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ABSTRACT Soft-sensors are widely utilized for predictions of important but hard-to-measure variables in
industrial processes. However, significant variations, process uncertainties, negative influence of external
environment and insufficient use of unlabeled data always cause the attenuation of prediction performance.
Thus, this paper proposed an adaptive semi-supervised multi-output soft-sensor by co-training recursive
heterogeneous models. In the proposed strategy, a linear multi-output model, called recursive partial least
square (MRPLS), and a nonlinear multi-output, called long short-term memory recurrent neural network
(MLSTM), are co-trained to deal with inefficient use of label data adaptively. Ensemble of both models are
not only able to address the linear and nonlinear hybrid behaviors in different time scale, but also able to
deal with multiple tasks learning issues. In addition, the model proposed an odd-even grouping strategy to
equalize two parts of the labeled data, which is able to capture the global variations of a process. To validate
the prediction performance of the proposed soft-sensor, it was verified through a simulation benchmark
platform (BSM1) and a real sewage treatment plant (UCI database). The results meant that co-training
MRPLS-MLSTM achieved better performance compared with other existing co-training models in terms
of the hard-to-measure variables.

INDEX TERMS Soft-sensors, semi-supervised, co-training, multi-output, recursive partial least square
(RPLS), long short-term memory recurrent neural network (LSTM).

I. INTRODUCTION
In the process industries, soft-sensors are proposed to predict
the hard-to-measure variables on the basis of easy-to-measure
variables. Because of technical difficulty, large measurement
delays, high investment cost and so on, soft-sensors gains
more popularity recently. Typically, soft-sensors modeling
methods are divided into mechanism-driven and data-driven.
The mechanism-driven model is to establish a mathematical
model to capture relationship between the input variables and
the output variables by analyzing the physical and chemical
reactions in the industrial process. However, a large number
of industrial processes are too complex to be clearly grasped
by the first-principal model, so the use of mechanism-driven
is limited widely in industries [1], [2]. Recently, data-driven
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modeling has been gained popularity in the process indus-
tries, mainly due to the fact that data-driven modeling does
not need to explore the complex process mechanism exactly,
but resort to the collected data [3], [4]. Among them, Prin-
cipal Component Regression (PCR), Partial Least Squares
(PLS) [5], Gaussian process regression (GPR) [6], Support
Vector Machine (SVM) [7], Deep learning networks [8] and
other models have attracted extensive attentions in industrial
and academic communities.

Typically, aforementioned methods are premised on the
equal number of input and output variables. However, with
increasing complexity and highly cost control requirement
of industrial processes, it is well known that some output
variables are harder to be obtained and the proportion of
labeled and unlabeled data in acquired data is seriously
unbalanced. In the field of machine learning, data samples
containing input and output variables are often called labeled
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data, while those only with input variables are referred as
unlabeled data. Therefore, to develop soft sensors, traditional
methods usually only use labeled data for model establish-
ment and most unlabeled data information are fully taken
for granted as useless [9]. To make full use of the infor-
mation carried by unlabeled data, semi-supervised learning
was proposed [3]. Semi-supervised learning method can be
categorized as: graph-based method [10], generative models
[11], transductive support vector machines (TSVM) [12],
self-training [13] and co-training [14].

Different from other algorithms, co-training belongs to one
of semi-supervised learning algorithms, it is able to take full
use of the labeled data to establish two and more independent
regression models. The data with high confidence from the
unlabeled data are able to be selected to join the labeled data
set, and the model, which is built based on the original labeled
data, can be updated to improve the prediction performance.
Finally, the calculation process will be repeated until the
ending condition is met. Since Zhou and Li [15] proposed
the co-training regression algorithm, the application of co-
training algorithm to soft-sensors has received more and
more attentions by a large number of scholars. Bao et al
combined a co-training algorithm directly with the traditional
PLS algorithm to obtain a co-training PLS model that can
effectively solve the linear prediction problem [16]. However,
the model is off-line trained and on-line used, the prediction
model will degrade gradually over time. To address this
issue, S. Goldman et al proposed an enhanced co-training
algorithm, in which cross-validation was adopted when unla-
beled data was selected [17]. Although unlabeled data with
higher confidence can be selected, the computational cost of
cross-validation process is intensive relatively. K. Nigan et al
divided the labeled data into two groups through random
sampling, which can improve the prediction ability of the
model [18]. However, the grouping method tends to con-
verge into local data selection, thereby reducing the model
prediction performance. In this light, Zhou et al proposed a
tri-training algorithm to improve the generalization ability of
the model by establishing three mutually independent labeled
data sets and regression models [19]. Unfortunately, when the
size of labeled data is small, three pre-trained regressionmod-
els may simultaneously select inappropriate unlabeled data
into the original labeled data set and remove the unlabeled
data with higher confidence. It is imperative to propose a
new co-training algorithm to deal with aforementioned issues
efficiently.

