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ABSTRACT Non-orthogonal multiple access (NOMA)-enabled heterogeneous networks (N-HetNets) can
provide higher system capacity and spectrum efficiency by allowing multiple users cooperating in the
same channel. However, traditional resource allocation algorithms are achieved under perfect channel
state information (CSI) which is difficult to obtain in practical systems. In this paper, we study the total
energy efficiency maximization problem in a downlink multicell N-HetNets under imperfect CSI, where the
constraints of the quality of service of small-cell users, the maximum transmit power, and the cross-tier
interference are considered. With the help of the ellipsoidal uncertainty sets, an iterative-based power
allocation and user association algorithm is proposed based on the worst-case approach and the Lagrange
dual method. Moreover, computational complexity, robust sensitivity and the impact of imperfect CSI error
on user’s outage probability are provided to insight the performance of the proposed algorithm. Simulation
results demonstrate the robustness of the proposed algorithm.

INDEX TERMS Heterogeneous network, non-orthogonal multiple access, resource allocation, energy
efficiency.

I. INTRODUCTION
With the increasing requirements of high-speed data rates,
it is obvious that the conventional wireless network archi-
tecture cannot support the requirements of future commu-
nication systems [1], [2]. To achieve the growth of mobile
data and deploy the task offloading of macro base stations
(MBSs), heterogeneous network (HetNet) has been regarded
as a promising technology [3], where multiple small cells
(SCs) are overlaid with the traditional macrocell network to
improve system capacity and spectrum efficiency [4]–[7].

However, the additional deployment of SCs overlaid the
existing macrocell inevitably brings more challenges to
resource allocation (RA) problems due to the multi-user
interference and the cross-tier interference. Moreover, with
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the increasing number of access users, the limited spectrum
resource and multiple access interference can prevent further
increase in system capacity. Thus, non-orthogonal multiple
access (NOMA) as another promising technology has been
proposed to enhance the spectrum reuse and connectivity den-
sity [8]–[14]. In NOMA systems, it is possible to further pro-
vide higher spectrum efficiency by allowing multiple users
coexisting on the same resource block (e.g., subchannel),
where successive interference cancellation (SIC) technology
is used at the receiver for signal separation and co-channel
interference reduction. Therefore, NOMA-enabled HetNets
have been concerned in recent years [15]–[17].

A. RELATED WORKS
RA is an effective technology in NOMA-enabled HetNets
to achieve interference management, power allocation
and user association. Currently, RA problems have been
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concerned from perfect channel state information (CSI) and
imperfect CSI.
Perfect CSI: The RA problems with the overall throughput

maximization have been studied in [18]–[20]. For instance,
in [18], a joint user scheduling and power control algo-
rithm was proposed to maximize the overall throughput for
downlink NOMA-based HetNets. But only one SC is con-
sidered. For a downlink NOMA-based heterogeneous cog-
nitive network with one macrocell and multiple SCs [19],
the sum throughput ofmultiple SCswasmaximized by jointly
optimizing bandwidth allocation, power allocation, and user
clustering. In [20], a compressive sensing based spectrum
allocation and power control algorithm was proposed to
achieve the overall sum-rate maximization while consid-
ering both co-tier and cross-tier interferences. To improve
data rate and reduce power consumption, EE-based RA
problems have been studied in [21]–[24] according to dif-
ferent network scenarios. In [21], the authors aimed to max-
imize the sum EE of one macrocell and SCs by jointly
optimizing subchannel and power allocation. For simulta-
neous wireless information and power transfer (SWIPT)
based HetNets [22], an EE maximization problem of SCs
was studied by decoupling the original problem into the
suchannel allocation problem and the power control problem,
respectively. For energy harvesting-enabled-power domain
(PD)-NOMA-based HetNets [23], the authors proposed joint
subcarrier assignment and power allocation algorithms to
achieve fair energy-efficient RA under the constraints of
SIC ordering and user’s fairness. Moreover, the joint sub-
carrier assignment and global energy-efficient power alloca-
tion problem was investigated for energy-harvesting two-tier
downlink NOMA HetNets. However, these aforementioned
works about RA problems have been achieved under the
assumption of perfect CSI, and lack of the discussion on
imperfect CSI. It is difficult to obtain exact CSI due to the
effects of estimation errors, feedback delays, and quantization
errors of actual physical channels.
Imperfect CSI: Since it is difficult to obtain perfect CSI due

to quantization errors and parametric estimation errors, robust
RA schemes with imperfect CSI in NOMA-based HetNets
have been considered in [25]–[28]. In [25], a bisection search
algorithm via a gradient value was proposed to achieve
robust EE maximization of SCs under the outage probabil-
ity constraints of users. Moreover, consider the non-ideal
SIC, the distributed cluster formation and power-bandwidth
allocation problem was studied for downlink NOMA-based
HetNets [26]. Robust RA problems have been also extended
to heterogeneous vehicular networks [27] and heterogeneous
Internet of Things (IoT) networks [28].

