
SPECIAL SECTION ON FUTURE GENERATION SMART CITIES RESEARCH: SERVICES,
APPLICATIONS, CASE STUDIES AND POLICYMAKING CONSIDERATIONS
FOR WELL-BEING [PART II]

Received February 14, 2020, accepted March 4, 2020, date of publication March 9, 2020, date of current version March 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2979597

An Efficient Access Model of Massive
Spatiotemporal Vehicle Trajectory
Data in Smart City
LIANJIE ZHOU , (Student Member, IEEE), QINGQUAN LI , AND WEI TU
MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Shenzhen University, Shenzhen 518060, China
Guangdong Key Laboratory of Urban Informatics, Shenzhen University, Shenzhen 518060, China
Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China
Research Institute for Smart Cities, Shenzhen University, Shenzhen 518060, China
School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518000, China

Corresponding authors: Qingquan Li (liqq@szu.edu.cn) and Wei Tu (tuwei@szu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2019YFB2103104, in part
by the Shenzhen Scientific Research and Development Funding Program under Grant KQJSCX20180328093453763 and
Grant JCYJ20180305125101282, in part by the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,
MNR, under Grant KF-2018-03-004, in part by the Funding Program of the Department of Education of Guangdong under
Grant 2018KTSCX196, in part by the China Postdoctoral Science Foundation funded Project under Grant 2019M663071, and in part by
the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Land and Resource, under
Grant KF-2018-03-004.

ABSTRACT Daily trajectory data scale of vehicle monitoring networks in smart cities is growing rapidly,
reaching daily volumes of 1 billion. Accessing hyper massive spatiotemporal trajectory data (HMSTD) in
transport, the Internet of Things, or other fields is difficult and limited based on the current spatiotemporal
data index techniques. Therefore, we propose path-divided Hadoop Distributed File System (HDFS) data
blocking (PDDB) based on the Apache Impala (PDDB-Impala) method to optimize the efficient access man-
ner of HMSTD to enhance the efficiency of hyper data sharing. Moreover, PDDB parquet data partitioning
rules are proposed. In experiments, 35,809 buses equipped with BD positioning sensors, creating 1.03 billion
data records each day. The bus distribution in Shenzhen city is collected from 7:00 a.m. to 9:00 a.m. and
11:00 a.m. to 01:00 p.m. Moreover, PDDB-Impala achieves about 8 times, 9 times, 29 times, and 110 times
higher performances than those in MongoDB or HBase for data scales of 1 billion, 10 billion, 50 billion, and
100 billion, the results of which outperform those of the equipartition in the Impala, MongoDB, and HBase
methods.

INDEX TERMS Tmassive trajectory data sharing, BeiDou positioning sensor, spatial-temporal indexing,
Apache Impala.

I. LIST OF ABBREVIATIONS

HDFS Hadoop Distributed File System
BD BeiDou
GPS Global Position System
PB petabyte
SOS Sensor Observation Service
IoT Internet of Things
RAM Random Access Memory

The associate editor coordinating the review of this manuscript and

approving it for publication was Miltiadis Lytras .

II. LIST OF SYMBOLS

NParquet The data blocks number
RAMs The of single node
Degreemean The degree of a partitioned data block
longitudei+1 The longitude of road i +1
latitudei+1 The latitude of road i +1
PlongitudeR The longitude of parameter R
STtn The spatiotemporal range of request
arrayroads Roads interesting with spatial range
blocktn_spatial Data blocks meeting the spatial range
Pbegin Observation begin time
partitiontemporal Data partition meeting the temporal

range
Pointtrajectory Trajectory data in HBase

52452 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3424-1729
https://orcid.org/0000-0002-2438-6046
https://orcid.org/0000-0002-0255-4037
https://orcid.org/0000-0002-7281-5458


L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

TABLE 1. Heterogeneous, typical and massive vehicle networks in 2019.

III. INTRODUCTION
Harrison et al. [1] in International Business Machines
Corporation states that a ‘‘smart city’’ signifies an
‘‘instrumented, interconnected and intelligent city.’’
‘‘Instrumented’’ means the capability of capturing and inte-
grating real life data through sensors, personal devices,
appliances, and other similar perception devices. ‘‘Intercon-
nected’’ refers to the integration of these perceptual data into
a network computing platform that facilitates the exchange of
heterogeneous data among the heterogeneous web services.
‘‘Intelligent’’ means the combination of complex analytics,
spatiotemporal data modelling, mining, association, and visu-
alization to make better intelligent decisions. Through the
‘‘Instrumented’’ stated, the sensors are ubiquitous, such as
buses, private cars, bicycles and electric motorcars, or even
persons in transportation. In the meantime, precision and
reliability in positioning devices have been promoted dra-
matically. Simultaneously, mobile positioning services have
become pervasive around the world [2]. As ‘‘Interconnected’’
states, the data into computing platform results in the diffi-
culty of efficient vehicle trajectory data management [3], [4].

The Fifth Generation of Mobile Communications technol-
ogy will lead to the rapid growth of scenario cases demanding
higher data access capacity and supporting the data rate with a
lower latency, higher frequency, and faster and more scalable
network, providing better user Quality of Experience [5]–[7].
At present, a large number of vehicle monitoring networks
are springing up, aiming to provide helpful public travel
service in different urban cities, even including Volunteered
Geographic Information networks [8]. Table 1 shows several
existing larger vehicle monitoring networks, containing the
Tokyo taxi autopilot network, Shenzhen bus network, Bei-
jing taxi network and New York taxi network. As described,
the data scale of the dataset created each day in the Tokyo taxi
autopilot network is approximately 8.74 billion; the data scale
in the Beijing taxi network is approximately 1.93 billion;
the data scale in the Shenzhen bus network is approximately
1.03 billion; the data scale in the New York taxi network

is approximately 984 million. Sharing the desired spatio-
temporal data records with specific temporal and spatial
ranges from massive data is challenging and requires long
accumulation periods.

With so many vehicles, as illustrated in Table 1, even in the
field of autopilot with high update frequency, monitoring the
real-time operation status is necessary and essential [6], [9].
Buses or taxis are among the most common vehicles in an
urban city. To monitor the running state, the installed sensors
contain positioning devices, speed measuring instruments
and other devices [10]. Thus, the data scale of sensor data
generated per day is great, reaching a scale of one hundred
million, so we define it as hyper massive spatiotemporal
trajectory data (HMSTD) in the study. Therefore, the data
observed with the vehicles are hyper massive, which ham-
pers effective and efficient data sharing. In the real-time or
near-real-time traffic scenarios, the time consumption of data
retrieval makes a difference for urban traffic flowmonitoring,
traffic congestion alleviation, pedestrian flow detection, and
other applications. Efficient data structures and retrieval algo-
rithms are urgent for vast vehicle trajectory data [11], [12].

