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ABSTRACT In the Dempster-Shafer theory, how to quantitatively evaluate the quality of information is an
essential issue and also an open issue. Many of measures of uncertainty have been proposed in previous
work, whereas some measures among them had been proved to have a few shortcomings. The validity and
rationality of the measures proposed in recent years have been explored and analyzed preliminarily, and then
an empirical measure of uncertainty with exponential function form which is directly based on the framework
of the evidence theory is proposed to overcome the shortcomings. Several numerical examples have been
presented to illustrate the validity and rationality of the empirical measure.

INDEX TERMS The Dempster-Shafer theory, measure of uncertainty, exponential function, validity and

rationality.

I. INTRODUCTION

How to deal with uncertain information has been one of the
research domains in which people are interested all the while.
As a kind of methods to deal with uncertain information,
the Dempster-Shafer theory (DST, for short) proposed by
Dempster [1] firstly and then further developed by Shafer [2],
also referred to as the evidence theory [3], [4] or the the-
ory of evidence [5], [6] or belief function theory [7], [8],
has attracted considerable critical attention by reason of its
validity in expressing and processing uncertain information.
DST has been broadly applied in various domains, such
as decision-making [9], [10], pattern recognition [11]-[13],
cluster analysis [8], [14]-[16], controller modeling [17], [18]
and so on. However, DST is not a perfect theory, due to there
are still some issues to be solved. One of the major issues is
that the combination of highly conflicting evidence between
each other by using Dempster’s combination rule may bring
forth a counter-intuitive result [19]-[21]. Another major issue
of great concern is how to quantitatively evaluate the quality
of a basic probability assignment (BPA, for short), or can be
said how to gauge the uncertainty of a BPA [22], [23]. The lat-
ter issue is that we are going to discuss in the rest of this paper.
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In the research history of the measure of uncertainty in
the DST, Hohle [24] put forward the first measure of uncer-
tainty of a BPA, namely Confusion. Yager [25] held primarily
that the uncertainty of a BPA can be indicated through two
types of uncertainty: dissonance and dispersion, denoted as
the two-tuple (S(m), E(m)). The specific calculation formula
of the entropy measure E(m) regarded as an indicatrix of
the dissonance of a BPA and the specificity measure S(m)
regarded as an indicatrix of the dispersion of a BPA also
were given. The new improved two-tuple (Sp(m), G(m))has
already been presented by Yager in his following research
[26]. The greatest difference between the original two-tuple
and the new improved two-tuple is that the value of two mea-
sures in the latter ranges from O to 1. Nevertheless, it may be
impossible to make a clearly differentiate between different
BPAs compared by using either the original two-tuple or the
new improved two-tuple. Soon afterwards, Klir and Yuan [27]
summarized that there may be three different types of uncer-
tainty existing in various uncertainty theories, illustrated by a
tree diagram shown in Figure 1. As a matter of fact, the two
types of uncertainty coexisting in a BPA, namely discord and
nonspecificity, presented by Klir are equivalent to the two
types of uncertainty presented by Yager [25]. In order to use a
unified measure of uncertainty to quantitatively evaluate the
uncertainty of a BPA, a great many measures of uncertainty
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* imprecision

FIGURE 1. Three different types of uncertainty proposed by Klir.

which integrates the two types of uncertainty coexisting in a
BPA were developed. Up to present, all measures of uncer-
tainty proposed by researchers are mainly categorized into
two categories. In the opinion of some researchers, the DST is
akind of generalized information theory [28], or can be said a
generalization of probability theory [29], thus one of two cat-
egories whose main characteristic is that the measure has the
form of logarithmic function is the natural generalization of
Shannon entropy, also known as Entropy-like measure, such
as Klir’s entropy NS(m) [30], [31], Pal’s entropy H,(m) [32],
Deng’s entropy Eq(m) [33], etc. The other kind of measure are
functions with other forms, such as Yager’s two-tuple (Sp(m),
G(m)) [26], Yang’s TU!(m) [34], Deng and Xiao’s iTU'(m)
[35], etc. However, the existing measures of uncertainty can-
not be able to effectively measure the uncertainty in all cases.
The details will be discussed in Section 3 and Section 5 of
this paper.