B. MOTIVATION AND CONTRIBUTIONS
Most of the existing works have not considered imperfect
CSI. Although some RA algorithms with imperfect CSI have
been studied from the perspective of stochastic optimiza-
tion [25], [26], robust sensitivity (i.e., the impact of uncer-
tain parameter on system performance) and computational

complexity have not been analyzed, which is helpful to under-
stand the impact of uncertainty on system performance, such
as performance gap (i.e., the performance difference between
the optimal RA design and the robust RA design). Therefore,
it is necessary to insight the robust RA algorithm for multicell
NOMA-based HetNets to obtain good system capacity and
robustness. To the best of our knowledge, this topic has not
been studied. In this paper, we address a robust EE maxi-
mization problem of multiple SCs under bounded channel
uncertainties for downlink NOMA-based HetNets with one
macrocell and multiple SCs. This work differs from previous
works [25] and [26] in its imperfect CSI model and system
models, where imperfect CSI errors follow certain statical
models. The main contributions are summarized
• We formulate a robust EE maximization problem for a
downlink NOMA-based multicell HetNet with bounded
channel uncertainties. At the same time, we consider the
factors which can affect the overall EE, including the
quality of service (QoS) requirement of each user,
the maximum transmit power constraint of base station,
and the cross-tier interference power constraints for
macrocell users (MUs). Moreover, an EE maximization
framework with user association and power allocation is
proposed.

• Considering that the initial robust EE optimization
problem is non-linear and non-convex, the worst-
case approach is introduced, which can convert the
constraints and the objective function with uncertain
parameters into the deterministic ones. Additionally,
the fractional programming (FP) problem is transformed
into an equivalent subtractive form. Then, the problem is
solved by using Karush-Kuhn-Tucker (KKT) conditions
and Lagrange dual methods.

• To insight the robustness, we further analyze the com-
putational complexity, robust sensitivity, and the impact
of estimation error on outage probability. Finally, sim-
ulation results verify the effectiveness of the proposed
algorithm.

The rest of this paper is organized as follows. In Section II,
an EE-based RA problem with channel uncertainties is pre-
sented. In Section III, a robust RA algorithm is provided,
which includes the uncertainty modeling, the transformation
of optimization problem, and a robust RA algorithm design.
Section IV gives performance analysis. Simulation results
are shown in Section V. Finally, Section VI summarizes
this paper. The abbreviations used in this paper are given
in Table 1.

II. SYSTEM MODEL
We consider a downlink two-tier NOMA-based HetNet,
as shown in Fig. 1, whereM SCs are overlaid with onemacro-
cell. In the macrocell, there are K MUs. Denote the index set
of SC base station (SBS) byM = {1, 2, · · · ,M} (∀m ∈M)
and the index set of MUs by K = {1, 2, · · · ,K } (∀k ∈ K).
Assume that there are N small-cell users (SUs) in each SC,
denoted by N = {1, 2, · · · ,N } (∀i, j ∈ N ). Under an
underlay spectrum sharing mode, SUs are allowed to access
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TABLE 1. Abbreviation.

FIGURE 1. A downlink multicell NOMA-based HetNet with uncertain
channels.

the spectrum owned by MUs when the cross-tier interference
from SBSs to each MU receiver does not extend the inter-
ference limits of MUs. The interference power among dif-
ferent SCs can be ignored due to the low-power features and
strongwall penetration loss [22], [29]. The symbols of system
parameters are listed in Table 2.

Without loss of generality, the channel gains of all SUs in
the m-th SC are sorted in descending order by hm,1 ≥ hm,2 ≥
· · · ≥ hm,N [30]–[32]. According to the downlink PD-based
NOMA principle, the i-th SU can decode the signals of the
j-th SU for i > j and remove the weak interference item from
its own signals, but treats the strong signals of the j′-th SU as
the interference power for j′ > i. The signal-to-interference-
plus-noise ratio (SINR) received at the i-th SU of SC m is

γm,i =
pm,ihm,i

hm,i
i−1∑
j=1

pm,j + Pkgkm,i + σ
2

. (1)

Since each SU can be served only by one SBS every time,
we can define αm,i as the user association factor. If the i-th
SU associates with SBS m, αm,i = 1; otherwise αm,i = 0.

TABLE 2. System parameters.

As a result, the user association constraint is

αm,i = {0, 1},
M∑
m=1

αm,i = 1. (2)

Since the transmit power of each SBS cannot be infinite,
we have the following transmit power constraint

N∑
i=1

αm,ipm,i ≤ pmax
m . (3)

Additionally, it is necessary to consider the cross-tier
interference power from SBSs to each MU receiver in our
considered HetNets. Thus we have

M∑
m=1

N∑
i=1

αm,ipm,igm,k ≤ I thk . (4)

It can guarantee the QoS requirement of MU k .
According to Shannon’s capacity formula, the data rate of

SU i in SC m is

Rm,i = αm,ilog2(1+ γm,i). (5)

Accordingly, considering the QoS constraint of each user,
a joint user association and power allocation problem can be
formulated to achieve total EE maximization of SUs

max
αm,i,pm,i

M∑
m=1

N∑
i=1

Rm,i

M∑
m=1

N∑
i=1
αm,ipm,i + Pc

s.t. C1 :

M∑
m=1

αm,i = 1, αm,i = {0, 1},

C2 :

N∑
i=1

αm,ipm,i ≤ pmax
m ,

C3 : Rm,i ≥ Rmin
m,i ,

C4 :

M∑
m=1

N∑
i=1

αm,ipm,igm,k ≤ I thk , (6)
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whereC1 can guarantee that each SU has one associated SBS.
C2 denotes the overall transmit power of SUs in each SC
below a maximum power threshold. C3 denotes the mini-
mum rate constraint of each SU. C4 represents the cross-tier
interference constraint to keep the QoS of each MU. Obvi-
ously, problem (6) is a mixed integer and non-convex FP
problem with variables αm,i and pm,i, which is difficult to
directly obtain the closed-form solutions. Moreover, problem
(6) belongs to a non-robust optimization problemwith perfect
CSI since there is no channel estimation errors in variables
gm,k and hm,i [5].