In relational database patterns, massive data management
is a bottleneck that must be addressed at all times [13]–[15].
What counts is to design the spatiotemporal index in vehicle
trajectory data retrieval, which can promote data retrieval
efficiency sustainably. A spatial index can greatly promote
Earth Observation metadata query performance by integrat-
ing spatial relationships among different features [16]. The
R tree [17] solves the problems of high-dimensional-space
search well, which is extended from the B tree in spatial
indexing. Optimizations for the R tree have been accom-
plished and lead to R tree variants, such as the R∗ tree [18],
R+ tree [19], Hilbert R tree [20], and APR-tree [21], dis-
tributed R tree [22]. The R tree index and its family have
been widely used in spatial database design, such as Oracle
Spatial [23], PostgreSQL [24], and others. A trip-oriented
data indexing mechanism has been able to achieve effi-
cient massive vehicle trajectory data retrieval [25], which

VOLUME 8, 2020 52453



L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

exhibits more excellent query efficiency than Brakatsoulas
and Leonardi’s two trajectory-segment-based indexing meth-
ods [26]. A dynamic queue of Small Files algorithm has
been proposed to solve analysis and processing difficulty
of numerous small files [27]. A distributed caching method
has been proposed to enhance the performance of small-
file access in the Hadoop distributed file system [28], which
significantly outperforms existing methods in massive small-
file-access temporal costs. An approach to dynamically repli-
cate stored data based on the predictive analysis has been
proposed [29], which enhances the availability in comparison
with the default scheme. A medical image file accessing sys-
tem has been developed based on HDFS, which can enhance
medical imaging storage capability, transmission stability,
and transmission reliability while providing a convenient
management interface [30].

NoSQL data sharing structures have been proposed to
perform larger-scale data sharing in a cost-effective man-
ner instead of relational database patterns, which is one
of the most popular and novel databases designed for
high-efficiency management of massive unstructured or
non-unstructured data [31]. HBase, as one of the most com-
mon NoSQL database solutions, can be qualified with high
rates of record insertion for location updates with millions
of devices, while supporting efficient real-time latest loca-
tion analysis [32]. The other widely used NoSQL databases
include Apache Cassandra [33], Google BigTable [34], Sim-
pleDB [35] and so on. An effective method is proposed
to achieve the integration of fine-grained access based on
purpose control into a MongoDB cluster, providing sup-
port for privacy policy enforcement in MongoDB [36].
Typically, NoSQL techniques sacrifice some functions, such
as database-wide transaction consistency, to promote oth-
ers, such as availability and scalability [37]. At the same
time, cloud computing has achieved rapid development that
meets immense storage and processing requirements [38],
which possesses high availability, high performance, and
elastic scalability [39]. Chang et al. have demonstrated both
performance and scalability advantages of cloud databases
compared with HBase for queries and aggregation opera-
tions [40]. In [41], an efficient spatiotemporal data retrieval
schema is proposed based on Apache Impala to promote vast
spatiotemporal data sharing at million data scale. Storing
large-scale data reaching 100 billion is feasible, such as with
MongoDB and HBase, while retrieving the data with a spec-
ified spatiotemporal range in vast data efficiently requires
more efforts based on existing techniques. With the growing
data size reaching PB data scale, existing solutions can be
prohibitively inadaptable and may suffer degradation of per-
formance in hyper massive spatiotemporal data.

Consequently, we attempt to propose a path-divided HDFS
data blocking (PDDB) model based on Apache Impala
(PDDB-Impala) method to optimize the efficient access man-
ner of HMSTD in this study, which has unique advantages in
the very-large-data data retrieval field [42]. Apache Impala,
concentrating on t massive data processing on parallel, is ten

times faster than Hive for conventional issues [43]. The
approach is widely applied into a large bus network in the
city of Shenzhen in Guangdong Province, China, and perfor-
mance evaluation and comparison with existing methods are
introduced in the end. Our contributions can be summarized
as following:

(1) PDDB-Impala is developed to overcome the chal-
lenge of efficient managing and indexing of HMSTD in
a Smart City. Different from most existing data blocking
schemas, PDDB-Impala is based on path-divided indexing
and optimizing the data partition schema to achieve better
performance.

(2) PDDB-Impala is especially suitable to long-term and
hyper vast spatiotemporal trajectory data, as proved in the
Shenzhen bus network, which exhibits 110 times higher
performance than MongoDB and HBase at a data scale
of 100 billion.

The organization of this study is described as following.
Section 2 gives a detailed description of PDDB-Impala. The
feasibility and performance of PDDB-Impala are validated
in Section 3 by a group of experiments. Moreover, the per-
formance of PDDB-Impala is tested and shows advantages
compared with other methods. Section 4 concludes the study
and explores future work.

IV. METHODOLOGY
A. PDDB-IMPLA DATA PARQUET PARTITIONING
METHOD
The data partition mechanism divides the data in HDFS into
multiple data blocks to accelerate the data access speed.
Because the volume of spatiotemporal data is massive,
as described in Section 1, dividing the data in HDFS is
imperative. The data blocking method is a type of data index-
ing technology that labels data blocks to achieve fast data
retrieval. Unlike a data uniform partitioningmethod, the path-
divided HDFS data blocking method creates non-uniform
partitions to achieve data division. HMSTD are mainly dis-
tributed in road areas, and there is no track data distribution
between roads, so there is no trajectory data distribution
between roads. Thus, we propose the PDDB method in our
study. In PDDB, the data blocking mechanism divides the
data in HDFS into multiple data blocks through the trajectory
data division and roads.

The PDDB method is illustrated in Fig. 1. In Fig. 1, the
HMSTD are distributed on actual crossroads, such as other
straight roads, left turn, right turn, three forks and so on. The
abstraction of crossroads is the four grey lines, which refer to
roads. The red block refers to a data partition block covering
the trajectory data locating on roads. In HDFS, the trajec-
tory data are stored in partition data blocks to organize the
structure in HDFS. Additionally, the entire width of a data
block is m, and the entire length is n. The trajectory data
area is covered by data blocks, and non-trajectory data are not
partitioned. In this idea, we propose PDDB in our study and
describe the computational formulas when computing and
executing PDDB. The partition mechanism of block division

52454 VOLUME 8, 2020



L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

FIGURE 1. The PDDB trajectory data organization method. The transverse distance is m, and longitudinal distance is n.

is designed to be a longitudinal grid and latitudinal grid. The
number of partitioned data blocks in HDFS is determined by
the total Random-AccessMemory (RAM) of the computation
cluster and the standard data block size in Apache Impala.
The size of a partitioned data block is identified by the entire
latitude and longitude of the entire road network and the
number of partitioned data blocks in HDFS.

NParquet =
RAM s × N
2× RAM0

(1)

In formula (1), NParquet refers to data blocks number;
RAMs refers to RAMof single node; N refers to the number of
whole nodes. RAM0 refers to the standard data size of a single
data block, which is 20 Mbyte in general in our experience.

Degreepartition

=

√∑nn
i=1(longitudei+1−longitudei)×(latitudei+1−latitudei)

NBlock
(2)

In formula (2), n refers to the number of road seg-
ments, Degreemean refers to the degree of a partitioned data
block; longitudei+1 refers to the longitude of road i +1;
latitudei+1 refers to the latitude of road i +1. Thus, NBlock
and Degreepartition can be calculated via formula (1) and
formula (2). The total of the entire computation environment
is RAM s×N . The standard data size of a single data block
should be neither too high nor too low to balance the data
access performance and size of required RAM in Impala.
In our study, the standard data size is flexible, and 20 MB is
suitable. As the spatial metadata are carried with massive tra-
jectory data, the degree of partitioned data block is acquired
via the accumulation of latitude and longitude of the road
network.