In addition, traditional soft-sensors models are mostly for-
mulated as single-output models [20]. However, with the
increase of hard-to-measure variables, the single-output mod-
els can no longer meet the prediction requirement. Multi-
output models, also called multi-task learning, have gained
significant attentions recently. The most typical multi-output
models are mainly to transform specific single-output models
into multi-output models with considering the co-relationship
among the whole output variables without having to be inde-
pendent necessarily. The independent assumption usually

compromises the multivariate prediction due to ignorance
of correlation-ship among the output variables. In this light,
multi-output linear models, such as multivariate linear regres-
sion (MLR), are used to build a soft-sensor model [21].
Despite their advantages, nonlinearity in the industrial pro-
cesses could degrade their prediction performance. Multi-
output nonlinear models are utilized to soft-sensor models,
such as multi-output gaussian process regression (MGPR)
andmulti-output support vector machine (MSVM) [22].With
the industrial processes becoming more and more compli-
cated, the relationship between input variables and some
output variables could be linear, whereas the relationship
between input and remaining output variables would be
nonlinear. Such hybrid behaviors will lead to purely lin-
ear or nonlinear multi-output being inadequate. Therefore,
multi-output RPLS (MRPLS) algorithm and multi-output
LSTM (MLSTM) algorithm are used to act as the sub-models
for co-training semi-supervised learning by involving the
output variables co-relationship. In this light, the original
single-output co-training algorithm can be formulated for
multi-output semi-supervised soft-sensors [23]. Similar with
the supervised soft-sensors, the prediction performance will
degrade as an industrial process evolution. Improving the
semi-supervised soft-sensors to adapt to a process variation
is an indispensable issue.

The paper proposed an adaptive semi-supervised multi-
output soft-sensor, termed as co-training MRPLS-MLSTM.
Firstly, different from the standard co-training models to
split the labeled data set into two groups with the former
half of labeled data being training sets and latter being test-
ing sets, this paper proposed an odd-even grouping method,
which divided the labeled data into two parts in an odd-even
sequence. By doing so, global features can be taken into
account, rather than local features as standard training data
set selection. Secondly, a real industrial process is difficult to
define to be linear or nonlinear during the entire operational
stage. Co-training of the MRPLS and MLSTM will simul-
taneously adapt two diverse regression algorithms for soft-
sensors. Also, two diverse regression methods can improve
the modeling independence, thus potentially ensuring that
one model can achieve an acceptable performance at least.
Last but not least, since recursive multi-output models are
used to establish prediction model, proper adaptation of a
multivariate and dynamical process can be achieved. To the
best of authors’ study, it is the first attempt to propose an
adaptive semi-supervised multi-output soft-sensor.

The rest of this paper is structured as follows. Section 2 is
the detailed introduction to MRPLS and MLSTM algorithm.
Section 3 describes co-training MRPLS-MLSTM soft-sensor
in detail. Section 4 firstly applies the proposed soft-sensor to
a well-established wastewater plant (WWTP) validation plat-
form, Benchmark SimulationModel No.1 (BSM1). Then, the
soft-sensor is utilized for a real WWTP with data collecting
from the field. Section 5 provides a discussion. The conclu-
sions suggest that the prediction performance can be indeed
improved by the co-training MRPLS-MLSTM in Section 6.
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II. PRELIMINARIES
A. MULTI-OUTPUT RECURSIVE PARTIAL LEAST SQUARE
(MRPLS)
In this paper, MRPLS algorithm is considered as a sub-model
for co-training algorithm. To ensure the multi-output model
adapt to process variations, MPLS algorithm is improved
by using moving window technique. In this strategy, when
new data are coming, they will be added to the original
labeled training data that is enveloped, and a few oldest data
will be removed. Sequentially, the mean and variance of the
samples will be updated accordingly. Finally, the remaining
old data and the new data will work together to rebuild a new
model [24]. The specificmathematical calculation ofMRPLS
algorithm is shown as follows:

According to the criterion of covariance maximization,
input and output variables matrix, X and Y , are decomposed
as follows:

X = TP+ E =
∑a

h=1
thph + E (1)

Y = UQ+ F =
∑a

h=1
uhqh + F (2)

where X ∈ Rn×m is input matrix, Y ∈ Rn×l represents output
matrix. T ∈ Rn×a is the score matric of X and U ∈ Rn×a is
the score matric of Y . n is the size of data, m is the number
of input variables, a is the number of potential variables. th
is the hth row of T , uh is the hth row of U . P(a × m) and
Q(a× l) are the loading matrices, ph is the hth row of P,qh is
the hth row of Q. E and F are two noise matrices. Therefore,
the relationship between uh and th can be received:

uh = bhth (3)

where bh denotes the regression coefficient of the correlation
between X space principal component, t , and Y space princi-
pal component, u. Therefore, the relationship between X and
Y can be expressed.

Y = TBQ+ F (4)

where B is the regression matrix. After acquiring T , Q, B and
so on though the labeled data, MRPLS algorithm will update
the labeled data X and Y with the new labeled data xt , yt and
the forgetting factor λ(0 < λ < 1). Then, the updated X =
[λX , xt ], Y = [λY , yt ]. Finally, T , Q and B in Y = TBQ+ F
are updated by the changed labeled data X and Y .
MRPLS algorithm is a method applicable to the prediction

of high-dimensional data. In addition. MRPLS, as a multi-
output algorithm, can effectively improve the prediction effi-
ciency.

B. MULTI-OUTPUT LONG SHORT-TERM MEMORY
RECURRENT NEURAL NETWORK (MLSTM)
LSTM is a widely used enhanced recurrent neural network
and has the better performance when processing data with
strong time-series dependence. It has been applied for many
fields recently, such as speech recognition and natural lan-
guage processing [25]. In this paper, LSTM algorithm is used

FIGURE 1. The structure diagram of MLSTM.

for soft-sensor modeling and extended to multi-output sys-
tem, called MLSTM. The corresponding network structure
diagram as shown in Fig. 1 (A).

Fig. 1 (A) (left) reveals the network structure, with the pro-
cessed information about the current moment being passed to
the next moment. xi is the input information in input layer at
time i, hi is the output information in output layer at time i
and A presents the hidden layer. Fig. 1 (A) (right) displays
the hidden layer structure in detail. As can be seen from the
Fig. 1, the information at the previousmoment can not only be
passed to the output layer, but also to the sequential moment.
This is called the ‘‘memory function’’. Fig. 1 (B) is the hidden
layer of specific structure, detailed procedures of MLSTM
algorithm is shown as follows:

Firstly, retained information at the previous moment need
to be determined. Information is retained (output ‘‘1’’ rep-
resents completely retain) or discarded (output ‘‘0’’ repre-
sents completely discard) through the S-layer of ‘‘forgetting
threshold’’. Suppose ft is the reserved information, xt is input
information, ht−1 is the output information at the previous
moment, σ represents the S-layer. wf is the weight vector
of ‘‘forgetting threshold’’, bf is the threshold. Therefore,
the retained information is:

it = σ (wi · [ht−1, xt ]+ bt ) (5)

Then, to calculate candidate limit C̄t :

C̄t = tanh (wc · [ht−1, xt ]+ bc) (6)

Current new state Ct is:

Ct = ft × Ct−1 + it × C̄t (7)

Secondly, the output information is determined necessarily.
The output information is determined by multiplying the out-
put of the tanh-layer and the output of the ‘‘output threshold’’
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of the S-layer. Suppose the output unit state is Ot ,wo is
the weight vector of the output state, bo is the threshold, ht
represents output information. The state of output unit is:

Ot = σ (wo · [ht−1, xt ]+ bo) (8)

Output information ht is:

ht = Ot × tanh (Ct ) (9)

In LSTM recurrent neural network, due to the ‘‘memory
function’’, The historical information can be effectively uti-
lized and the regression model can also be better established
[26]. For MLSTM, it is improved based on LSTM, so the
proposed algorithm can retain original advantages and can
also predict multi-output variables simultaneously.

