thresholding (IHT)

FIGURE 5. Reconstruction error for the Bernoulli matrix for nonsparse
signals with the measurements quantized to fit the registers with B + 1
bits for various sparsities K ∈ {1, 15, 20, 25, 30}.

reconstruction method, given in Algorithm 2 [13], [29]. The
theoretical and statistical errors are shown in Fig. 6(a)-(c),
showing high agreement between the statistical and theoreti-
cal results.

Algorithm 2 Iterative Hard Thresholding (IHT) Reconstruc-
tion Algorithm
Input: Vector y, Matrix A, Assumed sparsity K ,

Number of iterations It , and parameter τ .

1: X0← 0
2: for i = 1 do It
3: Y← X0 + τAH (y− AX0)
4: K← sort(|Y|), indices of K largest |Y|
5: X0← 0,
6: X0(k)← Y (k) for k ∈ K F Hard Thresholding
7: end for

Output: Reconstructed XR = X0, the set of positions K.

Example 6: In this example, the reconstruction of
sparse and nonsparse signals, including noise folding,
is performed using the Gaussian measurement matrix and
the Bayesian-based method, [36], [37], summarized in
Algorithm 3. The theoretical and statistical errors for the sig-
nals from Example 1 are shown in Fig. 7(a)-(c). Again, a high
agreement between the statistical and theoretical results is
obtained.

IX. PROBABILITY OF MISDETECTION
The results for the MSE are derived under the condition that
the quantization does not influence the reconstruction con-
dition and that the signal can be uniquely recovered from the
available set ofmeasurements. However, the quantizationwill
also degrade conditions for the signal recovery, as indicated in
the Appendix. In this section, the probability of misdetection,
influenced by the quantization, will be studied. Although
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FIGURE 6. Reconstruction error for the partial DFT measurement matrix when the Iterative Hard Thresholding (IHT) reconstruction algorithm is used.
(a) Sparse signal with the measurements quantized to fit the registers with B + 1 bits for various sparsity K . (b) Nonsparse signal with the measurements
quantized to fit the registers with b = B + 1 bits for various sparsity K . (c) Nonsparse signals when both the measurements y and input coefficients X are
quantized to B + 1 bit fixed point registers (quantization noise folding).

FIGURE 7. Reconstruction error for the partial Gaussian measurement matrix (M = 128, N = 256) when the Bayesian-based reconstruction algorithm is
used. (a) Sparse signal with the measurements quantized to fit the registers with B + 1 bits for various sparsity K . (b) Nonsparse signal with the
measurements quantized to fit the registers with B + 1 bits for various sparsities. (c) Nonsparse signals when both the measurements y and the input
coefficients X are quantized to B + 1 bit fixed point registers (quantization noise folding).

the probabilistic approach can also be used to derive a rela-
tion between K , N , and M , for a successful reconstruction
of X, with a given probability, as thoroughly shown in [6],
[38]–[40], we will here use statistical analysis and com-
pare the reconstruction results for the Gaussian (real-valued)
and partial DFT measurement matrix, with N = 256
and M = 128. The reconstruction is performed using
two already described robust CS algorithms, a match-
ing pursuit algorithm and the iterative hard thresholding
algorithm.

In the experiment, the measurement matrices were used
to reconstruct signals for a range of sparsity degrees, K =
1, 2, 3, . . . , 70. For each sparsity level, K , the problem was
solved 10,000 times with random positions of the nonzero
coefficients in each signal realization. For each K , the solu-
tion was checked against the known positions and the
values of the nonzero elements in X (k), and the number
of misdetections was recorded. The number of misdetec-
tions for each K was then divided by the total number of
realizations.

The results for the misdetection probability are shown
in Fig. 8. Note that, in the DFT case for b = 1, the recon-
struction of components is non-unique for small sparsity,
meaning that a non-unique solution is obtained with the
probability order of 0.001. That is presented by the dots
in Fig. 8 (b) and (c).

Observe that at a position of the nonzero coefficients,
k ∈ {k1, k2, . . . , kK }, the initial estimate has the character-
istics of a random variable with the Gaussian distribution of
the form N (1, (K − 1)σ 2

µ + σ
2
e ), while at the other posi-

tions, k /∈ {k1, k2, . . . , kK }, the corresponding distribution
is also Gaussian, but with the mean-value equal to zero,
N (0,Kσ 2

µ + σ
2
e ). Based on these probability density func-

tions, an exact probabilistic analysis can be performed, as it
has been done in [6], [38], for some specific measurement
matrices.