Apache Impala supports the data storage in Hadoop
Distributed File System (HDFS). Thus, data are stored

in HDFS, which is a highly fault-tolerant system that pro-
vides high throughput data access. However, to achieve data
management in HDFS, HBase is employed to reduce the
data management burden. As a distributed and open-source
database, HBase has been integrated with Impala implemen-
tation in an Apache Impala prototype. In HBase, structured
query language has been used to obtain the requisite data
from HDFS. It is noticeable that Apache Impala is applied
especially in real-time data analysis, such as commercial
computing systems and real-time Geographic Information
Systems. TheHilbert curve encoding is a classic spatial filling
curve coding mechanism to code the adjacent geographical
discrete element [44]. A Hilbert curve can linearly penetrate
every discrete element in two or higher dimensions according
to the characteristics of the filling curve in its own space.
Moreover, it passes through only once and performs linear
sorting and coding for each discrete element, maintaining the
topological properties of the data. In our study, we employ the
geohash to achieve geo encoding of the Hilbert coding units.

Fig. 2 shows the Hilbert encoding process and quadtree
indexing method of the parquet data blocks. Parquet, a deter-
minant storage format for analytical business that is devel-
oped by Twitter and Cloudera and graduated from Apache’s
incubator in May 2015, is a column-oriented binary file for-
mat designed to achieve efficient high-concurrency queries.
The parquet files are stored in memory, which speeds up the
parquet table reading and writing dramatically. This charac-
teristic accelerates the query efficiency in Impala. Firstly, data
partition blocks are traversed through the Hilbert encoding
pattern. Secondly, the hierarchical quadtree-based method
achieves the parquet data block indexing with the quadtree
numbers. Thirdly, the quadtree numbers are inserted into
HBase for access.

To support PDDB data management, parquet data blocks
in HDFS are stored with HBase. Every parquet data block
has its unique latitude and longitude range, and they do
not intersect each other. The hierarchical quadtree-based

VOLUME 8, 2020 52455



L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

FIGURE 2. The parquet data block indexing in HBase. The Hilbert
encoding pattern and hierarchical quadtree-based method are employed
to organize parquet data blocks.

indexing mechanism helps to find the parquet data intersect-
ing with query space. However, the parquet data blocks are
located on the road network, so those parquet data block code
values on PDDB are uneven, and there are many empty nodes
in the quadtree index structure. The query method is also
relatively simple. For example, to retrieve the spatial elements
within and intersecting the edges of a polygon, it is only
necessary to retrieve all of the spatial elements in leaf nodes
covered by the query polygon and its father and ancestor
nodes and then perform the necessary spatial operations to
retrieve the required spatial elements from them.

B. PDDB-IMPALA-ENABLED DATA ACCESS MECHANISM
IN HDFS
In terms of PDDB-Impala-enabled data access, this section
introduces the spatiotemporal trajectory data access capabil-
ity of PDDB-Impala. Impala supports the customized spa-
tiotemporal query request. In an SOS data access request,
the spatiotemporal query range is specified, which is the
filter rules of PDDB-Impala data. In the PDDB-Impala
method, the parquet data block is located on the road net-
work. Consequently, the desired parquet data block can be
obtained through the spatial query information and road net-
works. The outputs are the desired trajectory data collection.
In Algorithm 1, the algorithm for vast spatiotemporal trajec-
tory data retrieval based on PDDB is described.

Through the data access extension interface embed-
ded in Apache Impala, HMSTD can be accessed via
the data query extending function and return the desired
data. In algorithm 1, spatialQueryRoads(PlongitudeRange,
PlatitudeRange) supports the arrayroad nodes query.
The specified parquet data blocks of arrayroads can be

Algorithm 1 Massive Spatiotemporal Trajectory Data
Retrieve Based on PDDB

Input: Spatiotemporal range of data query
PST (PlongitudeRange, PlatitudeRange, Pbegin, Pend )

Output: data retrieve results trajectoryCollection
Use: SensorObservationService(STtn, Algori-

thmPDDB, ResponseFormat) inherits data access interface
of SOS implementation
spatialQueryRoads(PlongitudeR, PlatitudeR) return the bus
routes that intersect with or locate in query spatial range

spatialQueryPartition(PlongitudeR, PlatitudeR) return
the data partition blocks meeting the spatial range

temporalQueryPartition (Pbegin, Pend ) return the data
partition blocks meeting the temporal range

spatialPartitionInOrNot(Plongitude, Platitude,
Pointtrajectory) determine whether trajectory is in specified
spatial range

temporalPartitionInOrNot(Pbegin, Pend ,
Pointtrajectory) determine whether trajectory is in specified
temporal range

STEP 1: Extend the mandatory functions in
SOS containing the SensorObservationService(STtn,
AlgorithmPDDB, RF) function in extended PDDB-Impala
implementation.

STEP 2: Capture the parameters PST (PlongitudeR,
PlatitudeR, Pbegin, Pend ) from STtn through the get4(STtn),
which is encoded withObservation&Measurement encod-
ing model. The spatiotemporal metadata are used to make
up a spatiotemporal query statement, which is used to
acquire the specified data from the HBase cluster.

STEP 3: initialize the function
spatialQueryRoads(PlongitudeR, PlatitudeR) to acquire
the arrayroads array, locating on the spatial query range.
The function judges whether the spatial location of road
nodes is in the specified spatial range. The parquet data
blocks of the arrayroads can be retrieved via the all data
blocks.

STEP 4: initialize the function spatial
QueryPartition(PlongitudeR, PlatitudeR) to acquire the
specified blocktn_spatial meeting the spatial range. Through
the function, the data block partition of partitionspatial in
the HBase are obtained. The data block partitions whose
temporal range located in the acquired (Pbegin, Pend ) can
be obtained from step 5 in detail.

STEP 5: initialize the function temporal
QueryPartition(Pbegin, Pend ) to acquire the specified
blocktn_temporal meeting the temporal range. Through the
function, the data block partitions partitiontemporal in the
HBase are obtained. The data located in the acquired
blocktn_spatial can be obtained from step 6 in detail.

STEP 6: initialize the function spatial
Point(Plongitude, Platitude, Pointtrajectory) to determine
whether Pointtrajectory is in the spatial range between
Plongitude and Platitude or not. Through intercepting all the

52456 VOLUME 8, 2020



L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

Algorithm 1 (Continued.) Massive Spatiotemporal
Trajectory Data Retrieve Based on PDDB
trajectory data in partitionspatial , the trajectory data
trajectoryspatial meeting the spatial range are acquired. The
function judges whether the point in partitionspatial is in the
specified spatial range.

STEP 7: initialize the function t emporalPoint(Pbegin,
Pend , Pointtrajectory) to determine whether Pointtrajectory
is in the temporal range between Pbegin and Pend .
Through intercepting all the points in partitiontemporal ,
the trajectory data trajectorytemporal meeting the temporal
range are discovered. Integrating the trajectoryspatial and
trajectorytemporal to compose the trajectoryCollection and
returning it back to the application or users encoded in the
response document in SOS.

retrieved via all data blocks. Moreover, SpatialPointInOrNot
(Plongitude, Platitude, Pointtn_m) supports the spatial trajectory
data query, while TemporalQueryBlock(Pbegin,Pend ) supports
the temporal trajectory data query. Via the three judgements,
the spatiotemporal trajectory data meeting the query criteria
can be retrieved.