III. ADAPTIVE SEMI-SUPERVISED MULTI-OUTPUT
SOFT-SENSORS
The purpose of co-training algorithm is to select appropriate
unlabeled data with high confidence and then to optimize the
performance of prediction model. In this section, an adaptive
co-trainingMRPLS-MLSTM is proposed. The proposed soft-
sensor can not only deal with dynamic multi-output learning
in industrial process, but also be able to approach the hybrid
behaviors of linearity and nonlinearity.

A. ADAPTIVE SEMI-SUPERVISED MULTI-OUTPUT
SOFT-SENSOR BY CO-TRAINING MRPLS
The core idea behind co-training MRPLS is that, by com-
bining the co-training paradigm with MRPLS, the semi-
supervised soft-sensor can be built to deal with unlabeled
data. The reasons for selecting MRPLS are mainly from
following aspects. First of all, as an adaptive algorithm,
MRPLS can update the model though the changed data and
make the model adapt to the external environment. Also,
MRPLS can predict multiple output variables simultaneously
through one modeling, which improves the efficiency of
prediction. Finally, because the co-training algorithm is an
iterative method, the building of model should not be time-
consuming. As everyone knows, PLS is a linear modeling
method, modeling fast is its advantage, so is MRPLS.

The procedure of co-training MRPLS is depicted as
follows. Let L denotes the labeled data set and U
denotes the unlabeled data set. L = {X ,Y } ={
(x1, y1) , (x2, y2) . . .Â(x|L|, y|L|)

}
, X and Y are the input

and output data respectively. |L| and |U | are the sizes of
corresponding data sets.

Firstly, L is split into two parts L1 and L2, which repre-
sent two independent data sets. Then two regression mod-
els h1(L1) and h2(L2) can be built by the two labeled data
sets L1 and L2. The root means squared error (RMSE) of
the labeled data set L was calculated by h1(L1) and h2(L2),
defined R. After that, every unlabeled data xu was used to
receive the predictive values ŷ1u and ŷ

2
u. Then, let

(
xu, ŷ1u

)
and(

xu, ŷ2u
)
serve as the new labeled data and be put in L1 and

L2. two sets are updated and be used to build new models
h′1(L1,

(
xu, ŷ1u

)
) and h′2(L2,

(
xu, ŷ2u

)
). Accordingly, the new

RMSE R′ was calculated by the new model h′1(L1,
(
xu, ŷ1u

)
)

and h′2(L2,
(
xu, ŷ2u

)
) in the original labeled data set. By cal-

culating the difference of R and R′, we take the maximum
value as the new labeled data with the highest confidence of.
Finally, we put (xu, h2(xu)) into L1 and (xu, h1(xu)) into L2 by
the cross-placementmethod. The specific confidence formula
is as follows:

∇u=

∣∣∣∣∣∣
√∑

xi∈L (yi−h (xi))
2

|L|
−

√∑
xi∈L (yi−h

′ (xi))2

|L|

∣∣∣∣∣∣ (10)

where xi ∈ L and yi ∈ L represent the labeled input and
output data respectively. |L| denotes the size of data. h is the
initial regression model, h′ is the new regression model when
add new labeled data (xu, ŷu). In a word, by calculating the
∇u, the unlabeled data with the highest consistency against
the original labeled can be selected, and then the new labeled
data set will be use to improve the accuracy of model.

Finally, until the ending condition is satisfied, the mean
value of predictions from two new models which are built
from the new labeled sample sets is taken as the final pre-
dicted value:

h (x) =
1
2
(h1 (x)+ h2 (x)) (11)

B. ADAPTIVE SEMI-SUPERVISED MULTI-OUTPUT
SOFT-SENSOR BY CO-TRAINING MRPLS-MLSTM
For the prediction problem of nonlinear data, this paper
proposed co-training MLSTM by replacing MRPLS with
MLSTM. MLSTM, as the multi-output extension of LSTM,
can not only retain the ‘‘memory function’’ and other mer-
its, but also can predict multiple output variables through
one modeling. These greatly improve the predictive per-
formance and efficiency. In addition, the procedure of co-
training MLSTM is basically consistent with the co-training
MRPLS, except that MRPLS is replaced by MLSTM when
establishing the prediction model.

co-training MLSTM is proposed to better solve the nonlin-
ear problem that co-trainingMRPLS fails to involve. Through
the two models, the co-training algorithm can be found the
appropriate prediction model for both linear and nonlinear
data.

