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ABSTRACT Real-time state-of-health (SoH) estimation is often difficult to obtain due to the unavailability
of capacity measurements in real-time monitoring. The equivalent internal resistance (EIR), which is easily
obtained and closely related to battery deterioration, is studied as a possible solution for achieving real-time
and reliable SoH estimation for lithium-ion batteries. A novel real-time SoH estimation method based on the
EIR is introduced for lithium-ion batteries. First, an experimental study of the relationship between the EIR
and battery degradation is implemented, and this study is used to develop an empirical description of battery
degradation using the EIR vector. Second, a fast extraction method for identifying the EIR in real time is
proposed by leveraging the relationship between the EIR vector and state of charge (SoC). Third, a support
vector regression (SVR)-based method for real-time SoH estimation is introduced by characterizing the
hidden relationship between the EIR vector and battery SoH. The proposed method is demonstrated using
laboratory test data. The results show that the proposed method can predict the battery SoH in real time with
good accuracy and robustness.

INDEX TERMS Equivalent internal resistance, lithium-ion battery, real-time, SoH estimation, support vector
regression.

NOMENCLATURE
ABBREVIATIONS
SoH State-of-Health
EIR equivalent internal resistance
SoC State of Charge
SVR support vector regression
OCV open circuit voltage
IC incremental capacity
DV differential voltage
DTV differential thermal voltammetry
TIEDVD time interval of equal discharging voltage dif-

ference
UPF unscented particle filter
BMS battery management system
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approving it for publication was Xiaosong Hu .

GP-ICE Gaussian process regression for in situ
capacity estimation

DoD Depth Of Discharge
MAE the mean absolute error
RMSE the root mean square error
EV Electric vehicle

SYMBOLS
Scap the capacity ratio
Cnow the current maximum capacity of the bat-

tery
Crated the battery rated capacity
SR the internal resistance ratio
REOL the internal resistance at the end of battery

life
R the current internal resistance of the battery
Rnew the internal resistance of the new battery
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R a set of equivalent internal resistances
U1i (SoC),
U2i (SoC) ,
Ri (SoC) the voltage at the last second of charging,

the voltage at the last second of shelving
and the equivalent internal resistance as the
function of SoC in the ith internal resis-
tance evaluation

Ici, t i, τ the charging current, the charging process
time and the current second of the charging
process in the ith internal resistance evalu-
ation

R1j , R2j , R3j the increase of equivalent internal resis-
tance corresponding to SoC of 0.6, 0.7 and
0.8 in the ith internal resistance evaluation

C the penalty coefficient of the loss function
of SVR model

γ hyperparameter gamma in SVR model
U
′

1i, U
′

2i,
I
′

ci, R
′

i, SoC
′

the charging open-circuit voltage vector,
the charging working voltage vector, the
current, the equivalent internal resistance
vector and the state of charge in the ith
internal resistance evaluation with mea-
surement error

e1i,e2i, e3i the measurement error of the charging
open-circuit voltage, the charging working
voltage and the current

I. INTRODUCTION
The degradation of lithium-ion batteries is a complex and
nonlinear process. Battery performance, including the storage
capacity and peak power, declines with increasing internal
resistance inconsistency, imbalance of the internal battery
heat and a series of side reactions [1]. If the performance
of the batteries in an electric vehicle (EV) fails to meet
the driving needs, then the battery should be replaced to
meet driving mileage and safety requirements [2]. Due to the
wide application of lithium-ion batteries in modern industry,
including EVs, battery state-of-health (SoH) estimation has
become an interesting and critical topic, and many methods
have been presented in the past decade.

Since no consensus on SoH determination has been
reached in industry or among scientists [3], different SoH
estimation methods using different health indicators have
been introduced in the literature. From the perspective of
the health indicator adopted for SoH estimation, the features
can be categorized into three groups: model fitted features,
processed external features, and direct external features [1].