The structural framework of this paper is described as
follows. In Section 2, we give a brief introduction to the
terminology and notation involved in this paper. The main
existing measures of total uncertainty including two cat-
egories and preliminary analysis on validity are given in
Section 3. A novel measure of uncertainty is proposed in
Section 4. In Section 5, the validity and rationality of the
novel measure compared with other measures can be further
reflected by numerical examples. The conclusion is presented
in Section 6.

Il. PRELIMINARIES
A. BASIC CONCEPTS IN THE DST

Definition 1 (Basic Probability Assignment): Let ® =
{61,600, ...... , 6n} be a nonempty set consisted of finite and
mutually exclusive elements, which is designated as the frame
of discernment (FOD). 2® represents the set of all subsets of
®, also called the power set of ®. A function m is called a
basic probability assignment (BPA) [2] defining over FOD ®
as a mapping from the domain 2© to the range [0,1], denoted
as m : 29 — [0, 1], whenever satisfying the following
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condition:

m(@)=0 and Y m(A)=1 1)

ACO

The function m defined as above is also called such asa
body of evidence (BOE) [2], a partial belief function (PBF)
[36], a belief structure (BS) [37], a basic belief assignment
(BBA) [38], [39], and so on. The value m(A) is called a basic
probability number of the set A, and it can be understood as
the degree of belief that is assigned exactly to the set A.

Definition 2 (Belief Function and Plausibility Function):
Corresponding to a given BPA, there are two functions,
namely belief function (Bel) and plausibility function (PI),
which can be one-to-one denoted as:

Bel(A) = > m(B) )
BCA
PI(A) = 1—BelA)= Y  m(B) A3)
BNA=9

It can also be expressed as a mapping, as follows:

Bel : 29 — [0, 1] 4)
Pl:2° = [0,1] Q)

Bel(A) represents the degree of total belief, consisting of
the sum of the basic probability number assigned to the set
A and its subsets. Bel(A) is also called the lower probability
of the set A. PI(A) represents the possible degree of belief
assigned to the set A, which is called the upper probability
of the set A. Hence a belief interval, denoted as BI(A) =
[Bel(A), PI(A)], is used to represent the degree of belief over
the set A, that is also called interval probability. The length of
the belief interval could be seen as the degree of imprecision
over the set A.

Since the three functions can be converted to each other,
given any function, the other functions can be obtained. For
more information about specific transformation relationships,
see Reference [2].

Definition 3 (Focal Element and Core): Let m be a BPA
defining over FOD ®. A, as a nonempty subset of ®, is called
a focal element of Bel if m(A) > 0. |A| represents the number
of elements in the set A, also known as the cardinality of the
set A.

Core is defined as the union of all the focal elements of a
BPA, denoted as C [2]. It can be written as follows:

q
¢ =Jwim@n >0} ©)
i=1
where g represents the number of focal elements correspond-
ing to the m, g < 2/°1-1.
It should be emphasized that there is a concept denoted as
F [40] which is easily confused with C. F is defined as the
set of all the focal elements of BPA, denoted as:

F={Alm@A) >0} = [A, Az, ------ A O
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The difference between the two definitions is that C is a
subset of ©, while F is a subset of 2©.

Based on the above definition, two special belief functions
are listed as follows: (1) a Bayesian belief function satisfies
the condition that all the focal elements of Bel are singletons
(i.e.,if A is afocal element of Bel, then |[A| = 1); (2) a vacuous
belief function meets the following conditions: m(®) = 1.