C. APPROACH FOR INTEGRATING HBASE
AND SOS IN HDFS
In PPDB, the vast spatiotemporal trajectory data and meta-
data are stored in HDFS. To integrate HBase with SOS,
there are some improvements that should be made. Firstly,
the SOS is a flexible web service that couples in-situ sensors
observation with remote sensing observations for the data
extension interface. To support HMSTD storage and access,
the connection between SOS and HDFS should be achieved
and stable. Thus, the data interface of data access in SOS
should be implemented. Secondly, the metadata of sensors
and observation data, namely, observation metadata, platform
metadata, data product metadata, and trajectory data, should
be stored at the same time for effective use in follow-up
applications. Thirdly, the technical cross-platform difficulty
should be addressed. Apache Impala supports a C++ pro-
gramming interface for spatial computation functions. More-
over, OpenSceneGraph is a third-party library that can create
interactive graphics programs with high performance and
cross-platform compatibility more quickly and conveniently.
Consequently, OpenSceneGraph library can be put into use,
and the self-defined spatiotemporal query function based on
PDDB is developedwith the help of OpenSceneGraph library.

OGC provides the data encoding schema of the Observa-
tion&Measurements [45], [46], encoding the sensor observa-
tions andmetadata. Relatively, the tables inHBase contain the
observation sensor, observation task, observed objects, obser-
vation spatial range, and observed value. Fig. 4(a) describes
the data type mapping from the PostgreSQL (version 9.3)
database to HBase (version 1.4.10). The arrows in Fig. 3(a)
shows the data type conversion between different data

storages. In HBase, those tables can then be retrieved with
Rowkey or Scan query manner. In addition, Apache Impala
supports Structured Query Language analytical patterns. The
Geometry is converted to GeoJson, which can record the
geometry and feature in a JavaScript object notation encod-
ing file. The other data types are converted into Char type.
The data and metadata are stored as binary files in HDFS.
Fig. 3(b) describes the tables in HBase for the storage of vast
spatiotemporal trajectory data andmetadata. The entire tables
are comprised of Regions, which contain multiple data tables,
such as SensorType, Sensor, observation and so on. The tables
in HBase are described mainly as follows:

(1) sensorType: storage of sensor type and phenomenon.
(2) sensor: storage of sensor information containing the

sensor metadata, phenomenon, and the observation time
range.

(3) observation: storage of observation information when
the sensor finishes observation task, which contains the obser-
vation time, the observation result, and the spatial range of
observation data types.

(4) phenomenon: storage of phenomenon information con-
taining the phenomenon name, observation value type, and
observation value unit information so on.

(5) offering: storage of organization information contain-
ing the organization name, observation phenomenon name
and involved sensor information.

(6) featureOfInterest: storage of observation spatial
arrangement containing the observation sites name and coor-
dinate encoded with GeoJson.

V. EXPERIMENTS AND RESULT DISCUSSIONS
A. PDDB-IMPALA ACCESS FRAMEWORK
Widely applied in business companies, such as Twitter and
Facebook, Apache Impala is the open-source query and anal-
ysis engine for Apache Hadoop [47], reaching PB data scale.
As stated by Apache Foundation, Impala can achieve an
efficiency that is 3 to 90 times higher than that of Hive [48].
As Fig. 1 describes, the PDDB-Impala access framework
contains three parts: The Sensor Observation Service (SOS)
web service, Apache Impala, and trajectory data.

The SOS web service provides the query spatiotemporal
data insert and access request. Published by Open Geospatial
Consortium (OGC), the SOS [49] provides data access based
on pull and standardized data access to observations and
metadata [50]. SOS provides the sensor observation commu-
nication, such as observation insertion and acquisition. SOS
provides the bridge between the observation and data storage
centre and facilitates the users [51]. In Sensor Web Enable-
ment [52], SOS plays an essential role in in-situ observation
communication as a web service. However, in emerging tech-
nological areas, such as the IoT and 5G fields, SOS plays the
role of sensor observation data sharing inmassive, ubiquitous,
heterogeneous sensors. Additionally, the SOS provides solid
data support for smart city applications, such as smart trans-
portation, smart government, smart security, smart education,

VOLUME 8, 2020 52457



L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

FIGURE 3. (a) The data type mapping from the PostgreSQL (version 9.3) database to HBase (version 1.4.10). (b) Tables in HBase storing
vast spatiotemporal trajectory data and metadata.

and smart medical treatment, which form the foundation and
connotation of a smart city.

In Apache Impala, PDDB-Impala is proposed. By extend-
ing the parquet data blocking schema, PDDB-Impala
achieves the function of data insertion into designated path
parquet data blocks located on the road network. In the data
query process, the desired trajectory data are obtained from
the parquet data blocks located on the road network. The
query planner is the core part of Apache Impala, which
achieves the distributed query of HMSTD in memory. More-
over, the metadata of an Apache Impala cluster is stored in
state storage nodes to achieve state management.

In an HBase data storage centre, the distributed database
supports massive trajectory data storage for distributed stor-
age capability. HBase [53] is distributed, scalable, and
column-oriented big data storage. Different from general
relational databases, HBase is suitable for unstructured data
storage [54]. In an HBase storage cluster, the metadata
of buses, taxis, and other means of transport vehicles are
stored, as illustrated in Fig. 4. Moreover, the HMSTD
and the spatio-temporal indexing data are stored in a dis-
tributed manner to provide effective and efficient data access
to HMSTD.

B. BD TRAJECTORY DATA AND EXPERIMENTAL
ENVIRONMENT
In terms of the experiment data, the Shenzhen BD bus net-
work is chosen as the experimental area in our experiments,
containing 35,809 BD buses. In the Shenzhen BD bus net-
work, every 30 seconds, observed data are recorded consist-
ing of bus basic information, such as bus location, speed, and
observation time. In addition, the number of data records is
about 1.03 billion each day, as shown in Table 1. In the south
of China, Shenzhen is in the south of Shenzhen River and
Hong Kong, which is the link and bridge between Hong Kong
and the Chinese mainland.

Fig. 5 displays the spatial location of Shenzhen bus stops,
bus routes and administrative boundary, where red dots stand
for bus stops and black lines refer to bus lines in Shen-
zhen city, containing ten districts, about 4461 bus stations,
541 bus lines in the city, and about 35,809 running BD buses.
Widely used in road traffic, shipping, vehicle monitoring,
and vehicle navigation fields, the ATGM332D BD position-
ing module installed on buses is an easy-to-use positioner
with small volume, low power consumption, and high pre-
cision. Following American Global Positioning System and
Russian Global Navigation Satellite System position system,

52458 VOLUME 8, 2020



L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

FIGURE 4. The PDDB-Impala access framework to access HMSTD. The
SOS web service, Apache Impala, and trajectory data are involved.

FIGURE 5. Spatial distributions of Shenzhen bus stops and bus routes.
The grey outline is the administrative boundary. Nanshan district,
Guangming district is shown specially.

the Chinese BD satellite navigation system is one of the
most popular and sophisticated satellite navigation systems
in the world. Besides, the spatial positioning accuracy of the
Chinese BD satellite navigation system is generally equal to
that of GPS [55].

In terms of the experimental environment, the hardware
environment is completely distributed, containing six Datan-
odes and oneNamenode. TheApache Impala implementation
is deployed on the seven nodes with the same configura-
tion, while operating systems (CentOS 7.0) and HBase are
deployed on each node. The configuration of each node is an
Intel i5 8300H processor and 64 GigaByte RAM, all of which
are connected to 100 GB/s InfiniBand.

In comparison, the 52◦ North SOS [56] is applied in
our experiments to make the contrasting experiment test.
In extension, the 52◦ North SOS implementation is made
extension to support data access to HDFS, which is based on
a Data Access Object logic interface, containing GetCapa-
bilityDAO, GetObservationDAO, and DescribeSensorDAO.