However, the assumption of perfect CSI is unreasonable for
practical wireless communication systems. Because there is
no cooperation between SUs and MUs so that channel gains
of cross-tier links are difficult to exactly obtain due to the
existence of channel estimation errors caused by quantization
errors and channel delays.

Thus, the actual channel gains can be reformulated as{
hm,i = h̄m,i +1hm,i,
gm,k = ḡm,k +1gm,k ,

(7)

where h̄m,i and ḡm,k denote the estimated channel gains,
and 1hm,i,1gm,k are the corresponding channel estimation
errors. For traditional existing RA algorithms with perfect
CSI, they assume that there are no channel estimation errors,
namely,1hm,i = 0,1gm,k = 0. In other words, the estimated
channel gains are assumed to be equal to the true channel
gains, such as hm,i = h̄m,i and gm,k = ḡm,k (problem (6)).
But this may cause outage probabilities of users when the
designed RA algorithms are employed in actual HetNets,
which will be analyzed in the following Section.

If channel estimation errors formulated in (7) are
considered in problem (6), we have a robust counterpart
problem

max
αm,i,pm,i

M∑
m=1

N∑
i=1

Rm,i(h̄m,i,1hm,i)

M∑
m=1

N∑
i=1
αm,ipm,i + Pc

s.t. C1,C2,

C3 : Rm,i(h̄m,i,1hm,i) ≥ Rmin
m,i ,

C4 :

M∑
m=1

N∑
i=1

αm,ipm,i(ḡm,k +1gm,k ) ≤ I thk ,

C5 : 1hm,i ∈ Rh, 1gm,k ∈ Rg, (8)

where C5 denotes uncertainty sets that can decide the impact
of uncertainties on optimal solutions. For example, when
1gm,k is a very big value and bigger than zero, the maximum
transmit power pm,i becomes small via C4. Therefore, how
to decide the uncertainty sets of channel estimation errors
(e.g., 1hm,i,1gm,k ) is very important to balance between
robustness and optimality. Moreover, problem (8) is
non-convex and more complex due to the introduction of C5,
which is challenging to directly solve.

III. ROBUST RA ALGORITHM
A. UNCERTAINTY MODELING
According to the survey on robust RA [33], there are two
methods to achieve uncertainty modeling: Bayesian approach
and the worst-case approach. Bayesian approach formulates
the estimation errors as statistical models. For instance,
the estimation error belongs to a Gaussian distribution model
[25]. On the other hand, the worst-case approach formu-
lates the estimation errors as bounded uncertainty sets. For
instance, the estimation error is bounded by a Euclidean
norm [34], [35]. This method can overcome the impact of
all possible channel estimation errors which are confined to
certain ranges with upper bounds. Thus, it can provide more
reliability without any outages.
In this paper, in order to well protect the QoS of MUs,

we use theworst-case approach tomodel the uncertain param-
eters. The reason is that, under the underlay spectrum sharing
mode, the MU has higher priority to use spectrum resource.
The communication quality of MUs cannot be interrupted,
such as user’s outage. To provide user’s robustness and
improve system EE, we consider that the channel estimation
errors are modeled by the bounded sets that represent the dis-
tances between the actual values and the estimated values. For
instance, the distances are mathematically expressed by the
general definition of norm [36]. In such case, the uncertainty
set of channel estimation error on SU’s link (1hm,i) is

Rh =
{
1hm,i | |hm,i − h̄m,i| ≤ δm,i

}
, (9)

where |·| denotes the absolute value operator. δm,i is the upper
bound of imperfect CSI error from SBS m to SU i. When δm,i
is a big value, it means that the estimated channel gain h̄m,i is
far from its true value hm,i. Otherwise, the estimated channel
gain is more accurate.
Similarly, the uncertainty set of the channel estimation

errors between SBSs to the k-th MU is defined as

Rg =
{
gk |

∥∥gk − ḡk∥∥ ≤ εk} , (10)

where ‖·‖ denotes 2-norm. gk = [g1,k , · · · , gM ,k ]T and ḡk =
[ḡ1,k , · · · , ḡM ,k ]T are the actual and estimated channel gain
vectors, respectively, and εk is the upper bound of overall
imperfect CSI errors from SBSs to the k-th MU. Moreover,
the values of δm,i and εk as well as the definition of norm are
decided by the sizes of estimation errors and the sources of
channel uncertainties. And the upper bounds of uncertainty
sets can be obtained by the same approach in [34].