B. THE PIGNISTIC TRANSFORMATION

Let m be a BPA defining over FOD ®. the pignistic trans-
formation is defined as a mapping from the framework of
the DST to the framework of probability theory, the pignistic
probability function BetP on ® based on a given m is denoted
as [38]:

1 m(A)

BetP, ({60;}) = Z AT —m@)

0;cACO

Vb, € © ®)

All of the following discussions in this paper are limited
to the closed world assuming (i.e., FOD is complete). That
means m(@) = 0, thus Eq. (8) can be rewritten as:

m(A)

Al
0;eACO

BetP,, ({6;}) = Vo, € © C)

C. THE PLAUSIBILITY TRANSFORMATION

The plausibility transformation is another method that
transforms the framework of the DST to the framework of
probability theory. Given a m defining over FOD ©, the plau-
sibility probability function PI_P,, [41] can be derivated from
the plausibility function with respect to the m by using the
plausibility transformation, PI_P,, can be denoted as:

PL{6D)
> PLAOD’

6;c®

PI_P, ({6;}) = Vb € © (10)

where PI({6;}) is the plausibility function of {6;} correspond-
ing to the m.

Ill. THE EXISTING MEASURES OF TOTAL

UNCERTAINTY IN THE DST

A. ENTROPY-LIKE MEASURES OF UNCERTAINTY

Shannon entropy [42] plays a crucial role as a measure of
uncertainty in the probabilistic framework and the expected
value of information content containing in a message in
information theory. Suppose X is a random variable over the
discrete sample space €2, Shannon entropy, denoted as H,
is defined as:

H(X) ==Y pilog,pi (11)
i=1

where n is the cardinality of €2, and p; is the probability of
sample i.

Entropy-like measures of uncertainty can be further subdi-
vided into two different types based on the framework of the
DST and the probabilistic framework, as shown below.
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1) MEASURES OF UNCERTAINTY BASED
ON THE FRAMEWORK OF THE DST

Klir’s entropy NS(m) [30], [31]

A]?
NS(m) = m(A)log, m(B) (12)
2 LBy
Pal’s entropy H),(m) [32]
IA|
H, (m) = Z m(A) log, ) (13)
AeF
Deng’s entropy E;(m) [33]
A
Eq(m) ==Y m(A)log, % (14)
ACO® B
Zhou’s entropy Ej;(m) [43]
A) AL
Epy (m) = — Z m(A)log, (2|’/7:(—)16%1> 15)
ACO -
Tang’s entropy Ewg(m) [44]
|A] m(A)
Ewa (m) = —ACX(; o @le pr—y  (16)
Wang’s entropy SU(m) [29]
SU (m)
- % PL({6;}) — Bel ({6))
- i=1 2
Bel ({0:})+PL ({6:}) ) Bel ({6;})+PI ({6})
_ . oz, . (17)
Pan and Deng’s entropy Hp,(m) [45]
Bel (A)+PI (A) Bel (A)+PI (A)
Hpe (m)=— Z 0gy
= 2 2 (2|A‘ — 1)
(18)
Chen’s entropy E;(m) [46]
A |A
Ei(m)=— Y m@A)log, (%%) (19)

ACO

2) MEASURES OF UNCERTAINTY BASED ON THE
PROBABILISTIC FRAMEWORK

Harmanec’s AU(m) [47]

AU(m)= max | — Y pg,log, ps,
0;e®
po; €10,1], V6, €©

ZP@, =1
00

Bel (A) <) ps<1—Bel (A), VAC ®
=

s.t.

(20)
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Smith’s TU;(m, §) [48]
TU, (m, §) =38AM (m)+(1-9) Z m(A)log, |A] (21)
ACO
Jousselme’s AM(m) [40]
AM (m) = — ) _ BetPy, ({6;)) log; BetPy ({6:)  (22)
6;,€®
Jirousek’s Hj(m) [49]

Hj(m) = Z PI_P,, ({6;}) log,

1
= PI_P,, ((6:))

+ > m@A)logy Al (23)
Ae21®!
Pan and Zhou’s entropy Hpg(m) [50]

Hpo(m) = > m(A)log,
Ae 21®!