Moreover, GetObservationDAO can be utilized to extend the
capability of observation access to HDFS. Coupling with the
HDFS cluster closely, Impala can be accessed with an HDFS
web address to understand the Impala cluster situation.

To validate data access performance in general and mature
solutions at the moment, such as MongoDB [57] and HBase,
we utilized the different data scales of HMSTD to test
the feasibility and advantages of the PDDB-Impala method
compared with other methods, such as the equipartition in
the Impala method, MongoDB method, and HBase method.
In the different cases, we can perform a clear and detailed data
access test and verification.

C. DATA RETRIEVAL AT DIFFERENT TIMES
In terms of data blocking mechanism to increase data access
efficiency, more parquet data blocks work. However, too
many data blocks will occupy too much memory, which is
potentially out of the memory of the computation cluster.
Consequently, the size of the parquet data block must be set
up. As described in Section 2.2, the BD spatiotemporal trajec-
tory data partitioningmethod is described.Moreover, to avoid
memory overflow, the memory occupation of the resource
consumption mechanism of Impala should not exceed cluster
memory. Hence, the number of parquet data blocks should
be calculated. The number of block partitions is 22937,
as described in formula (1). The degree range of parquet
data blocks degree range is 0.0037◦ according to formula
(2). Consequently, the used memory of an Impala cluster
remains under the cluster memory limit. As shown in Fig. 6,
parquet data block distribution in HDFS in the PDDBmethod
is described. Parquet data blocks, which evenly scatter on
bus lines, contain data sets satisfying this spatial range, dis-
joint with each other. The distribution density of a Parquet
data block in the Nanshan district, Guangming district, and
Longhua district is the same, as illustrated in Fig. 6, storing
the trajectory data in HDFS for access.

For example, firstly, a parquet data block is encoded with
the Hilbert curve as described in Section 2.2, and the parquets
are retrieved with the specified spatiotemporal range based
on Hilbert encoding mechanism. By decoding the specific
Hilbert encoding value, the rank and row are calculated.
Secondly, Apache Impala support rapid spatiotemporal data
retrieval, based on its data partition mechanism and mem-
ory mechanism. Thus, the Parquet data blocks in HDFS are
retrieved in a short time. Thirdly, encapsulated in the response
document of the SOS web service, the vast required spa-
tiotemporal trajectory data in parquet is returned to the users
or application quickly.

In terms of the data retrieval part, the aim is to illus-
trate the spatiotemporal data visualization of retrieval in
different spatial ranges and different times. In this part,
we made the HMSTD access based on PDDB-Impala.
In fact, the input is embedded in a GetObservation request
in SOS, encoded with the schema of SOS. The output is the
BD bus trajectory and metadata that meets the spatiotempo-
ral range and Identification, which are BD bus observation

VOLUME 8, 2020 52459



L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

FIGURE 6. Parquet data block distribution in HDFS through the equipartition, boundary based, and PDDB-Impala methods. Red squares
stand for parquet data blocks, which evenly scatter on bus lines.

52460 VOLUME 8, 2020



L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

FIGURE 7. Retrieved BD buses located in Shenzhen city at different times: (a) 7:00 a.m. to 9:00 a.m., (b) 11:00 a.m. to 01:00 p.m., (c) 4:00 p.m. to
6:00 p.m., (d) 8:00 p.m. to 10:00 p.m.

data containing the bus name, running speed, spatial loca-
tion and other information. As shown in Fig. 7, most bus
trajectory data are located on the main streets, such as
Shennan Road, Binghai Road, Baoan Road, Huanggang
Road, and Xiangmihu Road. The desired trajectory data are
retrieved from the HDFS via Apache Impala implementation.
After sending a retrieve request to the PDDB-Impala server,
the specified data in the HBase are retrieved and spread
on the Map of Shenzhen. Taking the ‘‘ CJ202’’ bus as
an example, the bus location, bus passenger status, running
speed and other information are retrieved from the HBase
(‘‘longitude’’: ‘‘114.063’’, ‘‘latitude’’: ‘‘22.528’’, ‘‘passen-
gerStatus’’: ‘‘1’’,‘‘busID’’: ‘‘100’’, ‘‘speed’’: ‘‘0’’,‘‘busNum-
ber’’:‘‘103’’). In our experiments, due to the parquet data
block partitioning mechanism, most buses are located on
or near urban roads, leading to a dense state on urban
roads, while buses in residential business zones, communi-
ties, and other non-road areas are sparse or empty, as Fig. 7
describes.

Fig. 7 shows the bus locations in Shenzhen city at different
times, such as (a) 7:00 a.m. to 9:00 a.m. and (b) 11:00 a.m.
to 01:00 p.m. Red dots represent the bus stations, and grey
lines represent the main roads in Shenzhen city. At different
times, the red pots density is different at same areas according

to Fig. 7. As shown in Fig. 7, about 79,462 buses are retrieved
from 7:00 a.m. to 9:00. About 48,716 buses are retrieved
from 11:00 a.m. to 01:00 p.m. The bus density of Fig. 7(b)
is obviously larger than that of Fig. 7(a), such as in the Baoan
central district, shajing area, and futian central area. Different
time periods lead to different densities of people flow, so bus
density varies with time, which is greatest in traffic peaks in
one day.

D. EXPERIMENTAL PERFORMANCE EVALUATION
To test the PDDB-Impala efficiency, experimental perfor-
mance evaluation and comparison between the PDDB-Impala
and existing mechanisms or methods are presented
in this section. In data retrieval input, the spatial
retrieval range is the bounding box of (114.321 22.832
114. 321 22.371 114. 914 22. 371 114. 914 22.837
114.321 22.832), and the temporal range is ‘‘2019-07-
03 12:00:00’’ to ‘‘2019-07-03 13:30:00’’; the bus ID is
‘‘urn:szu:mobilesensor:shenzhenbus: B71692.’’ In the
experiments, the vast trajectory data whose data scales vary
from 1 billion to 100 billion are tested. Through the data
block partition method described in Section 2, the entire
spatiotemporal trajectory data are divided into 22,937 data

VOLUME 8, 2020 52461



L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

FIGURE 8. (a) Polygonal chart of time consumption in 10 billion data scale between PDDB-Impala and Impala with equipartition in the Impala
method. (b) Radar chart of time consumption in 10 billion data scale between PDDB-Impala and Impala with equipartition in the Impala method.

FIGURE 9. (a) Horizontal step chart of time consumption in 1 billion, 10 billion, 50 billion, and 100 billion data scale in the PDDB-Impala method.
(b) Scatter chart of time consumption from 1 billion to 100 billion data scale in the PDDB-Impala method.

blocks according to spatial area and compressed in the format
of a parquet file.

Fig. 8(a) shows the time consumption with PDDB-Impala
with the equipartition in the Impala method in fifty hun-
dred billion trajectory data retrievals. When the data scale is
10 billion, the mean consumption time of retrieved records is
6.00 seconds in PDDB-Impala. In equipartition in the Impala
method, the mean consumption time is 15.043 seconds.
According to Fig. 8, the consumption time of PDDB-Impala

is about 2.4 times higher than that of equipartition in the
Impala method. Based on the PDDB partition algorithms in
Section 2, the efficiency of HMSTD sharing can be promoted
greatly, as proved in this experiment. In this phase, it is found
that PDDB-Impala outperforms equipartition in the Impala
method in the 10 billion data scale, so the performance of
the proposed PDDB-Impala is about 2.4 times higher than
that of equipartition in the Impala method. Fig. 8(b) shows
that the efficiency of HMSTD access in PDDB-Impala and

52462 VOLUME 8, 2020



L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

FIGURE 10. Time consumption comparisons between PDDB-Impala (black box), MongoDB (red box), and HBase (blue box)
for different scales: (a) 1 billion data, (b) 10 billion data, (c) 50 billion data, and (d) 100 billion data.

equipartition in the Impala method fluctuated slowly, which
shows stable performance.