First, model fitted features, which are obtained based on
curve fitting or online parameter identification algorithms,
are used as health indicators. Then, the SoH is estimated
by analyzing the correlation between each parameter and
the SoH. Two types of parameters are obtained from dif-
ferent approaches. One type is obtained by open-circuit

voltage (OCV) curve fitting [4], [5]. For instance, Ma et al.
used the parameters obtained from Gaussian curve fitting to
estimate the SoH based on a data-driven model. The results
showed that the average relative errors of SoH estimation
are less than 3% [4]. The other type is obtained from the
terminal voltage curve combined with the equivalent circuit
model [6]–[9]. For example, Bian et al. used the equivalent
circuit model to describe the characteristics of the constant
current part in the charging and discharging process of a
lithium-ion battery. The least-square method was used to fit
the charging curve and obtain the incremental capacity (IC)
curve parameters for SoH estimation [7]. The advantage
of this kind of method is that it is applicable to dynamic
operating conditions. However, these methods are limited in
that the model for simulating the battery working behavior
and the process of model parameter identification have high
storage and calculation requirements and thus are not well
suited for real-time applications.

Second, processed external features are usually extracted
from the differential charging curve under a constant current
rate. Feature extraction [10]–[12], verification, and analysis
are carried out on the curve under different aging conditions
to establish the relationship between these health indicators
and the SoH. According to the literature [10], [11], [13]–[19],
feature extraction can be conducted on the IC/differential
voltage (DV) or differential thermal voltammetry (DTV)
curves. For instance, Li et al. established a quantitative
relationship between the SoH and three peak-valley value
points along with their positions on the IC curve fitted by
a Gaussian process regression algorithm [13]. Additionally,
the processed external features extracted from other curves,
such as the charge/discharge curve and the OCV curve, can
also be used for this kind of analysis [12], [20]–[24]. Liu el.
constructed an online measurable health indicator, namely,
the time interval of equal discharging voltage difference
(TIEDVD), from the discharge curve for SoH estimation
based on the UPF algorithm [23]. The advantage of this kind
of method is that a small number of inputs is required for
model training. However, the following disadvantages should
be considered [1]:

1) Not suitable for dynamic operating conditions;
2) Constant current charge/discharge is required;
3) Some of the features can be hard to obtain during

operation due to the limited capability of current battery
management systems (BMSs).

Third, direct external features, such as the measured cur-
rent, voltage, time, and temperature, are directly recorded by
sensors in the BMS [19], [25]–[33]. For example, You et al.
proposed a data-driven method for tracing the SoH by using
BMS data such as the current, voltage, and temperature and
their historical distributions [25]. Richardson et al. proposed
a data-driven diagnostic technique, Gaussian process regres-
sion for in situ capacity estimation (GP-ICE), which estimates
the battery capacity using voltage measurements over short
periods of galvanostatic operation [27]. Xu et al. proposed a
novel SoH estimation method based on the Wiener process
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according to historical degradation data while considering
the relaxation effect of lithium-ion batteries [19]. For this
method, the features are easy to obtain from the BMS; thus,
it is suitable or online applications. However, because the
number of input features can be large, the computational cost
is high.

During the literature review, we found a study on real-time
SoH estimation based on the equivalent internal resistance
(EIR). The equivalent internal resistance, as a significant
electrical property parameter, is related to the temperature
and SoH of the lithium-ion battery, and it decreases with
the increase in temperature. When operating at a constant
temperature, the EIR gradually increases with cycle aging.
In addition, the trend of EIR with SoH is similar at differ-
ent temperatures. Therefore, we propose to use the EIR to
study the health status of batteries; battery sample cycling
at a constant temperature of 40◦C was used to verify the
proposed method. The major contributions of this method are
summarized as follows:

1) The relationship between the EIR and SoH is studied via
experimentation and SoH modeling;

2) A fast EIR extraction method is proposed, and it can
obtain the EIR in real time through a simple calculation;

3) A support vector regression (SVR)-based SoH estima-
tion method with high precision and robustness is proposed,
and it is demonstrated on a laboratory test dataset.