Pm(A)

+ > mA)log, Al (24)
Ae2!®
where Pm (A) = Y PI_P,, ({6;})
0;cA
B. MEASURES OF UNCERTAINTY IN OTHER
FUNCTIONAL FORMS

Yager’s two-tuple (Sp(m), G(m)) [26]

(Sp (m), G (m))
P
2’” (A7) x (|4;]=1)

IF|
> m(A;j)log, PI(A))
j= J=1

=|1- 1+

O] -1 log, (6]
(25)

Yang’s TU! (m) [34] equates to the value in (26), where (26)
as shown at the bottom of this page.
Deng and Xiao’s iTU' (m) [35]

€]

iU’ (m)="" [1—\/ (Bel (16:))*+(PL ({16:}) — 1>2} 27)
i=1

Gao’s Tp_s(m) [51]

C. ANALYSIS ON THE EXISTING MEASURE

OF UNCERTAINTY

In the previous studies, the shortcomings of some exist-
ing measures of total uncertainty have been verified by
researchers. Klir [52] had proved that three main shortcom-
ings including high computational complexity, less sensitivity
to the variations of BPA as well as distinction between discord
and nonspecificity, lied in the measure AU presented by
Harmanec and Klir [47]. Jousselme ef al. [40] claimed that the
measure TU;(m, §) proposed by Smith not only failed to solve
the shortcoming of high computational complexity, but also
brought subjectivity due to the selection of parameter §. The
ambiguity measure AM(m) proposed by Jousselme cannot be
able to differentiate the uncertainty of different BPA with the
same pignistic probability distribution proved by Wang and
Song [29] and satisfy the monotonicity requirement defined
by Abelldn and Masegosa [53]. On the basis of the defi-
nition in the DST, a vacuous belief function represents the
total ignorance/unknown about the system/object, and that
means if and only if a BPA is a vacuous belief function, its
uncertainty must be the largest. However, some measures,
such as NS(m) proposed by Klir, H,(m) proposed by Pal,
E4(m) proposed by Deng, E;(m) proposed by Chen, Hp;(m)
proposed by Pan, Hpp(m) proposed by Pan and Zhou, and
Tp—_s(m) proposed by Gao, had been proved not to meet
this requirement [31], [33], [45], [46], [50], [54], [55]. The
measure TU!(m) proposed by Yang had been pointed out
that it is insensitive to the changes of BPA with illustrative
examples [35]. This inadequacy also exists in the measure
Hp;(m) proposed by Pan and the measure Ej;(m) proposed
by Cui et al. [56].

In addition to the above mentioned measures of uncer-
tainty that had been proved to have some shortcomings, some
new measures of uncertainty had been proposed gradually
by some scholars in recent years, and the question whether
they have shortcomings has not been found yet. We try
to make a preliminary analysis on these measures through
cases.

Example I: Here is given nine BPAs established on the
same FOD ® = {01, 6>, ...... , 0,,}, as shown below.

ml: m({0;}) = 1;

Tp-s (m) m2: m({61}) = m({62}) = 0.5;
_ m3: m({61}) = m({61, 62}) = 0.5;
= I}_:l m(A)log, m(A) ot (6 O] 1
= A oy YA m5: m({61, 62}) = m({62, 63}) = 0.5;
(2| |—1)xm(A)x(1—(2|A‘_1) ) m6: m({61, 62}) = m({63, 64}) = 0.5;
+Z |A|—1 (28) m7: m({01,60,}) = m({02,03}) = m({03,04) =
|A]#1 m({01, 64}) = 0.25;
ﬁ 18]

TU' (m) = 1 — —=> " d' ((Bel ({6:}) . PL (16:)]. 0. 1])

015

d" ([Bel ({6:}) , PL(16:)], [0, 1]) = \/<
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3
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TABLE 1. Values of different measures associated with nine BPAs.