As to different data scales of HMSTD, the experiments
based on different data scales should be compared.We choose
different data scales of HMSTD in our experiments, from
1 billion to 100 billion trajectory data. Fig. 9(a) and Fig. 9(b)
show the time consumption in different data scales with
PDDB-Impala. The black column stands for time consump-
tion with PDDB-Impala in 1 billion data scale; the red column
stands for time consumption with PDDB-Impala in 10 billion
data scale; the blue line stands for time consumption with
PDDB-Impala in 50 billion data scale; the pink line stands
for time consumption with PDDB-Impala in 100 billion data
scale. Overall, the time consumption with PDDB-Impala
in 100 billion data scale is higher than that in 1 billion,
10 billion, and 50 billion data scale during 50 tests, as shown
in Fig. 9. In Fig. 9(a), the mean time of data retrieval in
1 billion data scale is 2.68 seconds, while it is 7.96 seconds,
21.33 seconds, and 46.13 seconds in 10 billion, 50 billion,
and 100 billion data scale. The performance of data access
in billion data scale is 2 times higher than that in 10 billion
data scale, 6 times higher than that in 50 billion data scale,
and 12 times higher than that in 100 billion data scale.

From Fig. 9(b), the data access performance in 100 billion
data scale presents higher volatility than that in 1 billion,
10 billion, and 50 billion data scale. Therefore, the perfor-
mance of PDDB-Impala in 1 billion and 50 billion remains
stable instead of jumping.

As introduced in the beginning of Section 3.1, the con-
sumption time comparisons between PDDB-Impala,
MongoDB and HBase in different data scales should be
achieved. Fig. 10(a)-(d) show the consumption time of
PDDB-Impala compared with that of MongoDB and HBase
from 1 billion to 100 billion. In 1 billion data scale, the mean
time consumption of PDDB-Impala is 2.9 seconds, while
the time consumptions achieved by MongoDB and HBase
are 27.4 seconds and 31.5 seconds; in 10 billion data scale,
the time consumption of PDDB-Impala is 5.5 seconds,
and the time consumptions of MongoDB and HBase are
51.9 seconds and 58.8 seconds; in 50 billion data scale,
the mean time consumption of PDDB-Impala is 8.9 seconds,
and the time consumptions ofMongoDB andHBase are about
270.8 seconds and 395.5 seconds; in 100 billion data scale,
themean time consumption of PDDB-Impala is 12.4 seconds,
and the time consumptions of MongoDB and HBase are
1378.9 seconds and 6312.7 seconds.

VOLUME 8, 2020 52463



L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

Consequently, from 1 billion to 100 billion data scale, the
time consumption of PDDB-Impala is about 8 times, 9 times,
29 times, and 110 times higher than that of MongoDB and
HBase. The consumption time of HMSTD access suffers
from the data scales as revealed in the four sub Figure, which
is a key factor influencing efficiency of HMSTD access.
Moreover, from 1 billion to 100 billion data size, the con-
sumption time gap for HMSTD access of PDDB-Impala is
growing larger than that of MongoDB and HBase, so the effi-
ciency of PDDB-Impala is growing higher and higher com-
pared to that of MongoDB and HBase in HMSTD retrieval.
Thus, the larger the data size in HDFS is, the greater the
performance gap in HMSTD access is.

In conclusion, firstly, PDDB-Impala achieves better effi-
ciency than Impala with equipartition in the Impala method
on one hand. On the other hand, PDDB-Impala can achieve
efficient data retrieval at the one hundred million data scale
compared to the retrieval efficiencies of MongoDB and
HBase. Secondly, in data scales of 1 billion, 10 billion,
50 billion, and 100 billion, the performance of PDDB-Impala
is about 8 times, 9 times, 29 times, and 110 times higher
than that of MongoDB and HBase. Thus, for HMSTD access,
especially at the 100 billion data scale, PDDB-Impala shows
unique advantages compared with MongoDB and HBase.
Thirdly, the larger the data size in HDFS is, the bigger the
performance gap in HMSTD access is. The performance
advantage is more obvious when the data scale reaches to
100 billion.

VI. CONCLUSION AND FUTURE WORK
Confronted with the ever-increasing scale of data sets reach-
ing as scales as large as 100 billion records, traditional rela-
tional database or NoSQL methods can encounter dramatic
performance degradation and may suffer limited scalabil-
ity in terms of hyper massive spatiotemporal data. In this
study, PDDB model is proposed to enhance the HMSTD
sharing performance in smart cities. On one hand, the pro-
posed PDDB-Impala can promote the efficiency of massive
data retrieve compared with that of Impala with equipar-
tition in Impala, as proved experimentally. On the other
hand, compared with high-performance data access tech-
niques such as MongoDB and HBase, PDDB-Impala outper-
forms the others, as shown experimentally. The performance
of PDDB-Impala is about 8 times, 9 times, 29 times, and
110 times higher than those in MongoDB and HBase for data
scales from 1 billion to 100 billion. Moreover, the bus distri-
bution in Shenzhen city is collected from 7:00 a.m. to 9:00
a.m. and 11:00 a.m. to 01:00 p.m. Compared with other
indexing solutions containing Impala and HBase datastores,
PDDB-Impala can achieve the most efficient data retrieval,
especially at vast data scales reaching 100 billion records,
as tested in the above experiments. The consumption time of
PDDB-Impala at the 100 billion data scale is about 12.4 sec-
onds, the efficiency of which is about 110 times higher than
that of MongoDB and 508 times higher than that of HBase,
which can meet the required efficiency of data access in

near-real-time traffic scenarios, such as other heterogeneous
and massive vehicle monitoring networks.

To put it into practical smart city application, the
PDDB-Impala methodology should take the heterogeneity
into consideration, such as GPS, Global Navigation Satel-
lite System, and BD. Moreover, the trajectory platform con-
tains buses, taxis, pedestrians, bicycles and so on. Then,
PDDB-Impala can provide stable and ubiquitous services for
vehicle monitoring networks and other IoT fields.

REFERENCES
[1] C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam,

J. Paraszczak, and P. Williams, ‘‘Foundations for smarter cities,’’ IBM J.
Res. Develop., vol. 54, no. 4, pp. 1–16, Jul. 2010.

[2] S. Ke, J. Gong, S. Li, Q. Zhu, X. Liu, and Y. Zhang, ‘‘A hybrid spatio-
temporal data indexing method for trajectory databases,’’ Sensors, vol. 14,
no. 7, pp. 12990–13005, Jul. 2014.

[3] Y. Jiang and X. Li, ‘‘Travel time prediction based on historical trajectory
data,’’ Ann. GIS, vol. 19, no. 1, pp. 27–35, Mar. 2013.

[4] M.-P. Kwan, ‘‘Algorithmic geographies: Big data, algorithmic uncertainty,
and the production of geographic knowledge,’’ Ann. Assoc. Amer. Geogr.,
vol. 106, no. 2, pp. 274–282, 2016.

