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ABSTRACT In this paper, a panoramic camera-based human localization method using automatically
generated training data is proposed to locate a human target accurately in a room scenario. The method
recognizes a feature object and detects the edge pixel locations of the object in the observed image and
room layout map. Then it partitions the target area into four subareas and matches the edge pixel locations
of each subarea in the image with the ones in the layout map to generate the training data. A training data
augmentation method is also proposed to automatically generate quadruple training data for localization
performance improvement. With the generated training data, general regression neural network (GRNN) is
used to construct one regression model for each subarea to calculate the human target’s location. When the
human target is observed and detected as a foreground target in the image, the foreground pixel location that
can represent the human target’s location most accurately is searched and used to calculate the human target’s
location coordinates with one of the four constructed GRNN models. Experimental results demonstrate that
our panoramic camera-based human localization method is able to achieve a mean error of 0.77m, which
outperforms fingerprinting and propagation model localization methods.

INDEX TERMS Human localization, panoramic camera, general regression neural network, training data
generation.

I. INTRODUCTION
With the development of mobile communications and inter-
net of things (IoT), the demands of location-based ser-
vice (LBS) increase rapidly because various applications
require LBS to work effectively and efficiently, such as elec-
tronic commerce, health care, social network, and emergency
response [1]–[3]. Because the performance of global navi-
gation satellite system (GNSS) and cellular network local-
ization could be limited in indoor environments [4]–[6],
many indoor localization methods have been proposed
and developed using radio frequency identification (RFID),
ultra-wideband (UWB), ZigBee, Wi-Fi, inertial sensors and
so on [7]–[12]. Most of these localization methods require
people to take terminal devices, which may be not applicable
to some application scenarios like the localization and track-
ing for patient rehabilitation supervision [13]. As the rapid
proliferation of cameras in people’s daily life for security and

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

surveillance applications, cameras have been an essential part
of IoT [14]. Moreover, sometimes people might be interested
not only in the existence of some observed targets but also in
the location information of these targets [15].

Therefore, camera-based human localization and track-
ing have attracted extensive research interests and played
an important role in IoT. Most of the exiting camera-based
localization methods utilize multiple cameras to monitor a
wide area due to the limited field of views, which also
involves some problems like the deployment and cooper-
ation of these cameras. As we mentioned in our previous
work [5], because a panoramic camera is able to cover a
wide angle, one panoramic camera can be used to mon-
itor an open area like an office room. Although multiple
cameras might be still needed in the scenarios that are not
completely open, the use of panoramic camera is able to
reduce the number of cameras to some degree. Therefore,
we propose a panoramic camera-based human localization
method using automatically generated training data in this
paper. In [5], we constructed a regression model for human

48836 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0642-1557
https://orcid.org/0000-0001-8938-2866
https://orcid.org/0000-0003-3424-2414
https://orcid.org/0000-0003-0261-4068


Y. Sun et al.: Panoramic Camera-Based Human Localization Using Automatically Generated Training Data

localization using a basic multi-layer perceptron (MLP)
trained by back-propagation (BP) algorithm. We derived the
training data for the MLP through taking videos of a per-
son with known locations, which was a time-consuming and
laborious process. By comparison, our proposed method is
able to generate the training data automatically and augment
the training data for performance improvement. Moreover,
general regression neural network (GRNN) that has a superior
performance comparedwith theMLP is used as the regression
model for human localization using the generated training
data. The main contributions of this paper are summarized
as follows:

1) We propose a panoramic camera-based human local-
ization method using automatically generated training data,
which has a superior localization performance. The method
is able to not only locate a human target without any terminal
device, but also generate training data automatically.

2) We propose a training data generation method. The
method first recognizes a feature object that is the maximum
object in the image plan and layout map and detects the edge
pixel locations of the feature object. Then it partitions the
target area into four subareas and matches the edge pixel
locations of each subarea in the image with the ones in the
layout map to generate the training data.

3) We propose a training data augmentation method to
improve the localization performance. The method trans-
forms the edge pixel locations to one subarea from the ones
of the other three subareas in turn. More training data can
be obtained and used to construct one regression model for
each subarea. Also, the target area of each GRNN model is
reduced to one fourth of the whole area, which is beneficial
to performance improvement.

4)We verify the proposed panoramic camera-based human
localization method in a real room scenario and compare the
proposed localization method with fingerprinting and prop-
agation model (PM) localization methods. We also compare
the GRNN model with other popular regression models for
calculating the human target’s location. The experimental
results demonstrate that our proposed localizationmethod has
a superior performance.

The remainder of this paper is organized as follows.
Section II reviews the related works of the proposed
panoramic camera-based localization method. In Section III,
the overview of the proposed localizationmethod is described
and the details of each component of the method are given.
The experimental setup, results, and analyses are presented in
Section IV. Finally, Section V concludes the whole paper.