B. TRANSFORMATION OF ROBUST
OPTIMIZATION PROBLEM
In this subsection, we will discuss how to transform the prob-
lem (8) with uncertainty sets (9) and (10) into a convex one.
To do this, we have two challenges according to the structure
of problem (8). The first one is how to covert the fractional
objective function into a non-fractional one. The second one
is how to transform the robust constraints C3, C4 and the
objective function with uncertain parameters into the convex
ones.
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Since the integer optimal variable αm,i makes the original
problem be more challenging, hence, we introduce an auxil-
iary variable p̄m,i = αm,ipm,i to deal with this problem by a
relaxation approach. As a result, problem (8) becomes

max
αm,i,p̄m,i

M∑
m=1

N∑
i=1

R̄m,i(h̄m,i,1hm,i)

M∑
m=1

N∑
i=1

p̄m,i + Pc

s.t. C̄1 : 0 ≤ αm,i ≤ 1,

C̄2 :

N∑
i=1

p̄m,i ≤ pmax
m ,

C̄3 : R̄m,i(h̄m,i,1hm,i) ≥ Rmin
m,i ,

C̄4 :

M∑
m=1

N∑
i=1

p̄m,i(ḡm,k +1gm,k ) ≤ I thk ,

C5 : 1hm,i ∈ Rh, 1gm,k ∈ Rg, (11)

where R̄m,i = αm,ilog2(1+
p̄m,ihm,i

hm,i
i−1∑
j=1

p̄m,j+αm,iσ̄ 2
) and σ̄ 2

=

Pkgkm,i + σ
2.

To overcome the impact of channel uncertainties and
achieve steady transmission without outage communication,
problem (11) via theworst-case approach can be reformulated
as

max
αm,i,p̄m,i

min


M∑
m=1

N∑
i=1

R̄m,i(h̄m,i,1hm,i)

M∑
m=1

N∑
i=1

p̄m,i + Pc


s.t. C̄1, C̄2,C5,

C̄3 : min
{
R̄m,i(h̄m,i,1hm,i)

}
≥ Rmin

m,i ,

C̄4 : max

{
M∑
m=1

N∑
i=1

p̄m,i(ḡm,k+1gm,k )

}
≤ I thk .

(12)

The objective of the worst-case approach used in problem
(12) is to keep the transmission quality without any outage
under bounded channel uncertainty sets. This method can
guarantee the minimal rate of SU i (R̄m,i) above the rate
threshold Rmin

m,i under the channel estimation error 1hm,i.
Moreover, it aims to keep the QoS of MU k under the max-
imum cross-tier interference power with channel estimation
errors 1gm,k . Obviously, the key problem is to transform the
left items of constraints C̄3 and C̄4 into convex ones.

To deal with the uncertainties in problem (12), we decom-
pose it into two subproblems with the uncertainty sets. For
the rate constraint with estimation errors in C̄3, we need to
determine the low bound of R̄m,i. Thus, combining (9) and
C̄3, we have the following subproblem

min
1hm,i

R̄m,i

s.t. hm,i ∈ [h̄m,i − δm,i, h̄m,i + δm,i]. (13)

Then we have the following relationship

R̄m,i = αm,ilog2

1+
p̄m,i

i−1∑
j=1

p̄m,j +
αm,iσ̄ 2

hm,i



≥ αm,ilog2

1+
p̄m,i

i−1∑
j=1

p̄m,j + σm,i

 , (14)

where σm,i =
αm,iσ̄

2

h̄m,i−δm,i
. Thus, the low bound of robust rate is

R̄lowm,i = αm,i log2
(
1+ γ̄m,i

)
, (15)

where γ̄m,i =
p̄m,i

i−1∑
j=1

p̄m,j+σm,i

.

Similarly, we can get the subproblem of the robust
interference constraint C̄4, i.e.,

max
1gm,k

M∑
m=1

N∑
i=1

p̄m,igm,k

s.t. 1gm,k ∈ Rg. (16)

Based on Cauchy Schwartz inequality, the upper bound of
the left side in C̄4 can be rewritten as

max
1gm,k

M∑
m=1

N∑
i=1

p̄m,igm,k

=

M∑
m=1

N∑
i=1

p̄m,iḡm,k

+ max
1gm,k

{
M∑
m=1

N∑
i=1

p̄m,i1gm,k

}

≤

M∑
m=1

N∑
i=1

p̄m,iḡm,k

+

√√√√ M∑
m=1

N∑
i=1

(p̄m,i)2

√√√√ M∑
m=1

N∑
i=1

(1gm,k )2

≤

M∑
m=1

N∑
i=1

p̄m,iḡm,k + εk

√√√√ M∑
m=1

N∑
i=1

(p̄m,i)2

≤

M∑
m=1

N∑
i=1

p̄m,i(ḡm,k + εk ). (17)

Thus, we have the following relationship

max
1gm,k

M∑
m=1

N∑
i=1

p̄m,igm,k

=

M∑
m=1

N∑
i=1

p̄m,i(ḡm,k + εk ) ≤ I thk . (18)

VOLUME 8, 2020 47611



X. Wang et al.: Joint User Association and Power Allocation in Heterogeneous NOMA Networks With Imperfect CSI

As a result, based on (15) and (18), we have the
deterministic optimization problem

max
αm,i,p̄m,i

M∑
m=1

N∑
i=1

R̄lowm,i

M∑
m=1

N∑
i=1

p̄m,i + Pc

s.t. C̄1, C̄2,

C̃3 : R̄lowm,i ≥ R
min
m,i ,

C̃4 :

M∑
m=1

N∑
i=1

p̄m,i(ḡm,k + εk ) ≤ I thk . (19)