The remainder of this paper is organized as follows.
Section 2 defines the problem and proposes the framework of
this paper. Section 3 explains the SVR-based model and the
fast EIR identification method. Section 4 analyzes the exper-
imental results of the proposed method, and the accuracy
and robustness are presented for the verification set. Finally,
conclusions and future work are discussed in Section 5.

II. PROBLEM DEFINITION AND PROPOSED FRAMEWORK
Various factors, such as the temperature, test current,
pressure, welding quality, and temperature inconsistency,
affect battery degradation. Here, we summarize the main
stress factors for battery design and operation/storage
conditions [1], [34]–[36].

A. BATTERY DESIGN
The current collector design and welding quality, which
corresponds to the connection between electrodes and the
external circuit, have a large impact on cell temperature gra-
dients and current density. Additionally, the stack pressure is
relevant to the aging mechanisms since the electrodes will
expand during cell operation within a constrained environ-
ment. Moreover, a resistance increase of the cell can be
caused by the loss of electrical contact inside the porous
electrode [34]. In this study, we assume that the influence of
battery design can be neglected under ideal conditions.

B. OPERATION/STORAGE CONDITIONS
Battery degradation is affected by the environmental
and operational conditions, such as ambient temperature,

charge/discharge current rate and cycling depth. When cells
operate at high temperatures, transition metal dissolution is
enhanced, while at low temperatures, lithium plating will lead
to a loss of active material. High currents cause more heat
waste, which will raise the battery temperature and acceler-
ate battery aging. Battery aging is more influenced by high
charge currents than by high discharge currents. In addition,
Palacin et al. indicated that the electrode active material
reversibility is more damaged when cells cycle at a higher
depth of discharge (DoD) [34].

These factors are not linearly correlated, which com-
plicates the extraction of correlations. However, these
aging stress factors contribute to two main degradation
phenomena [3]: loss of the storage capacity, which means a
decrease in the maximum capacity of the battery for storing
and supplying energy relative to that at the beginning of its
life, and increase in impedance, which causes a decline in
the available power provided by the battery. Therefore, SoH
estimationmust take into consideration both the capacity fade
and impedance increase.

The capacity ratio, which reflects the loss of the storage
capacity at the current moment, can be defined as follows:

Scap =
Cnow
Crated

× 100% (1)

where Crated represents the rated capacity of the battery and
Cnow is the current maximum capacity of the battery.
The internal resistance ratio, which indicates the increase

in impedance, can be described as follows:

SR =
REOL − R
REOL−Rnew

× 100% (2)

where REOL represents the internal resistance at the end of
battery life, R indicates the current internal resistance of the
battery, and Rnew is the internal resistance of the new battery.
Unfortunately, Cnow is usually obtained based on the full

charge-discharge process, which is difficult to operate in
real-time applications. Likewise, obtaining REOL makes the
battery unusable, which is clearly undesirable. Therefore,
in this paper, regarding Scap as the evaluation index of the
SoH according to the IEEE standard [29], a real-time SoH
estimation method is proposed that learns the relationship
between Scap and the EIR, which can be obtained in real time
through a simple calculation. The framework of the proposed
method is given as follows. First, an experimental study of the
relationship between the SoH and EIR is conducted. Second,
the EIR fast extraction principle and method are presented.
Third, an SVR-based SoH estimation model is established.

III. SoH ESTIMATION METHOD
A. RELATIONSHIP BETWEEN THE SoH AND EIR STUDY
Since both capacity degradation and internal resistance can
characterize the SoH, a correlation between the EIR and Scap
can be established as shown in (3):

Scap = f (R) (3)
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Here,R represents a set of EIRs (R1, R2, R3, . . .Rn) at different
states of charge (SoCs). Hence, a machine learning model can
be established to describe the relationship between the SoH
and vector R at the current moment. Then, the model can be
employed in a BMS for online application.

B. EIR EXTRACTION OF THE SoC
Different SoHs are acquired based on data collection in a
lithium-ion battery lifecycle test experiment [1], [37]–[39].
The correlation between the EIR and SoH can be described
by the EIR spectrum, as shown in Figure 1.