C. ADAPTIVE SEMI-SUPERVISED MULTI-OUTPUT
SOFT-SENSOR BY CO-TRAINING MLSTM
Based on the above co-training regression model, an adap-
tive semi-supervised multi-output soft-sensor is proposed in
this paper, termed as co-training MRPLS-MLSTM. Different
from the traditional co-training models, co-training MRPLS-
MLSTM simultaneously uses two recursive multi-output pre-
diction algorithms to build the predicted model with the
labeled data. To widen and enhance the modeling perfor-
mance, a linear multi-output model, MRPLS and a nonlinear
multi-output model, MLSTM are involved in co-training.
Also, to avoid converging into locally optimal model con-
struction, labeled data are grouped into odd-even for training
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FIGURE 2. The schematic of co-training MRPLS-MLSTM soft-sensor.

and testing. Overall, the soft-sensor can attempt to solve
the problems of data linearity-nonlinearity, time-varying and
multiple-task learning and semi-supervised learning simulta-
neously in industrial processes.

The calculation procedures of co-training MRPLS-
MLSTM are shown in Fig. 2 (where (A) and (B) represent the
training and prediction procession respectively). In Fig. 2 (A),
the odd-even grouping method is to mark the data number,
and then divide the labeled data into two groups by the num-
ber. Also, the max represents to select the xu corresponding
to the largest ∇u. It should be noticed that when update the
labeled data set, we put (xu, h2(xu)) into L1 and (xu, h1(xu))
into L2 by the cross-placement method. In Fig. 2(B), when
the training is ending, the new labeled data sets are used to
establish the models h1 and h2 throughMRPLS andMLSTM.
Then, the final prediction value is determined by the mean of
h1(x) and h2(x). At the same time (x, h1 (x)) and (x, h2 (x))
will be added into L1 and L2 to update labeled data sets.
During the procession, labeled data L mean those data with
input output variates, the residual are unlabeled dataU . L and
U will keep changing under different simulation conditions.
To further clarify the calculation, the procedures are tabulated
as follows:

In this soft-sensor, heterogeneous models, including
MRPLS and MLSTM, are co-trained to make predictions
for multiple hard-to-measure variables. The soft-sensor can
select appropriate unlabeled data efficiently to update the pre-
diction model. Then, the soft-sensor overcomes the disadvan-
tages which divide labeled data locally. Moreover, two differ-
ent types of regression algorithms can establish more genetic
models to approach widen process variations. Additionally,
by using the on-line regression algorithm, the prediction
model can be updated with new collected data information
efficiently.

IV. CASE STUDIES
In order to evaluate the prediction performance of co-training
MRPLS-MLSTM, two simulation studies were provided.
One case is a well-established wastewater plant (WWTP)

TABLE 1. Algorithm: Co-training MRPLS-MLSTM soft-sensor.

validation platform, sampled every 15 minutes. Whereas the
other is a real sewage treatment plant, with every sample
being collected every day.

The prediction performance of co-training MRPLS-
MLSTM is evaluated by RMSE, correlation coefficient (R)
and D-values, the detailed formulas are as follows:

RMSE =

√∑n
i=1

(
ŷi − yi

)2
n

i = 1, 2, . . . n (12)

R
(
Y , Ŷ

)
=

cov(Y , Ŷ )√
var [Y ] var[Ŷ ]

(13)

D− values = |predict values− real values| (14)

where n is the size of sets, ŷi and yi denote predicted
value and real value respectively, Ŷ = (ŷ1, ŷ2, . . . , ŷn),
Y = (y1, y2 . . . , yn).cov(Y , Ŷ ) represents the covariance of
Y and Ŷ , var [Y ] and var

[
Ŷ
]
are variance of Y and Ŷ .

Smaller RMSE represents better prediction performance of
soft-sensors. Rmainly falls inside [0,1], the value which is the
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TABLE 2. RMSE, R and RMSSD of prediction variables.

closer to 1 means the better performance. D − values means
the loss between predicted value and real value.

To access the prediction performance for multiple
responses, RMSSD detail formula is as follows:

RMSSD =

√
1
N
trace

{(
Y − Ŷ

)′ (
Y − Ŷ

)}
(15)

where trace represents the trace of thematrix,N is the number
of the output data set. Smaller RMSSD is better prediction
performance of a soft-sensor.

FIGURE 3. Schematic of the BSM1.