[5] D. Minoli and B. Occhiogrosso, ‘‘Practical aspects for the integration of
5G networks and IoT applications in smart cities environments,’’Wireless
Commun. Mobile Comput., vol. 2019, pp. 1–30, Aug. 2019.

[6] M. Yan, G. Feng, J. Zhou, Y. Sun, and Y.-C. Liang, ‘‘Intelligent resource
scheduling for 5G radio access network slicing,’’ IEEE Trans. Veh. Tech-
nol., vol. 68, no. 8, pp. 7691–7703, Aug. 2019.

[7] X. Liu, M. Jia, X. Zhang, and W. Lu, ‘‘A novel multichannel Internet of
Things based on dynamic spectrum sharing in 5G communication,’’ IEEE
Internet Things J., vol. 6, no. 4, pp. 5962–5970, Aug. 2019.

[8] M.A. Brovelli,M.Minghini, andG. Zamboni, ‘‘Public participation inGIS
via mobile applications,’’ ISPRS J. Photogramm. Remote Sens., vol. 114,
pp. 306–315, Apr. 2016.

[9] J. J. Fernández-Lozano, M. Martín-Guzmán, J. Martín-Ávila, and
A. García-Cerezo, ‘‘A wireless sensor network for urban traffic character-
ization and trend monitoring,’’ Sensors, vol. 15, no. 10, pp. 26143–26169,
2015.

[10] S. Suranthiran and S. Jayasuriya, ‘‘Optimal fusion of multiple nonlinear
sensor data,’’ IEEE Sensors J., vol. 4, no. 5, pp. 651–663, Oct. 2004.

[11] B. Jiang and X. Yao, ‘‘Location-based services and GIS in perspective,’’
Comput. Environ. Urban Syst., vol. 30, no. 6, pp. 712–725, 2006.

[12] A. Katal, M. Wazid, and R. H. Goudar, ‘‘Big data: Issues, challenges,
tools and good practices,’’ in Proc. 6th Int. Conf. Contemp. Comput. (IC),
Aug. 2013, pp. 404–409.

[13] P. Amirian, A. Basiri, and A. Winstanley, ‘‘Efficient online sharing of
geospatial big data using NoSQL XML databases,’’ in Proc. 4th Int. Conf.
Comput. Geospatial Res. Appl., Jul. 2013, p. 152.

[14] C. Heipke, ‘‘Crowdsourcing geospatial data,’’ ISPRS J. Photogramm.
Remote Sens., vol. 65, no. 6, pp. 550–557, Nov. 2010.

[15] B. Omidvar-Tehrani, P. A. Souza Neto, F. M. F. Pontes, and F. Bento,
‘‘GeoGuide: An interactive guidance approach for spatial data,’’ in Proc.
IEEE Int. Conf. Internet Things (iThings), IEEE Green Comput. Commun.
(GreenCom), IEEE Cyber, Phys. Social Comput. (CPSCom), IEEE Smart
Data (SmartData), Jun. 2017, pp. 1112–1117.

[16] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc.
KDD, 1996, pp. 1–6.

[17] S. T. Leutenegger, M. A. Lopez, and J. Edgington, ‘‘STR: A simple and
efficient algorithm for R-tree packing,’’ in Proc. 13th Int. Conf. Data Eng.,
Apr. 1997, pp. 497–506.

[18] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, ‘‘The R∗-tree:
An efficient and robust access method for points and rectangles,’’ ACM
SIGMOD Rec., vol. 19, no. 2, pp. 322–331, May 1990.

[19] T. K. Sellis, N. Roussopoulos, and C. Faloutsos, ‘‘The R+ -tree: A dynamic
index for multi-dimensional objects,’’ in Proc. 13th Int. Conf. Very Large
Data Bases (VLDB), Brighton, U.K., Sep. 1987.

[20] R. Yu, ‘‘Characterization and sampled-data design of dual-tree filter banks
for Hilbert transform pairs of wavelet bases,’’ IEEE Trans. Signal Process.,
vol. 55, no. 6, pp. 2458–2471, Jun. 2007.

52464 VOLUME 8, 2020



L. Zhou et al.: Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City

[21] H.-J. Cho, J.-K. Min, and C.-W. Chung, ‘‘An adaptive indexing technique
using spatio-temporal queryworkloads,’’ Inf. Softw. Technol., vol. 46, no. 4,
pp. 229–241, Mar. 2004.

[22] J. Xia, C. Yang, and Q. Li, ‘‘Building a spatiotemporal index for earth
observation big data,’’ Int. J. Appl. Earth Observ. Geoinf., vol. 73,
pp. 245–252, Dec. 2018.

[23] M. Vazirgiannis, Y. Theodoridis, and T. Sellis, ‘‘Spatio-temporal compo-
sition and indexing for large multimedia applications,’’ Multimedia Syst.,
vol. 6, no. 4, pp. 284–298, Jul. 1998.

[24] B. Baas, ‘‘NoSQL spatial: Neo4j versus PostGIS,’’ Technische Universiteit
Delft, Delft, The Netherlands, May 2012.

[25] T. Xu, X. Zhang, C. Claramunt, and X. Li, ‘‘TripCube: A trip-oriented
vehicle trajectory data indexing structure,’’Comput., Environ. Urban Syst.,
vol. 67, pp. 21–28, Jan. 2018.

[26] L. Leonardi, S. Orlando, A. Raffaetà, A. Roncato, C. Silvestri,
G. Andrienko, and N. Andrienko, ‘‘A general framework for trajectory
data warehousing and visual OLAP,’’ GeoInformatica, vol. 18, no. 2,
pp. 273–312, Apr. 2014.

[27] W. Jing, D. Tong, G. Chen, C. Zhao, and L. Zhu, ‘‘An optimized method
of HDFS for massive small files storage,’’ Comput. Sci. Inf. Syst., vol. 15,
no. 3, pp. 533–548, 2018.

[28] K. Bok, H. Oh, J. Lim, Y. Pae, H. Choi, B. Lee, and J. Yoo, ‘‘An efficient
distributed caching for accessing small files in HDFS,’’ Cluster Comput.,
vol. 20, no. 4, pp. 3579–3592, Dec. 2017.

[29] D.-M. Bui, S. Hussain, E.-N. Huh, and S. Lee, ‘‘Adaptive replication
management in HDFS based on supervised learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 28, no. 6, pp. 1369–1382, Jun. 2016.

[30] C.-T. Yang, W.-C. Shih, L.-T. Chen, C.-T. Kuo, F.-C. Jiang, and F.-Y. Leu,
‘‘Accessing medical image file with co-allocation HDFS in cloud,’’ Future
Gener. Comput. Syst., vols. 43–44, pp. 61–73, Feb. 2015.

[31] E. Barbierato, M. Gribaudo, and M. Iacono, ‘‘Performance evaluation
of NoSQL big-data applications using multi-formalism models,’’ Future
Gener. Comput. Syst., vol. 37, pp. 345–353, Jul. 2014.

[32] S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi, ‘‘MD-HBase:
Design and implementation of an elastic data infrastructure for cloud-scale
location services,’’Distrib. Parallel Databases, vol. 31, no. 2, pp. 289–319,
2013.

[33] A. Chebotko, A. Kashlev, and S. Lu, ‘‘A big data modeling methodology
for Apache Cassandra,’’ in Proc. IEEE Int. Congr. Big Data, Jun. 2015,
pp. 238–245.