FIGURE 1. EIR changes with cycle aging for the battery (the EIRs are
obtained through the charge evaluation process).

The EIR spectrum discussed above can be obtained
through an internal resistance evaluation experiment at vari-
ous battery SoHs, the process for which is shown in Figure 2.
At the beginning of each internal resistance evaluation test
process, we discharge the battery at a constant discharge
current of 1/3C to the discharge cutoff voltage. Then, EIRs
corresponding to different SoCs are obtained by alternately
charging the battery for a period of time and shelving it.

Through the internal resistance evaluation test, the rela-
tionship between charging time and voltage can be obtained.
A pictorial description of the internal resistance evaluation
process is shown in Figure 3.

LetU1i(SoC) with i = 1,2,3 . . . , which represents the inter-
nal resistance evaluation number, denote the voltage at the
last second of charging at a 0.5C current. Then, let U2i(SoC)
denote the voltage at the last second of shelving at the same
SoC as U1i(SoC) and Ici represent a charge current of 0.5C.
Therefore, the EIR as a function of the SoC is defined as
follows:

Ri(SoC) =
(
|U2i(SoC)− U1i(SoC)|

Ici

)
(4)

The SoC can be expressed as:

SoC =

∫ ti
0 Ici(τ )dτ

Cnow
× 100% (5)

where ti indicates the charging process time until the current
second τ and Cnow represents the current maximum capacity,
which can be obtained by emptying the battery.We can obtain

FIGURE 2. Flow chart of the internal equivalent resistance evaluation test
process.

FIGURE 3. Pictorial description of the internal resistance evaluation
process.

the EIR curve after all internal resistances at different SoCs
are evaluated, as shown in Figure 4, and then we can obtain
the cluster of resistance curves after multiple evaluations
under different SoHs, as shown in Figure 1. The internal
resistance of battery discharge is large when the SoC is less
than 20% in the discharging process and more than 90% in
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FIGURE 4. Pictorial description of the EIR at different SoCs (the EIRs are
obtained through the charge evaluation process).

the charging process, resulting in an increase in the battery
heat and large numerical fluctuations.

The range of charging and discharging of a battery is
generally recommended to be 20%–90% [6].

To study the relationship between the evaluation num-
ber and EIRs corresponding to different SoCs, Figure 5 is
obtained by taking the special abscissa intercept of all mea-
surement points in the curve clusters in Figure 1, e.g.,
SoC = 0.6, with the abscissa as the evaluation number and
the ordinate as the EIR value. Similarly, EIR curves corre-
sponding to other SoCs can be obtained. Here, for visibility,
not all evaluation curves are shown in Figure 1. Additionally,
the relationship between the battery degradation level and the
EIRs can be given by Equation (6):

Scapi = f (Ri) (6)

where i represents the internal resistance evaluation number.

FIGURE 5. Relationship diagram between the battery degradation level
and EIR.

C. SVR MODEL
SVR has the advantage of handling high-dimensional regres-
sion problems with limited training samples and restricted
computation resources [40], [41]. An SVR-based method is
developed in this paper for learning the relationship between
the EIR and SoH.

For a given dataset D = {(xi, yi) , i = 1, 2, 3 . . .}, let
xi = Ri and yi = SoH i be the input and output of the SVR
model, where Ri represents the EIR vector and SoH i is the
ith SoH.
Assume that the regression plane is a nonlinear function:

f (x) =< ω, ϕ(xi) > +b (7)

where ϕ (·) is a nonlinear transformation that transforms the
data into a higher dimensional feature space to perform linear
separation. ω and b are undetermined parameters.