The problem (19) is still non-convex, but it is a
deterministic optimization problem with any uncertain
parameter. Therefore, it is necessary to deal with the
non-convexity problem caused by the fractional function and
the coupled variables p̄m,i and p̄m,j.
Based on Dinkelbach’s method [38], we can transform the

objective function in problem (19) into the equivalent form

max
αm,i,p̄m,i

M∑
m=1

N∑
i=1

R̄lowm,i

M∑
m=1

N∑
i=1

p̄m,i + Pc

1
= max

αm,i,p̄m,i

{
M∑
m=1

N∑
i=1

R̄lowm,i − η

(
M∑
m=1

N∑
i=1

p̄m,i + Pc

)}
,

(20)

where η > 0 denotes an auxiliary variable which means the
total EE. If we define the optimal solutions αm,i∗ and p̄∗m,i,
we have the following optimal EE

η∗ =

M∑
m=1

N∑
i=1

R̄lowm,i (αm,i
∗, p̄∗m,i)

M∑
m=1

N∑
i=1

p̄∗m,i + Pc

. (21)

Moreover, based on successive convex approximation [21],
[39], we have the approximation relationship, such as

R̄lowm,i ≥ R̃m,i = am,iαm,ilog2(γ̄m,i)+ αm,ibm,i, (22)

where am,i =
γ̃m,i

1+γ̃m,i
and bm,i = log2(1 + γ̃m,i) −

am,ilog2(γ̃m,i). And γ̃m,i denotes the value of the last iteration
of γ̄m,i [21], [22].

Therefore, according to (19)-(22), we have the following
convex optimization problem

max
αm,i,p̄m,i

M∑
m=1

N∑
i=1

R̃m,i − η

(
M∑
m=1

N∑
i=1

p̄m,i + Pc

)
s.t. C̄1 : 0 ≤ αm,i ≤ 1,

C̄2 :

N∑
i=1

p̄m,i ≤ pmax
m ,

Ĉ3 : R̃m,i ≥ Rmin
m,i ,

C̃4 :

M∑
m=1

N∑
i=1

p̄m,i(ḡm,k + εk ) ≤ I thk . (23)

C. ROBUST RA ALGORITHM DESIGN
To obtain the closed-form solutions, we can use Lagrange
dual decomposition methods [37] to solve problem (23).
Thus, the Lagrange function is given by
L
(
αm,i, p̄m,i, βm,i, µm,i,$k , χm

)
=

M∑
m=1

N∑
i=1

R̃m,i

− η

(
M∑
m=1

N∑
i=1

p̄m,i + Pc

)
+

M∑
m=1

N∑
i=1

βm,i(1− αm,i)

+

M∑
m=1

χm(pmax
m −

N∑
i=1

p̄m,i)+
M∑
m=1

N∑
i=1

µm,i

(
R̃m,i − Rmin

m,i

)
+

K∑
k=1

$k

(
I thk −

{
M∑
m=1

N∑
i=1

p̄m,i(ḡm,k + εk )

})
, (24)

where βm,i, µm,i,$k , and χm are non-negative Lagrange
multipliers. Define X = αm,i, p̄m,i, βm,i, χm, µm,i,$k ,
the Eq. (24) can be rewritten as

L (X)=
M∑
m=1

N∑
i=1

Lm,i(X )+
M∑
m=1

N∑
i=1

βm,i − ηPc

+

K∑
k=1

$k I thk +
M∑
m=1

χmpmax
m −

M∑
m=1

N∑
i=1

µm,iRmin
m,i ,

(25)

where
Lm,i(X ) = (1+ µm,i)R̃m,i − ηp̄m,i − βm,iαm,i

−χmp̄m,i − p̄m,i
K∑
k=1

$k (ḡm,k + εk ). (26)

As a result, the dual problem of (23) becomes

min
βm,i,χm,µm,i,$k

D
(
βm,i, χm, µm,i,$k

)
s.t. βm,i ≥ 0, χm ≥ 0, µm,i ≥ 0, $k ≥ 0, (27)

where the dual function is defined as

D
(
βm,i, χm, µm,i,$k

)
= max
αm,i,p̄m,i

L(X ). (28)

From the structures of (27) and (28), it belongs to a
two-layer optimization problem. Namely, the inter layer is to
solve the optimal power allocation p∗m,i and the user associa-
tion factor α∗m,i. The outer layer is to get the optimal Lagrange
multipliers (β∗m,i, χ

∗
m, µ

∗
m,i,$

∗
k ). Moreover, problem (24) can

be considered as M × N subproblems for maximizing the
utility function of each SU i in SC m.
As a result, based on KKT conditions [37], the optimal

power allocation is

p∗m,i =

 am,i log2(e)(1+ µm,i)

(η + χm +
K∑
k=1

$k (ḡm,k + εk )


+

, (29)

where [x]+ = max(0, x).
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Based on the samemethod, the partial derivative of ∂Lm,i(X )
∂αm,i

is

∂Lm,i(X )
∂αm,i

= ϕm,i − βm,i


< 0, αm,i = 0,
= 0, 0 < αm,i < 1,
> 0, αm,i = 1,

(30)

where

ϕm,i = (1+ µm,i)am,ilog2

 pm,i(h̄m,i − δm,i)

(h̄m,i − δm,i)
i−1∑
j=1

pm,j + σ 2


−χmpm,i − pm,i

K∑
k=1

$k (ḡm,k + εk )

+ (1+ µm,i)bm,i − ηpm,i. (31)

Thus, the optimal user association policy is

αm∗,i = 1

∣∣∣∣m∗ = max
∀m

ϕm,i. (32)

Additionally, based on subgradient methods [37],
Lagrange multipliers can be updated by

χ t+1m =

[
χ tm − s1 · (p

max
m −

N∑
i=1

αm,iptm,i)

]+
, (33)

$ t+1
k =

[
$ t
k − s2 · (I

th
k −

M∑
m=1

N∑
i=1

αm,iptm,i(ḡm,k + εk ))

]+
,

(34)

µt+1m,i =

[
µtm,i − s3 ·

(
R̃m,i(ptm,i)− R

min
m,i

)]+
, (35)

where t denotes the iteration index. s1, s2, and s3 are positive
step sizes.When the step sizes are very small, it can guarantee
the convergence of the proposed algorithm [37], [40], [41].