A. BENCHMARK SIMULATION MODEL 1 (BSM1)
1) BACKGROUND
The first International AssociationWater Quality Task Group
developed Benchmark Simulation Model (BSM). The sim-
ulation benchmark plant is shown in Fig. 3, it consists of
a bioreactor (5999 m3) and a secondary sedimentation tank
(4 m deep, 10 layers, 6000 m3). There are five mixed small
cell reaction tanks in the bioreactor, the first two compart-
ments are non-aerated, whereas the others are aerated. There
are two types of internal circulation: activated sludge circula-
tion is from the bottom of the secondary sedimentation tank
to the front end of the plant and nitrate internal circulation is
from the last tank to the first tank. The average flow rate of
sewage treatment is 20000 m3/day, the average concentration
of chemical oxygen demand (COD) is 300mg/L. Nitrification

and denitrification reactions are required to remove organic
matter. This plant samples every 15minutes for every variable
and simulates the sewage treatment process under sunny
conditions for 14 days, collecting 1344 sets of data [27].

The case study is to validate the adaptive semi-supervised
multi-output soft-sensor co-training MRPLS-MLSTM to
achieve suitable predictions. In this study, because readily
biodegradable substrate effluent (SS-E), NH+4 +NH3 nitro-
gen effluent (SNH-E), nitrate and nitrite nitrogen effluent
(SNO-E), chemical oxygen demand for effluent (COD-E)
and five-day biological oxygen demand effluent (BOD5-E)
are quality-related hard-to-measure variables, and they can
represent the treatment efficiency of WWTP, we denote them
as the output variables. To access the prediction performance,
we compare co-training MRPLS-MLSTM with other models
(co-training MPLS, co-training MBP, co-training MRPLS
and co-trainingMLSTM). In addition, according to themech-
anism analysis and expert experiences, 15 important variables
are selected as input variables and the aforementioned 5 vari-
ables act as output variables shown as the appendix Table. 4
(the variables 16-20 are the output variables). Half of 672 data
sets are taken as labeled data. Then, the remaining data sets
are taken as unlabeled data, but their output variables need
to be overwritten. Until the end of the iteration, the output
variables of the unlabeled data are supplemented completely
as test data to verify the prediction performance.

2) PREDICTION PERFORMANCE OF CO-TRAINING
MRPLS-MLSTM SOFT-SENSO
To present the prediction performance, Table. 2 displays
all criterion evaluation results of these models (co-training
MPLS, MBP, MRPLS, MLSTM and MRPLS-MLSTM).
According to the RMSSD, in non-adaptive soft-sensors, co-
training MBP is more accurate than co-training MPLS. The
main reason is that MBP is better than MPLS to approxi-
mate the nonlinear complex sewage treatment process. For
adaptive soft-sensors, co-training MRPLS-MLSRM achieves
the best prediction performance with RMSSD being 1.963.
This value decreases by 21.81% and 47.41% compared with
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FIGURE 4. Fits of the prediction and real values with respect to output variables using non-adaptive and adaptive soft-sensors
for the case study 1.

the adaptive co-training MRPLS and co-training MLSTM.
Because co-training MRPLS-MLSRM is a heterogeneous
soft-sensor, by linear and nonlinear models, it can make
two models complementary. Moreover, by comparing RMSE
and R between the same output variables, it is obvious that
the prediction results by co-training MRPLS-MLSTM are
most accurate. In particular, RMSE of BOD5 is reduced by
90.74% and 85.39% than non-adaptive co-training MPLS
and co-training MBP, respectively. However, for adaptive
soft-sensors, it is noted that co-training MLSTM has the
better prediction performance for SS and SNH, even bet-
ter than the co-training MRPLS-MLSTM. This is mainly
because the proposed soft-sensor and other models belong
to multi-output models, they can satisfy the condition of
the optimal overall output variables, rather than every out-
put variable. In a word, we can know from the Table.
2 that co-training MRPLS-MLSTM has the best results
for BSM1, which is usually a stable system under sunny
conditions.