Slack variables ξi and ξ∗i are added to address infeasible
constraints, and the loss function of the SVR model can be
given by:

L = min
w,b,ξiξi∗

1
2
‖w‖2 + C

∑n

i=1

(
ξi + ξ

∗
i
)

(8)

subject to :


f (xi)− yi ≤ ε + ξi
yi − f (xi) ≤ ε + ξ∗i
ξi ≥ 0 i = 1, 2, 3 . . . , n
ξ∗i ≥ 0 i = 1, 2, 3 . . . , n

(9)

We use the Lagrange function to solve the problem:

L
(
w, b,α,α∗, ξ, ξ∗,µ,µ∗

)
=

1
2
‖w‖2 + C

∑n

i=1

(
ξi + ξ

∗
i
)
−

∑n

i=1
µiξi

−

∑n

i=1
µ∗i ξ
∗
i +

∑n

i=1
αi (f (xi)− yi − ε − ξi)

+

∑n

i=1
α∗i
(
yi − f (xi)− ε − ξ∗i

)
(10)

where α,α∗,µ, and µ∗ are the Lagrange multipliers, with
αi ≥ 0, α∗i ≥ 0, µi ≥ 0, and µ∗i ≥ 0.
According to (4), the SVR dual problem can be given as:

L = max
αα∗

(
∑n

i=1
yi
(
α∗i − αi

)
− ε(α∗i + αi)

−
1
2

∑n

i=1

∑n

j=1

(
α∗i − αi

) (
α∗j − αj

)
xTi xj

(11)

subject to :

{∑n
i=1

(
α∗i − αi

)
= 0

0 ≤ αi, α∗i ≤ C
(12)

According to the KKT condition:

αi (f (xi)− yi − ε − ξi) = 0
α∗i

(
yi − f (xi)− ε − ξ∗i

)
= 0

(C − αi) ξi = 0(
C − α∗i

)
ξ∗i = 0

αiα
∗
i = 0

ξiξ
∗
i = 0

(13)

The solution is given as follows:

f (x) =
∑m

i=1

(
α∗i − αi

)
K (x, xi)+ b (14)

where K (x, xi) represents the kernel function.
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The common kernel functions are as follows:

K (x, xi) = x · xi (15)

K (x, xi) = ((x · xi)+ 1)d (16)

K (x, xi) = e

(
−
‖x−xi‖

2

δ2

)
(17)

K (x, xi) = tanh (ε < x, xi > +θ) (18)

They represent a linear kernel function, a polynomial
kernel function, a Gaussian kernel function, and a sigmoid
kernel function.

In this paper, we use the Gaussian kernel function
K (R,Ri) shown in Equation (18) to avoid a large amount of
computation.

This optimization problem can be transformed into the dual
problem, and its solution is given by:

f (x) =
∑m

i=1

(
α∗i − αi

)
e

(
−
‖x−xi‖

2

δ2

)
+ b (19)

D. HYPERPARAMETER OPTIMIZATION OF THE
SVR MODEL
Since the accuracy and robustness of the models strongly
depend on hyperparameter settings and default settings can-
not guarantee optimal performance of machine learning tech-
niques, the hyperparameters should be optimized [42]. The
best model and corresponding hyperparameters are obtained
by fine-tuning the structure, as shown in Figure 6. Since there
are only two parameters, the computational time required to
find the parameters via Gridsearch is not much longer than
that by advanced methods [43]. Therefore, Gridsearch can be
used as the optimizer and applied on the training set to update
the hyperparameters. Moreover, K-fold cross-validation is
used to evaluate performance, and it gives an excellent esti-
mation of the generalization error, even on a small train-
ing set, according to Duan’s research [44]. In this work,
the evaluation index is the mean error of between observed
and predicted values within the validation set. A diagram of
the SoH estimation model from offline development to online
prediction is shown in Figure 7.

IV. ESTIMATION RESULTS AND DISCUSSION
A. EXPERIMENTAL CONDITIONS AND SoH ESTIMATION
In this experiment, three 15 Ah lithium iron phosphate bat-
teries were selected for the aging cycle experiment, as sum-
marized in Table 1. More specifically, as shown in Figure 8,
the aging cycle test was conducted at 40◦C. In each aging
cycle, the battery was charged and discharged at a constant
rate in the set SoC range. After 20 cycles of the battery, a static
capacity test was conducted to determine the maximum
capacity of the battery under different health statuses, and an
internal resistance test was conducted after 7200 seconds of
shelving. The performance test program for the batteries is
demonstrated in Figure 9.