Although the above (29)-(35) give a solution for the joint
power allocation and user association problem, it still remains
to design an algorithm to indicate the execution structure and
the executing entity for the equations. Therefore, we propose
an iterative Algorithm 1, which gives the procedures of the
implementation.

Specifically, the maximum iteration number and error
tolerance are firstly set up, and the initial EE is also given.
Since the original problem is transformed into an equivalent
subtractive form by Dinkelbach’s method. Thus, the optimal
auxiliary variable η is also equivalent to the optimal value of
the objective function in problem (19). Then the user associ-
ation and power allocation are optimized by the Lagrangian
dual decomposition method until the EE converges. The
flow chart of the proposed algorithm is also presented
in Fig. 2.

IV. PERFORMANCE ANALYSIS
In this section, to insight system performance, we give
the analysis results of computational complexity, robust

Algorithm 1 An Iterative Robust RA Algorithm
1: Initialize the maximum number of iterations fmax for the

outer layer loop, set the initial iteration f = 0, EE η(f ),
the maximum tolerance δ, the upper bounds of εk and
δm,i. Define the maximum number of SUsN , SCsM , and
MUs K , set the circuit power consumption Pc, the max-
imum transmit power of the SBS pmax

m , the maximum
interference power threshold I thk , and the minimum rate
requirement Rmin

m,i .
2: Initialize transmit power pm,i with a uniform power allo-

cation for all SUs [42].
3: Initialize αm,i with the user association method in [43].

4: while
∣∣∣∣ M∑
m=1

N∑
i=1

R̃m,i(p
f
m,i)− η

{
M∑
m=1

N∑
i=1

p̄fm,i + Pc

}∣∣∣∣ >

δ or f < fmax do
5: Initialize the maximum number of iterations Tmax for

the inter layer loop, set the initial iteration t = 0, and
Lagrange multipliers χm,$k , and µm,i;

6: repeat
7: for k = 1 to K do
8: for m = 1 to M do
9: for n = 1 to N do
10: 1) update ptm,i using (29);
11: 2) calculate ϕtm,i using (31);
12: 3) update αtm∗,i using (32);
13: 4) update χ tm,$

t
k , and µ

t
m,i using (33)-(35),

respectively;
14: end for
15: end for
16: end for
17: t = t + 1;
18: until Convergence or t = Tmax ;
19: f = f + 1, update η(f ) using (21).
20: end while

sensitivity and the impact of CSI error on outage
probability.

A. COMPLEXITY ANALYSIS
The asymptotic complexity of the proposed algorithm is
analyzed in this subsection. In Algorithm 1, the worst-
case calculation of (31) for each SU on user association
is O(MN ). According to (33)-(35), the updates of χm, $k
and µm,i are O(M ), O(K ), and O(MN ), respectively. Since
the maximum iteration number of Tmax for converging the
subgradient method is a polynomial function of operations
[42], thus the total complexity of the proposed algorithm is
O(M2N 2KTmax).

B. ROBUST SENSITIVITY
To insight the impact of uncertain parameter on total EE,
we analyze the robust sensitivity in this subsection, namely,
the performance gap between the proposed robust algorithm
via problem (23) and the non-robust algorithm based on
problem (6).
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FIGURE 2. The flow chart of the proposed algorithm.

For the sake of problem analysis, define F rob(gm,k , hm,i)
and Fnon(ḡm,k , h̄m,i) as the utility function with and without
estimation errors, respectively, we have

F rob(ḡm,k + εk , h̄m,i − δm,i)

= max

{
M∑
m=1

N∑
i=1

αm,ilog2

1+
pm,i

i−1∑
j=1

pm,j + σ 2

h̄m,i−δm,i


− η

(
M∑
m=1

N∑
i=1

αm,ipm,i + Pc

)}
s.t. C̄1, C̄2, Ĉ3, C̃4. (36)

Fnon(ḡm,k , h̄m,i)

= max


M∑
m=1

N∑
i=1

αm,ilog2

1+
pm,i

i−1∑
j=1

pm,j +
nm,i
h̄m,i



− η

(
M∑
m=1

N∑
i=1

αm,ipm,i + Pc

)
s.t. C̄1, C̄2,

C6 : Rm,i(h̄m,i) ≥ Rmin
m,i ,

C7 :

M∑
m=1

N∑
i=1

αm,ipm,iḡm,i ≤ I thk . (37)

Thus, we can define performance gap as

Pgap = F rob(gm,k , hm,i)− Fnon(ḡm,k , h̄m,i). (38)