[34] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, ‘‘Bigtable: A distributed storage
system for structured data,’’ ACM Trans. Comput. Syst., vol. 26, no. 2,
pp. 1–26, Jun. 2008.

[35] E. Sciore, ‘‘SimpleDB: A simple java-based multiuser syst for teaching
database internals,’’ ACM SIGCSE Bull., vol. 39, no. 1, p. 561, Mar. 2007.

[36] P. Colombo and E. Ferrari, ‘‘Enhancing MongoDB with purpose-based
access control,’’ IEEE Trans. Dependable Secure Comput., vol. 14, no. 6,
pp. 591–604, Nov. 2017.

[37] R. Cattell, ‘‘Scalable SQL and NoSQL data stores,’’ ACM SIGMOD Rec.,
vol. 39, no. 4, pp. 12–27, May 2011.

[38] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz, ‘‘Data
management in cloud environments: NoSQL and NewSQL data stores,’’
J. Cloud Comput., Adv., Syst. Appl., vol. 2, no. 1, p. 22, 2013.

[39] M. Klems, D. Bermbach, and R.Weinert, ‘‘A runtime quality measurement
framework for cloud database service systems,’’ in Proc. 8th Int. Conf.
Qual. Inf. Commun. Technol., Sep. 2012, pp. 38–46.

[40] C. R. Chang, M.-J. Hsieh, J.-J. Wu, P.-Y.Wu, and P. Liu, ‘‘HSQL: A highly
scalable cloud database for multi-user query processing,’’ IEEE Trans.
Comput., vol. 30, no. 4, pp. 943–944, Jun. 2012.

[41] L. Zhou, N. Chen, S. Yuan, and Z. Chen, ‘‘An efficient method of sharing
mass spatio-temporal trajectory data based on cloudera impala for traffic
distribution mapping in an urban city,’’ Sensors, vol. 16, no. 11, p. 1813,
2016.

[42] B.-R. Chang, H.-F. Tsai, Y.-C. Tsai, C.-F. Kuo, and C.-C. Chen, ‘‘Inte-
gration and optimization of multiple big data processing platforms,’’ Eng.
Comput., vol. 33, no. 6, pp. 1680–1704, Aug. 2016.

[43] K. Li, F. Su, X. Cheng, W. Chen, and K. Meng, ‘‘The research of perfor-
mance optimization methods based on impala cluster,’’ in Proc. 16th Int.
Symp. Commun. Inf. Technol. (ISCIT), Sep. 2016, pp. 336–341.

[44] E. Estevez-Rams, C. Perez-Demydenko, B. A. Fernández, and
R. Lora-Serrano, ‘‘Visualizing long vectors of measurements by use
of the Hilbert curve,’’ Comput. Phys. Commun., vol. 197, pp. 118–127,
Dec. 2015.

[45] OpenGIS Observations and Measurements—Part 1-Observation Schema
(Version 1.0.0), OGC Standard 07-022r1, OGC, 2007, p. 73.

[46] OpenGIS Observations and Measurements—Part 2-Sampling Features
(Version 1.0.0), OGC Standard 07-002r3, OGC, 2007.

[47] Apache. (Aug. 1, 2019). Apache Impala 3.2.0. [Online]. Available:
https://impala.apache.org/downloads.html

[48] Apache. (Aug. 1, 2019). Impala: A Modern, Open-Source SQL Engine
for Hadoop. [Online]. Available: http://cidrdb.org/cidr2015/Papers/
CIDR15_Paper28.pdf

[49] A. Bröring, C. Stasch, and J. Echterhoff,OGC Sensor Observation Service
Interface Standard (Version 2.0), OGC Standard 12-006, OGC, 2012.

[50] A. Bröring, J. Echterhoff, S. Jirka, I. Simonis, T. Everding, C. Stasch,
S. Liang, and R. Lemmens, ‘‘New generation sensor Web enablement,’’
Sensors, vol. 11, no. 3, pp. 2652–2699, 2011.

[51] N. Chen, L. Di, G. Yu, and M. Min, ‘‘A flexible geospatial sensor obser-
vation service for diverse sensor data based on Web service,’’ ISPRS J.
Photogramm. Remote Sens., vol. 64, no. 2, pp. 234–242, Mar. 2009.

[52] M. Botts, G. Percivall, C. Reed, J. Davidson, OGC (R) Sensor Web
Enablement: Overview and High Level Architecture, vol. 4540, S. Nittel,
A. Labrinidis, A. Stefanidis, Eds. Geosensor Networks, 2008, pp. 175.

[53] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi, ‘‘MD-HBase: A scal-
able multi-dimensional data infrastructure for location aware services,’’ in
Proc. IEEE 12th Int. Conf. Mobile Data Manage., Jun. 2011, pp. 7–16.

[54] D. Han and E. Stroulia, ‘‘HGrid: A data model for large geospatial data
sets in HBase,’’ in Proc. IEEE 6th Int. Conf. Cloud Comput., Jun. 2013,
pp. 910–917.

[55] C. Cai, Y. Gao, L. Pan, and J. Zhu, ‘‘Precise point positioning with quad-
constellations: GPS, BeiDou, GLONASS and Galileo,’’ Adv. Space Res.,
vol. 56, no. 1, pp. 133–143, Jul. 2015.

[56] 52◦North. (Jul. 7, 2019). SOS Implementation. [Online]. Available:
http://www.envirocloud.se/52n-sos-webapp/index

[57] C. Dobre and F. Xhafa, ‘‘Intelligent services for big data science,’’ Future
Gener. Comput. Syst., vol. 37, pp. 267–281, Jul. 2014.

LIANJIE ZHOU (Student Member, IEEE)
received the B.S. degree in remote sensing science
and technology from Chang’an University, Xi’an,
China, in 2011, and the Ph.D. degree from the State
Key Laboratory of Information Engineering in
Surveying, Mapping and Remote Sensing (LIES-
MARS), Wuhan University, China, in 2017. He is
currently a Postdoctoral Fellow at the Shenzhen
Key Laboratory of Spatial Smart Sensing and
Service, Shenzhen University, Shenzhen, China.

His current research interests include spatiotemporal data modeling, sensor
web, smart city, and the IoT.

QINGQUAN LI received the Ph.D. degree in geo-
graphic information science and photogrammetry
from the Wuhan Technical University of Survey-
ing and Mapping, China. From 1988 to 1996,
he was an Assistant Professor with Wuhan Uni-
versity, where he became an Associate Professor.
Since 1998, he has been a Professor with Wuhan
University. He is currently the President and a
Professor with Shenzhen University, China. He is
a Professor with the State Key Laboratory of Infor-

mation Engineering in Surveying, Mapping and Remote Sensing, Wuhan
University. He is also the Director of the Shenzhen Key Laboratory of Spatial
Smart Sensing and Service, Shenzhen University. He is an Academician of
the International Academy of Sciences for Europe and Asia.

WEI TU received the B.E. and Ph.D. degrees in
computer science fromWuhan University, Wuhan,
China, in 2007 and 2013, respectively. He is cur-
rently an Associate Professor at the Shenzhen
Key Laboratory of Spatial Smart Sensing and
Service, Shenzhen University, Shenzhen, China.
His research interests include spatiotemporal data
modeling, spatiotemporal data analysis, and spa-
tiotemporal data mining.

VOLUME 8, 2020 52465