ml m2 m3 m4 m5 mé m7 mé8 m9
Eyy(m) 0.0000 0.2000 0.6170 0.6340 1.0340 1.0340 1.4340 1.6680 4.9542
SU(m) 0.0000 1.0000 1.3113 2.0000 2.5000 3.0000 3.0000 3.0000 5.0000
Hj(m) 0.0000 1.0000 1.4183 2.0000 2.5000 3.0000 3.0000 3.0000 4.6439
iTU'(m) 0.0000 0.5858 1.0000 2.0000 2.0000 1.7500 1.7500 1.7500 5.0000
6 [
A-BEpy(m)  ——suUm) —e—Hm) iTU'(m) 10 8

Values of different measures

L
m1 m2 m3 m4 mS m6 m7 m8 m9
BPA

FIGURE 2. Values of different measures associated with nine BPAs.

m8: m({01,02}) = m({6,63})
m({02, 63}) = m({02, 04}) = m({03, 64})

m9: m(®) = 1;

Based on the definition of BPA in the DST, we can
intuitively conclude that the total uncertainty(7U) ingrained
in these nine BPAs should be satisfied with the following
inequalities: TU(ml) < TU(m2) < TU(m3) < TU(m4) <
TU(m5) < TUm6) < TU(m7) < TU(mS8) < TU(m9). The
results respectively calculated by the functions of the mea-
sure, including Ewg (m), SU(m), Hj(m) and iTU' (m), are listed
in Table 1 and shown in Figure 2.

As we can see from Table 1 and Figure 2, none of these four
measures satisfies the inequalities mentioned above. Among
them, the measure Eyy,(m) cannot distinguish the uncertainty
of m5 from that of m6. The measure SU(m), as well as
Hj(m) and iTU! (m), have the same performance on the three
BPAs(m6, m7 and m8). But beyond that, it is clearly shown
that the uncertainty of m6(same as m7 and m8) calculated by
the measure iTU’ (m) is obviously lower than that of m5. All
the counter-intuitive signs indicate that all the four measures
proposed in recent years lose its validity and rationality in
measuring the uncertainty of evidence in some cases.

m({01,04}) =
1/6;

IV. A NOVEL MEASURE OF UNCERTAINTY

As listed and discussed in Section 3, plenty of researchers
deemed that the DST is a special kind of the probability
theory (or the information theory), therefore the measure
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Values of the measure U

0.2}

L L L L L
m1 m2 m3 mé4 m5 mé m7 m8 m9
BPA

FIGURE 3. Values of the measure Uexp(m) associated with nine BPAs.

of uncertainty of a BPA in the DST, i.e. Entropy-like mea-
sures either directly based on the framework of the DST
or indirectly based on the probabilistic framework with the
transformation such as the pignistic transformation and the
plausibility transformation, should have the similar func-
tional form as that of random variable denoted as Shannon
entropy in the information theory. But at least for now, it turns
out that the generalization is not very successful as stated
previously. Some other researchers attempted to put forward
other functional forms of the measure. Although this attempt
cannot completely solve the problem, but provide a very good
research idea. And it is for this idea that we come up with a
novel measure of uncertainty in the form of exponential func-
tion which is completely different from the existing measures,
as shown below.

_ mA) _ mA) e
Al=1 Al#£1
Uexp(m) = — a7 (29)

An significant characteristic of this measure is that the
value varies from O to 1. The measure U,y,(m) is defined
directly in the framework of the DST, avoiding the additional
increase or loss of information due to the transformation.
Additionally, Multi-Scale information, including the cardi-
nality of the focal element, the cardinality of Core and the
cardinality of FOD, is brought in the measure Uy,(m) so
as to the uncertainty of a BPA can be estimated in a more
comprehensive measure.
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TABLE 2. Values of the measure Uexp(m) associated with nine BPAs.

ml m2 m3 m4 mS5 mé m7 mé m9
Uep(m) 0.0000 0.3996 0.6547 0.8956 0.9479 0.9658 0.9674 0.9679 1.0000
1
0.85
E
g 09
2z
0.85
08
0 94

—A— N-AMm) |
—— N-SU{m)

8 NAiTU'(m)

g Ugg(m |

o

Values of different measure
= o )

)

o

ol L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

Steps

FIGURE 5. Change in value of different measures in Example 4.