According to the Lagrange function (24) and the dual
function in (28), the impact of error on system performance
can be derived from the distance of Lagrange function. Based
on the robust sensitivity [44], when the uncertain parame-
ter is very small, the optimal transmit power and Lagrange
multipliers can be assumed to be same for the robust case
and the non-robust case. Thus, define the optimal values
α∗m,i, p

∗
m,i,$

∗
k , µ

∗
m,i, we have the following relationship

Pgap ≈ Lrob(X )− Lnon(X ), (39)

where Lrob(X ) and Lnon(X ) denote the Lagrange function
of (36) and (37), respectively. Thus, the performance gap
becomes

Pgap ≈
M∑
m=1

N∑
i=1

α∗m,i1Rm,i

−

M∑
m=1

N∑
i=1

µ∗m,iR̄
min
m,i

(
nm,i

h̄m,i − δm,i
−
nm,i
h̄m,i

)

−

K∑
k=1

M∑
m=1

N∑
i=1

$ ∗k α
∗
m,ip
∗
m,iεk , (40)

where

1Rm,i = log2

1+
p∗m,i

i−1∑
j=1

p∗m,j +
nm,i

h̄m,i−δm,i



− log2

1+
p∗m,i

i−1∑
j=1

p∗m,j +
nm,i
h̄m,i

 ≤ 0. (41)

Because of δm,i ≥ 0 and εk ≥ 0, combining (40) with (41),
we have the conclusion as follows

Pgap ≤ 0. (42)

Thus, the total utility function under imperfect CSI is
smaller than that under perfect CSI.

C. IMPACT OF IMPERFECT CSI ERROR ON
USER’s OUTAGE PROBABILITY
In this subsection, we will analyze how the upper bounds of
channel estimation errors influence the user’s outage prob-
ability. In other words, we try to explain why the designed
algorithm has good robustness without any outage.

Since multiple SUs are coupled in C4, it is difficult to
directly analyze. Thus, to show the impact, we assume there is
one SU in the network. The optimal transmit power becomes

p∗m,i =
I thk
gm,i

, (43)
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where gm,i = ḡm,i + 1gm,i. When we consider the case of
perfect CSI (e.g.,1gm,i = 0), the designed transmit power is

pnonm,i =
I thk
ḡm,i

. (44)

Accordingly, the robust transmit power is

probm,i =
I thk

ḡm,i + εk
, (45)

where the upper bound of uncertainty is εk ≥ 0. Therefore,
we have

probm,i ≤ p
non
m,i . (46)

When this transmit power is applied in practical HetNets,
the actual interference received at the MU under perfect CSI
and imperfect CSI is Inon = pnonm,i gm,i and I

rob
= probm,igm,i,

respectively. Thus, we have the following interference power

Inon =
ḡm,i +1gm,i

ḡm,i
I thk = I thk +

1gm,i
ḡm,i

I thk . (47)

I rob =
ḡm,i +1gm,i
ḡm,i + εk

I thk . (48)

Remark: when the channel estimation error satisfies
1gm,i ≤ 0, namely, the channel gain is overestimated, such
as ḡm,i > gm,i. We have Inon < I thk and I rob < I thk . The
QoS requirement of MU is well protected, there is no outage.
When the channel estimation error satisfies 1gm,i > 0 and
1gm,i ≤ εk , the channel gain is underestimated, such as
ḡm,i < gm,i. We have Inon > I thk and I rob ≤ I thk . Therefore,
the non-robust algorithm can cause user’s outage. And the
outage probability can be calculated by

Outage =
max(Inon − I thk , 0)

I thk
. (49)

Thus, our designed robust algorithm has good robustness.

V. SIMULATION RESULTS
In this section, the performance of the proposed algo-
rithm under different parameter conditions will be discussed.
In addition, the robustness and effectiveness of the proposed
algorithm are compared with other algorithms. There is one
macrocell and two SCs in the simulation, the coverage radius
of MBS and SBS are 500 m and 20 m [15], [21], [22], respec-
tively. The path-loss model is assumed to be PL = (β/dα),
where d is the distance from the BS to user. The path-loss
exponent α varies from 2 to 5, depending on the environment.
And the attenuation parameterβ is frequency-dependent [45].
Other simulation parameters are given in Table 3.

A. PERFORMANCE ANALYSIS OF THE
PROPOSED ALGORITHM
In this subsection, we will show the performance of the
proposed algorithm under different system parameters.

Fig. 3 shows the convergence of transmit power under
the scenario where two SUs in each SC. Where psum1
and psum2 are the actual sum transmit power of 1-th and
2-th SBS, respectively. It can be seen that the algorithm

TABLE 3. Simulation parameters.

FIGURE 3. The convergence of transmit power. (p1,1 and p1,2: transmit
power form SC 1 to SU 1 and SU 2; p2,1 and p2,2: transmit power from
the 2-th SC to the corresponding SU 1 and SU 2).

FIGURE 4. Actual interference power of MU under different εk .

can achieve convergence after about 13 iterations, and the
sum transmit power of SBSs are under the transmit power
threshold pmax

m , which shows that the algorithm has good
convergence performance.

Fig. 4 presents the actual interference power from SBSs
to MU under different estimation error εk . It can be seen
that the actual interference power can also quickly con-
verge without exceeding the interference power threshold I thk .
On the other hand, the actual interference power decreases
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FIGURE 5. Total EE of SUs versus interference power threshold with
different δm,i and εk .

as the increasing of channel estimation error εk . The reason
is that the larger the channel estimation error is considered,
the greater the uncertainty of the wireless channel environ-
ment is. And the SBS needs to reduce the transmit power to
meet the interference constraints.