In the experiment, the sensor error and the temperature
difference of the programmable thermal chamber (KOMEG)

FIGURE 6. Fine-tuning process of hyperparameter optimization.

TABLE 1. Experimental conditions for battery degradation.

were less than 1◦C. When constructing the SoH estimation
model, we assumed that the cell temperature is uniform.

For SoH estimation, two batteries were taken as training
samples to build the SVR model and determine the hyper-
parameters. Meanwhile, the other battery was applied to test
the estimation accuracy of the proposed method. The bat-
tery test bench consisted of a battery charge-discharge tester,
a programmable thermal chamber for temperature control and
a host computer for data recording, as shown in Figure 10.
In addition, the precisions of the voltage and current of the
battery tester were less than 1 mV and 2 mA, respectively.

B. SoH ESTIMATION BY THE PROPOSED METHOD
In the obtained EIR spectrum, some representative EIRs in
the SoC range from 20%–90% are selected as the inputs of
the SVR model to reduce the algorithm running time [6].

To select the key EIRs for SVR modeling, quantitative
analyses are critical. The Spearman correlation coefficient,
generally expressed as ρ, is a measure of the correlation
between two variables. The correlation coefficient determines
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FIGURE 7. Diagram of the concept of the SoH estimation model from offline development to online prediction.

FIGURE 8. Flow chart of the aging cycle test process.

the importance of the two variables, which can be used to
facilitate a rational selection of inputs.

Given two sets of randomvariablesF={F1,F2, . . . . . . ,Fn}
and G = {G1,G2, . . . . . . ,Gn}, where Fi and Gi are the
ith elements in the sets, by sorting the elements in the two
sets, we obtain two ranked sets f = {f1, f2, . . . . . . ,fn} and
g = {g1, g2, . . . . . . ,gn}. The element fi is rank Fi in F , and
fi is rankGi inG. The Spearman correlation coefficient of the

FIGURE 9. Performance testing program for the batteries.

two sets F and G can be calculated using the ranked sets:

ρ =

∑N
i=1 (fi − f̄ )(gi − ḡ)√∑N

i=1 (fi − f̄ )
2 N∑
i=1

(gi − ḡ)2
(20)

In Table 2, we list the Spearman correlation coefficients
between the eight EIRs and the SoH for the three applied bat-
teries. The EIRs with SoC= 0.6, 0.7 and 0.8 exhibit the three
strongest correlations with the SoH. Therefore, we select
these three EIRs as the training inputs to estimate the SoH.
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FIGURE 10. Diagram of the battery test bench.

TABLE 2. Results of spearman correlation coefficient analysis.

To yield the best performance, including the accuracy and
computational cost of the method, the number of inputs of
the SVR model is discussed in the remainder of this section.

First, the EIR corresponding to an SoC of 0.6 at different
aging levels was taken as the input of the SVR model and
recorded asR1n. Scapn, the corresponding capacity ratio value,
was taken as the evaluation indicator of the SVR model.
The regression results and prediction results are given in
Figure 11.

As shown in Figure 11, the regression and prediction
results are barely satisfactory when one input is used for
training. To improve the prediction accuracy, the EIRs cor-
responding to SoCs of 0.6 and 0.7 at different aging levels,
namely, R1n and R2n, respectively, were taken as training
inputs. The regression results and prediction results are shown
in Figure 12.

After adding the second training input, the accuracy of
regression and prediction is greatly improved. To further
improve the accuracy, the EIR corresponding to an SoC
of 0.8 at different aging levels, namely, R3n, was also taken

FIGURE 11. Regression and prediction results with one feature
R1n

(
SoC = 0.6

)
.

as an input of the SVR model. The regression results and
prediction results are shown in Figure 13.

The hyperparameter optimization settings used in the SVR
model in this work are given in Table 3. The mean error is
minimized when C is equal to 10 and γ is equal to 0.1 for
this problem.

TABLE 3. Hyperparameter optimization settings in the SVR model.