Based on the presented theory, it can be easily determined
when the number of bits, B, loses the dominant influence on
the probability of the positions misdetection. For example,
in the case of the Gaussianmeasurement matrix andM = 128
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Algorithm 3 Bayesian-Based Reconstruction
Input: Vector y, Matrix A

1: αi← 1 F For i = 1, 2, . . . ,N
2: σ 2

← 1 F Initial estimate
3: Th = 102 F Threshold
4: p = [1, 2, . . . ,N ]T

5: repeat
6: D← diagonal matrix with di values
7: 6← (ATA/σ 2

+ D)−1

8: V← 6AT y/σ 2

9: γi← 1− di6ii F For each i
10: di← γi/Vi F For each i

11: σ 2
←
‖y− AV‖2

M −
∑

i γi
12: R← {i : |di| > Th}
13: Remove columns from matrix A selected by R
14: Remove elements from array di selected by R
15: Remove elements from vector p selected by R
16: until stopping criterion is satisfied
17: Reconstructed vectorX nonzero coefficients are in vector

V with corresponding positions in vector p, Xpi = Vi

Output:
• Reconstructed signal vector XR = V, the set of
positions K = p.

available samples, for the second term in the variance

σ 2
X0(k) = K

1
M
+

2−2B

12
,

for B � 1, we have 2−2B/12 → 0, meaning that the quan-
tization influence to the reconstruction results is negligible,
and

σ 2
X0(k) ≈ K

1
M

holds. Similar result is obtained for B = 3, the second term
in σ 2

X0(k)
is

2−2B

12
=

1
768
� K

1
M
= K

1
128

,

which means that in this case σ 2
X0(k)
≈ K 1

M also holds. This is
confirmed in Fig. 8(a), where for B = 3 (b = B+ 1 = 4) and
for B = 15 (b = 16) curves of the misdetection probability
are very close. Observe that for a low number of bits, for
example, in the case of B = 1 (b = 2), the quantization effect
has a strong influence on the misdetection probability, as the
quantization related term in the variance is equal to 2−2B

12 =
1
12 in the first case, and to

2−2B
12 =

1
24 in the second case, which

is now significant, when compared to the part of the variance
induced by the reduced set of measurements, K 1

M = K 1
128 .

This is numerically confirmed in Fig. 8(a), where the statisti-
cal results indicate that the quantization effect overpowers the
influence of missing samples and increases the component

FIGURE 8. Probability of misdetection for: (a) The Gaussian measurement
matrix with the OMP. (b) The partial DFT measurement matrix with the
OMP. (c) The partial DFT measurement matrix with the IHT.

misdetection probability. Similar analysis can be performed
for the partial DFT measurement matrix.

X. CONCLUSION
The effects of quantization noise to the reconstruction of sig-
nals under sparsity constraint are analyzed in this paper. If the
measurements are not quantized, the reconstruction would be
ideal and the error negligible. However, the quantization is
inevitable, since the hardware realization of systems cannot
store the exact values of samples. We have derived the exact
error of the reconstruction due to quantization noise. The
cases when a signal is not strictly sparse are analyzed, as well
as the noise folding effect. The reconstruction performances
are validated on the numerical examples, and compared to
the statistical error calculation, producing a high agreement
between the numerical and theoretical results.
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APPENDIX: INFLUENCE OF QUANTIZATION TO THE
RECONSTRUCTION CONDITION
Quantization noise can be included in the coherence index
based relation for the reconstruction. The worst case
amplitude of the considered normalized coefficient in the
initial estimate is 1 − (K − 1)µ − ν1/2 where ν =
maxk

∑M
m=1 |am(k)| ≤

√
M . This inequality follows from the

relation between the norm-two and the norm-one of a vector.
For the partial DFT matrix, the random partial DFT matrix
and the Bernoulli matrix, the equality ν =

√
M holds. Fol-

lowing the same reasoning as in Remark 1, we may conclude
that at a position where the original coefficient X (k) is zero-
valued, in the worst case, the maximum possible disturbance
is Kµ+

√
M1/2. The detection of the strongest coefficient

position is always successful if 1− (K − 1)µ−
√
M1/2 >

Kµ+
√
M1/2, producing the condition for reconstruction

K <
1
2

(
1+

1
µ
−

√
M1
µ

)
.

Influence of the quantization error to the uniqueness condi-
tion will be negligible if

√
M1� 1 holds.

Coherence index based values guarantee exact reconstruc-
tion, however, they are pessimistic. More practical relations
can be obtained by considering the probabilistic analysis [6],
[38]. The resulting disturbance in the initial estimate, at the
position k ∈ K, due to the other coefficients and the
quantization noise behaves as the Gaussian random variable
N (1, (K − 1)σ 2

µ + σ
2
e ), for K � 1. The initial estimate at

k /∈ K behaves as N (0,Kσ 2
µ + σ

2
e ). Probabilistic analysis

may provide approximative relations among N , M , and K ,
for a given probability. We have performed the statistical
analysis with various measurement matrices. The results of
this analysis lead to the conclusion that for high probabilities
of the reconstruction we may neglect the quantization effect
influence to the reconstruction condition for B ≥ 4.

Note that for large sparsities K , we have found that the
reconstruction probability can be improved by increasing the
upper limit for iterations in Algorithm 1 for a few percents,
with respect to the expected sparsity K . After the iterations
are completed, the expected sparsity K is used in the final
reconstruction. This solves the problem that the iterative
reconstruction in Algorithm 1 cannot produce the exact result
if it misses one of the nonzero coefficient positions during the
iterative process for large K .
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