Fig. 5 depicts the relationship between total EE of SUs and
interference power threshold I thk under the different estima-
tion errors δm,i and εk . It can be seen that as the interference
power threshold increases, the total EE of SUs first increases
and then stabilizes. The reason is that the feasible range
of the SBS’s transmit power increases as the interference
power threshold increases. Hence, the proposed algorithm
can further achieve optimal RA to improve the total EE
of the SUs. However, the transmit power of the SBS will
be restricted by the transmit power threshold pmax

m , so the
total EE will eventually stabilize. Moreover, under the same
estimation error of transmission link δm,i, larger interference
link estimation error εk will reduce total EE, and will cause
the total EE stabilize at a higher interference threshold. These
are because larger εk will reduce the feasible range of SBS’s
transmit power. Besides, under the same estimation error of
interference link εk , lager estimation error of transmission
link δm,i will reduce total EE. The reason is that the larger
the δm,i is, the more unstable the channel conditions of the
transmission link are, which will lead to a reduction on the
total rate of SUs. Thus, the total EE of SUs will be affected
accordingly.

Fig. 6 shows the total EE of SUs versus channel uncertain-
ties of transmission link 1hm,i under different total circuit
power consumption Pc. Where 1h1,i and 1h2,i denote the
channel uncertainties of transmission link in 1-th and 2-th
SCs, respectively. From Fig. 6, it can be seen that the total
EE of SUs increase with the increasing of1hm,i. This can be
interpreted as that as the channel uncertainties of transmission
link 1hm,i increase, the SINR of the SUs also increases.
Therefore, the data rate of SUs will increase accordingly,
eventually leading to an improvement in total energy effi-
ciency. Moreover, obviously, the total EE of SUs decrease
with the increasing of total circuit power consumption.

FIGURE 6. Total EE of SUs versus channel uncertainties 1hm,i under
different Pc .

FIGURE 7. Sum rate of SUs versus pmax
m under different algorithms.

B. COMPARISONS WITH OTHER ALGORITHMS
In this subsection, the effectiveness of the proposed algo-
rithm will be demonstrated by comparing with the existing
algorithms. The proposed robust RA algorithm is defined
as ‘Robust NOMA’. The NOMA-based EE maximization
algorithm under perfect CSI is defined as ‘Non-robust
NOMA’. And the orthogonal frequency division multiple
access (OFDMA) based rate maximization algorithm under
perfect CSI is defined as ‘Non-robust OFDMA’.

Fig. 7 gives the sum rate of SUs versus transmit power
threshold of SBS pmax

m under different algorithms. With the
increasing of SBS’s transmit power threshold, the sum rate
of SUs first increases and then stabilizes. This is due to
higher transmit power threshold makes the transmit power
feasible region of SBS larger, which causes the sum rate of
SUs improve. But the higher transmit power of SBSs will
lead to greater actual interference power to MU, which will
eventually be constrained by the interference power thresh-
old. Besides, the sum rate of the two algorithms based on
NOMA is higher than that based on OFDMA. The reason
is that NOMA allows multiple users to share the same sub-
channel, which effectively improves the system rate. In addi-
tion, the sum rate of non-robust NOMA is higher than
robust NOMA. The reason is that the proposed robust NOMA
algorithm takes into account channel estimation errors in
advance, which reduces the feasible range of transmit power.
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FIGURE 8. Total EE of SUs versus pmax
m under different algorithms.

FIGURE 9. Actual interference power of MU versus channel uncertainties
1gm,k under different algorithms.

Fig. 8 depicts the total EE of SUs versus transmit power
threshold of SBS pmax

m under different algorithms. Similarly,
due to the influence of the feasible range of SBS’s transmit
power and the interference power threshold of MU, total EE
of SUs first increases with transmit power threshold and then
stabilizes. Moreover, the non-robust NOMA has the highest
total EE, and the total EE of non-robust OFDMA is the
lowest.

Fig. 9 gives the relationship of actual interference power
at MU and channel uncertainties of interference link 1gm,k
under different algorithms. It is clear that the actual inter-
ference power at MU under four algorithms increases with
the bigger channel uncertainties, since the higher interference
cannot be avoided when the channel uncertainties become
greater. Moreover, with the increasing channel uncertainties,
only the proposed robust NOMA algorithm can limit the
actual interference power from SBS to the MU below the
interference power threshold. It is clear that the robust algo-
rithms have a good robustness to give a better protection for
MUs as the cost of lower system performance.

VI. CONCLUSION
In this paper, we have studied the robust EE-based
maximization problem in a two-tier heterogeneous NOMA
network under bounded channel uncertainties by jointly

optimizing transmit power and user association. Due to the
complexity of the originally non-convex problem, we con-
verted it into a deterministic and convex optimization prob-
lem by using the worst-case approach and Dinkelbach’s
method. Furthermore, we derived the closed-form solutions
of power allocation and user association by introducing KKT
conditions and Lagrange dual approach. To insight system
performance, we further achieved the complexity analysis,
robust sensitivity, and the impact of imperfect CSI error on
user’s outage probability. Simulation results demonstrated the
proposed algorithm had good robustness and can reduce the
outage probabilities of MUs.
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