The predicted curves of non-adaptive and adaptive soft-
sensors are compared with the real curve in Fig. 4. In non-
adaptive soft-sensors co-trainingMPLS and co-trainingMBP,
it can be seen that the predictive results of co-training MBP
are better than co-training MPLS, especially the prediction
of output variable SS. Also, by comparing with the adap-
tive soft-sensors, we found co-training MRRPLS-MLSTM
can better track the change trend of the target. For exam-
ple, the prediction curve of peaks and valleys of co-training
MRPLS-MLSTM soft-sensor for COD can be completely
consistent with the real curves, the prediction curve of co-
training MLSTM is worst. This further proves the proposed
soft-sensor having excellent prediction ability for important
variables of sewage treatment plants under stationary condi-
tions. However, it is worth noting the prediction curve of SS.
Obviously, co-trainingMLSTM is the most accurate model to
track the real curve, the performance of the proposed model
is not as good as it. The main reason is that they belong to
multi-output soft-sensors, by establish a prediction model to
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TABLE 3. RMSE, R and RMSSD of prediction variables.

FIGURE 5. A wastewater plant for validation.

predict multiple output variables, it is impossible to achieve
optimal results for every variable. Finally, compared with
the prediction curves of the non-adaptive and adaptive, it is
no hard to find that adaptive soft-sensors are better. This is
because they use recursive regression algorithm to update the
prediction model with new data information.

B. A REAL WASTEWATER TREATMENT PLAN
1) BACKGROUND
Different from the simulation platform in the first case study,
the second case collected data from a real sewage treat-
ment plant. As shown in Fig. 5, the proposed wastewater
plant process (Blake and Merz, 1998) consists of five parts:
pretreatment, primary precipitation, aeration tank, secondary
precipitation and sludge reflux. The plant has a sewage treat-
ment capacity of 35 000 m3/day, more details can be seen in
[28]. In this process, with the time going by, the population
of microorganisms (both in quality and number of species)
and the influent rate are varied. because of lack of instru-
mentation, the collecting period of the data is one day, a total
number of data is 527.

In this case study, because the collected data belong to real
wastewater treatment plants data, the predictive performance

TABLE 4. Selected variables for modeling in BSM1.

of co-training MRPLS-MLSTM can be evaluated in real
wastewater treatment plants. The effluent chemical oxygen
demand (DQO) and biological oxygen demand (DBO), DQO
and DBO of secondary settlers (RD-DQO-S and RD-DBO-S)
are selected as the output variables. because of the small
amount of data set, the all 38 variables were selected from the
measurable variables as the input and output variables. The
detailed variables information is shown in appendix Table. 5
(the variables, 28-29 and 33-34, are the output). Due to the
abnormal data points affected by rain-storm in the data and
partial missing data, 126 groups of data were deleted before
model training. To verify the prediction performance of the
proposed soft-sensor for abrupt change data, some data points
less affected by the environment were retained. The first
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FIGURE 6. Fits of the prediction and real values with respect to output variables using non-adaptive and adaptive soft-sensors
for the case study 2.

200 sets of data are taken as labeled data, and the remaining
200 sets of data are taken as unlabeled data after covering
the output variables. When the termination condition is met,
output variables of unlabeled data are supplemented as test
data to evaluate the predicted performance.

2) PREDICTION PERFORMANCE OF CO-TRAINING
MRPLS-MLSTM SOFT-SENSO
Table. 3 is the criterion evaluation results of prediction vari-
ables by the non-adaptive and adaptive models (co-training
MPLS, MBP, MRPLS, MLSTM and MRPLS-MLSTMmod-
els). According to the RMSSD values, co-training MBP
is still better than co-training MPLS in non-adaptive soft-
sensors. This is because data of real wastewater treatment
plants have more nonlinear characteristics, co-training MBP
can be more accurate approximation. Also, we can see the
value of co-training MRPLS-MLSTM alleviates 2.22% and
9.13% than adaptive co-training MRPLS and co-training
MLSTM, but for co-training MPLS and co-training MBP,
it increases 15.31% and 14.41%. the reason is that heteroge-
neous co-training MRPLS-MLSTM can make models com-
plementary, it can solve more comprehensive data prediction
problems. But, for the data with frequent fluctuations, het-
erogeneous soft-sensors will affect each other, making the

prediction performance of the model worse. By comparing
RMSE and R, it is shown that co-training MRPLS-MLSTM
has better prediction results for DBO than other models. The
RMSE values decreases 25.01% and 41.29% than co-training
MRPLS and co-training MLSTM. In addition, for the other
output variables, co-training MRPLS-MLSTM has the better
predictive performance than other adaptive models. However,
the non-adaptive models have the better prediction perfor-
mance than adaptive models. Therefore, the proposed soft-
sensor can only enhance predictive accuracy over the other
adaptive models in the real wastewater treatment plant.