The validity and rationality of the measure Uey,(m) will
be demonstrated by illustrative examples in the following
section.

V. NUMERICAL EXAMPLES
Example 2: Let’s go back to Example 1, the result calcu-
lated by Eq. (29) is listed in Table 2 and shown in Figure 3.
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e

Values of different measures
)
@

—— N-AM(m)

041 | e N-sU(m)

—6— NATU'(m)

U (m

02 L L I L L L
0 2 4 6 8 10 12 14 1% 18 20

Steps

FIGURE 6. Change in value of different measures in Example 5.

It is easily seen that the calculated result overcomes the
shortcomings of the existing measures and conforms to our
intuitive feeling.

Example 3: Example 3 originated from [57] can be used
for verification here. Assume that ® = {601, 6;} be the
FOD. Given a BPA, described as follows: m({61}) = a,
m({62}) = b,m(®) = l-a-b,a,b € [0, 0.5]. For a more
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Values of different measures
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Values of different measures

10
Steps

20

FIGURE 7. Change in value of different measures with respect to different |A|.

a=0.2 a=0.5 a=0.8
17 ——— X 1 S — T .
-
0.98 - 0.95 09k
0.96 - 09
/ 0.8
A
0.94 | 0.85
w ) w 0.7
z E e
2 ] 2
foo A & o8 8
] i ]
E E E o6
€ = €
5 ] 5
5 09| $ 0.75 &
= = =
° 5 5
5 5 5 05
2 088 2 07 @
3 3 S
) = =
> > 1 = 0.4
0.86 - L N-AM(m) | 0.65 e NAM (M) — A L N-AM(m)
—%— N-SU{m) —— N-SU(m) 03l —s— N-SU{m)
0.84 | 0.6
—&— N-Tu'(m) —&— NAiTu'(m) —&— N-iTu'(m)
! 0.2
0.52 U, m) 0.85 Ul T Ug )
(KB 0.5 0.1
o 2 4 6 a 10 o 2 4 6 8 10 0 2 4 6 8 10
Steps Steps Steps

FIGURE 8. Change in value of different measures with respect to different a.

comprehensive comparison, we choose the measure SU(m)
as a typical representative of the measures based on the
framework of the DST, the measure AM(m) as a typical
representative of the measures based on the probabilistic
framework and the measure iTU’ (m) as a typical represen-
tative of the measures in other functional forms, comparing
with the measure U,y,(m) which we put forward. In order
to make a better comparison, the calculated results of the
measures (including SU(m), AM(m), iTU" (m)) will be nor-
malized to the unit interval in the following contents. The
normalization method is to divide the current calculated
result of the measure by the maximum value of the measure
claimed by relevant proposer. The details can be denoted as
follows:

N-SU(m) = SU(m)/|©|

N-AM(m) = AM(m)/log>|®|

N-iTU'(m) = iTU  (m)/|9|

51556

With respect to different values of a and b, the performance
of these four measures are shown in Figure 4.

In Figure 4, we can see that N- AM(m) attains its maximum
value as long as the condition of a = b is met, no matter how
much the value of a and b is. For if a = b, BetP,({6;}) and
BetPr ({62 }) will always be equal to 1/2 following by the pig-
nistic transformation, it also means that the maximum value
of N- AM(m) can be obtained in some other cases except that
BPA is a vacuous belief function. Thus the counter-intuitive
signs imply that AM(m) is also not sensitive to different BPA
to some extent and violates the requirement when the measure
attains its maximum value. The other three measures can
better reflect the change of uncertainty caused by the change
of values of a or b in this example.