The influences of different training indexes on the regres-
sion and prediction results are given in Table 4. The mean
absolute error (MAE) and root mean square error (RMSE)
were used as the performance indexes.

According to Table 4, when taking one input, for the EIR
corresponding to an SoC of 0.6 at different aging levels, in the
training model, the MAE evaluation indexes for regression
and prediction were 0.0139 and 0.0293, respectively. In com-
parison, the MAE and RMSE of the regression decreased
by more than 15%, and the MAE and RMSE of the pre-
diction decreased by more than 9% when the number of
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FIGURE 12. Regression and prediction results with two features
R1n

(
SoC = 0.6

)
and R2n

(
SoC = 0.7

)
.

TABLE 4. Results of different training indexes for regression and
prediction.

training inputs is increased to two. However, the improvement
obtained by adding more training inputs is limited, as indi-
cated by the results for an input number of three. That is,
when the number of training inputs increases from one to two,
the evaluation index RMSE significantly decreases. However,
it slightly decreases when adding another input. Therefore,
no more than three EIRs can describe the characteristics of
battery aging. As shown in Figure 1 and Figure 5, the EIRs
corresponding to an SoC of less than 0.57 or greater than
0.88 have little change in their degradation degrees. There-
fore, the number of training inputs should be greater than
one but at most three, and the SoCs corresponding to the
respective EIRs should be greater than 0.57 and less than 0.88,
considering the accuracy and operational efficiency.

FIGURE 13. Regression and prediction results with three features
R1n

(
SoC = 0.6

)
, R2n

(
SoC = 0.7

)
and R3n

(
SoC = 0.8

)
.

C. ROBUSTNESS OF THE PROPOSED METHOD
The measurement error of the BMS sensor in EVs will
affect the SoH estimation. This section studies the robustness
of the proposedmethod if measurement errors exist within the
training data:

U ′1i = U1i + e1i (21)

U ′2i = U2i + e2i (22)

I ′ci = Ici + e3i (23)

Here, U
′

2i (i = 1,2,3. . .) is the charging OCV vector, e2i is
the measurement error, U

′

1i (i = 1, 2, 3. . .) is the charging
working voltage with measurement error e1i, and I

′

ci rep-
resents the current measured each time with measurement
error e3i.

The EIR and the SoC can be described as:

R′i =
(
|U ′2i − U

′

1i|

I ′ci

)
(24)

SoC ′ =

∫ ti
0 I
′
ci(τ )dτ

Cnow
× 100% (25)

To verify the robustness of the proposed method,
we assume that the voltage detection of the sensor has a
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FIGURE 14. Prediction results after adding errors.

FIGURE 15. Error percentage of SoH estimation under ideal and added
error conditions.

deviation of ± 5 mV, and the current has a deviation of
± 20 mA. The predicted results obtained by the proposed
method are shown in Figure 14. The prediction accuracy
decreases, and the results fluctuate to some extent after
adding errors.

Comparing the ideal case with the case with errors,
the error percentage can be obtained, as shown in Figure 15.
The absolute value of the MAE percentage is at most 3%.
This phenomenon precisely reflects the great robustness of
the proposed method.

V. CONCLUSION
A novel SoH estimation method is illustrated in this paper.
An SVR model has been employed based on the EIR accord-
ing to the aging level of batteries. The EIR vector at various
aging states has been obtained based on data collected in a
lithium-ion battery lifecycle test experiment. A real-time EIR
extraction approach in has been proposed to reduce the run-
ning time. In addition, we demonstrated that the accuracy of
regression and prediction can be improved when two training
inputs are utilized for the SVRmodel. The high robustness of
the SoH estimation approach was validated by experimental
results using training data with measurement errors. The
simplicity of this method makes implementation for onboard

applications easy so that users can understand the state of
the battery in EVs in a timely manner. However, the EIRs
could change in actual use under complex working condi-
tions. To further improve the robustness and accuracy, SoH
prediction considering complex working conditions, such as
the ambient temperature and current rate, is an important
future research direction. Additionally, dynamic tests will be
conducted to demonstrate its robustness and implementation.
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