The prediction curves of co-trainingMRPLS-MLSTM and
other soft-sensors for output variables are shown in Fig. 6
Obviously, the prediction curves of non-adaptive soft-sensors
are more accurate than adaptive soft-sensors, especially the
prediction of peaks and valleys. This proves that these adap-
tive soft-sensors cannot optimize the real data with frequent
fluctuations. But the prediction curve of co-training MRPLS-
MLSTM for DBQ-S is an exception, as can be seen in Fig. 6.
In addition, we found that all soft-sensors could not track
outliers well, but the prediction results of heterogeneous co-
training MRPLS-LSTM was relatively accurate. In a word,
the prediction of these model for the hard-to-measure vari-
ables of the real sewage plant need to be further study.
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TABLE 5. The variables introduction in the real wastewater treatment
plant.

V. DISCUSSION
An improved adaptive co-training MRPLS-MLSTM was
proposed in this paper. The soft-sensor used recursive multi-
variate regression algorithms to predict the multi-output vari-
ables. It provided a simple but powerful tool for predicting
the important variables of sewage treatment plants. Compared
with the traditional co-training models, it can not only solve
the linear prediction problem effectively, but also realize
the nonlinear prediction well. Firstly, adopts the odd-even
grouping method when dividing the labeled data. This effec-
tively avoids making model training using the local data with
unnecessary data fluctuation. Secondly, the linear MRPLS
model and nonlinear MLSTM model are integrated to deal
with the hybrid behaviors of a process, thus leading to widen
process adaptation. Moreover, recursive models are used to
predict multi-output variables in order to make better use of
the information of new data and establish a more accurate
prediction model efficiently.

The proposed soft-sensor is verified by a simulated sewage
treatment plant (BSM1) and a real sewage treatment plant
(UCI). The simulated sewage plant is sufficiently equipped
with short sampling period and the data are considered
to be sufficient, whereas for real sewage treatment plants,
the process is complex and exposes to extreme conditions
sometimes. Furthermore, there will be more hard-to-measure
variables in real field. When co-training MRPLS-MLSTM
soft-sensor is applied to two cases, satisfactory prediction
results can be achieved better prediction results than other
models. In non-adaptive soft-sensors, the performance of co-
training MBP is better than co-training MPLS, the reason
is that nonlinear MBP is better to approximate the non-
linear complex sewage treatment process. In adaptive soft-
sensors, because sewage treatment is a complicated and
dynamic process, the data usually exhibit strongly time-
varying features and a real industrial process is hard to
define to be linear or nonlinear. Thus, the heterogeneous
co-training MRPLS-MLSTM can achieve more accurate pre-
diction results. At last, we can draw a conclusion from two
cases. Co-training MRPLS-MLSTM cannot only accurately
predict stable large dataset, but also effectively solve the
prediction problem of small dataset.

In our study, we assumed that labeled data is sufficient. In
other words, labeled data can be used to establish an accurate
initial regression model after being evenly divided into two
parts. For the case of large sample data, it is obvious that the
soft-sensor can achieve satisfactory prediction performance.
Therefore, the proposed co-training MRPLS-MLSTM is a
convenient and efficient multi-output model. However, for a
small sample of time-varying data, the adaptive soft-sensors
would often reduce the prediction performance during the
process of updating the models. Therefore, in the proposed
model, MRPLS and MLSTM can be replaced by other lin-
ear or nonlinear models [29], and the recursive method can
also be used in others, such as just-in-time learning (JITL)
and so on [30].
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VI. CONCLUSION
An adaptive semi-supervised multi-output soft-sensor,
termed as co-training MRPLS-MLSTM, is proposed to
predict hard-to-measure variables in a simulated sewage
treatment plant (BSM1) and a real sewage treatment plant
(UCI). By integrating the linear recursive multi-output
model (MRPLS) with nonlinear recursivemulti-output model
(MLSTM), the prediction performance of the proposed soft-
sensor can be indeed improved, in terms of RMSSD decreas-
ing 21.81% and 47.41% than other adaptive multiple-output
soft-sensors. Moreover, the odd-even grouping methods can
be able to select the global labeled data to build the accurate
model. However, the proposed soft-sensor requires a large
amount of labeled data when establishing the initial regres-
sion model. Future study can focus on the improvement of
adaptive semi-supervised multiple-output models under the
small sample data or mechanism-based modeling.

APPENDIX
See Tables 4 and 5.
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