Example 4: Example 4-5 originated from [58] are used for
reference. Assume that ® = {0y, 6», 63} be the FOD. Given a
BPA in the very beginning: m(®) = 1, changes associated
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with the BPA take place one step at a time. The value of
m(®) decreases by 0.05, while that of m({6,}) increases by
0.05 at each step, until m(®) = 0 and m({6>}) = 1 at the
last step. The aforementioned four measures are calculated at
every step and their calculated results are shown in Figure 5.

As we can see from Figure 5, all four measures can better
reflect the variation tendency of uncertainty with the step-by-
step change in this example.

Example 5: Assume that ® = {01, 05, 63} be the FOD.
Let m(®) = 1 be a BPA at the start. Changes to the BPA
made by us arise step by step, the value of m(®) decreases
by A = 0.05, while A /3 is added to each singleton m({6;}),
i € {1,2,3}, until m(®) attains 0 and m({6;}) attains 1/3,
i € {1, 2,3} at the final step. The calculated results of the
four measures at every step are shown in Figure 6.

As shown in Figure 6, we can come to a conclusion again
that AM(m) is insensitive to different BPA in some cases, and
the other three measures are relatively valid and rational in
this example.

Example 6: Example 6-7 originated from [40] also can
be used for further verification here. Assume that ® =
{61,600, ...... ,03} be the FOD. Given a BPA in the very
beginning: m(®) = 1, changes associated with the BPA take
place one step at a time. The value of m(®) decreases by
0.05, while that of m(A) increases by 0.05 at each step, until
m(®) = 0 and m(A) = 1 at the last step, where A # ®. When
the cardinality |A| take different values, such as 2, 4, 6 in here,
the performance of the four measures are shown in Figure 7.

As we can see from Figure 7, though all four measures
can reflect the variation tendency of uncertainty step-by-step
with respect to different |A|, our proposed measure Uy, (m) is
obviously different from the other three measures. Intuitively,
it means that the cardinality of the set that might contain the
unique target is equal to 8(i.e. |[C| = 8) as long as the value
of m(®) is not equal to O, thus the uncertainty of the BPA
should be relatively large in general. And at the last step, the
uncertainty should also have a corresponding mutation when
|C| suddenly changes from 8 to 2. However, the measures
except for our proposed measure U,,,(m) can not reflect these
two characteristics in this example.

Example 7: Assume that ® = {61,6,,...... , 010} be the
FOD. Given a BPA at the start: m(®) = 1-a, m(A) = a,
|A] < 9. Corresponding to different values of a such as 0.2,
0.5, 0.8 in here, changes to the cardinality |A| made by us
take place step by step, |A| increases by 1 one step at a time
until |A| reaches 9. A vacuous belief function is taken into
consideration as a special step for changes in final. At every
step, the calculated results of the four measures based on the
different a are shown in Figure 8.

Based on the definition of BPA, the degree of belief is
exactly assigned to a single element of the FOD when |A|
is equal to 1, the smaller the cardinality of focal element the
smaller the uncertainty of the BPA. Therefore, the amplitude
of variation as |A| changes from 1 to 2 should be far greater
than the amplitude of variation as |A| changes from 2 to other
values(|A| # 1,2) in this example. From Figure 8, we can
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see that only our proposed measure U,y (m) can better reflect
this characteristic.

VI. CONCLUSION

In this paper, we propose a novel measure of uncertainty
containing Multi-Scale information is proposed to overcome
the shortcoming of the existing measures. Comparing with
Entropy-like measures of uncertainty based on the general-
ization of information theory and measures of uncertainty in
other functional forms such as the distance between interval
values, the main characteristic of our proposed measure is that
it has the form of exponential function. The calculated results
of some numerical examples show the validity and rationality
of our proposed measure. In the future, we will devote to
expanding practical application of our proposed measure to
multiple fields as an effective quantitative evaluation tool of
the BPA.
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