II. RELATED WORKS
So far, many camera-based localization methods have been
proposed. Liu et al. [15] first defined cost and utility func-
tions to balance the tradeoff between the localization accu-
racy and energy cost. They also optimized the selected
subset of cameras for calculating the target’s location. After
that, they focused on the camera coverage problem in [16].
They proposed a localization-oriented sensing model and

analyzed the relationship between the camera density and
localization coverage probability. Lobaton et al. [17] pre-
sented a camera network representation called camera net-
work complex for tracking applications, which accurately
captured topological information about network coverage.
This representation was effective in tracking targets. Refer-
ence [18] introduced a Bayesian approach on people local-
ization using multiple cameras. Features from these cameras
were fused to create evidence for the location and height
of a person. With this information, a cylinder object was
used to approximate the person’s location. Liu et al. [19]
presented a location-constrained maximum a posteriori algo-
rithm for camera-based localization using camera parameters
and known location information. A task-oriented evaluation
metric was also presented by them to evaluate the localization
results. Lin et al. [20] proposed a series of image transforms
using the vanishing point of vertical lines for the enhancement
of probabilistic occupancy map-based people localization.

Meanwhile, camera-based localization and tracking could
also be assisted with laser projectors, vehicles and so on.
Lu et al. [21] presented an image-based framework for mea-
suring targets on an oblique plane using a camera and two
laser projectors. They first measured the photographic dis-
tance and then used their framework to locate objects on a
ground surface. In [22], Miseikis et al. proposed an approach
that integrated information from static cameras and a mobile
camera mounted on a vehicle. They applied background
subtraction and histograms of oriented gradients to detect
people in the static and mobile camera images, respectively.
They tracked people through combining the outputs of the
static and mobile cameras. Minaeian et al. [23] presented a
vision-based target detection and localization system using
an unmanned aerial vehicle (UAV) and multiple unmanned
ground vehicles (UGVs). A motion detection algorithm was
applied to follow people using the camera mounted on the
UAV. The UGVs were used as human detectors and mov-
ing landmarks for human localization. Also, with cameras,
Raspberry Pi boards, and Kinect devices, a wireless camera
sensor network platform consisted of three camera sensors
was established in [13]. The platform could meet the local-
ization and tracking requirements for patient rehabilitation
supervision.

Compared with the above-mentioned camera-based local-
ization methods using multiple cameras or a single camera
assisted with extra equipment, our proposed method utilizes
one panoramic camera to monitor a target area like an office
room and is able to generate training data automatically to
construct the regression models for human localization.

III. PROPOSED PANORAMIC CAMERA-BASED HUMAN
LOCALIZATION METHOD
A. METHOD OVERVIEW
The proposed panoramic camera-based human localization
method consists of three main components: target pixel loca-
tion search, training data generation, and regression model
construction. Among them, the training data generation
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component includes feature object recognition, edge detec-
tion, area partition, pixel location matching, and training data
augmentation.

In target pixel location search, the images recorded by the
panoramic camera are processed and a human target can be
detected as a foreground target with background subtraction
method [24]. The foreground pixel location that is able to
represent the human target’s pixel location most accurately is
searched and considered as the human target’s pixel location
in the observed image.

In training data generation, we detect all the connected
components in the binary image derived from the observed
image and label them with different digits to recognize the
maximum object in the image plan. Then the edge pixels
of the maximum object in the image can be detected with
Canny edge detection algorithm [25]. Meanwhile, the edge
pixels of the same maximum object in the layout map can be
detected in the same way only using the location and outline
information of the maximum object in the layout map.

According to the pixel location of the panoramic camera,
we partition the target area into four subareas. We match the
edge pixel locations of each subarea in the image with
the ones in the layout map. So the pixel location data in
the image can be used as the inputs of one regression model
and the corresponding pixel location data in the layout map
can be the outputs of the model. We also transform the edge
pixel locations to one subarea from the ones of the other three
subareas in turn to obtain quadruple edge pixel location data
for localization performance improvement.

With the edge pixel location data, we construct one regres-
sion model for each subarea to compute the human target’s
pixel location in the layout map. When a human target is
observed by the camera, the human target’s pixel location data
in the image can be computed and input into one regression
model. Then the human target’s location coordinates in the
layout map are computed by the regression model and trans-
formed to be the localization coordinates in our constructed
coordinate system with two linear functions.

B. TARGET DETECTION AND PIXEL LOCATION SEARCH
Human target detection is the prerequisite of the proposed
panoramic camera-based human localization method. In this
paper, we detect a human target through separating the
human target, namely foreground target, from the modeled
background image using the basic background subtraction
method, which is a widely used target detection method.
Firstly, let I={i1, i2, · · · , it } denote an RBG image set
obtained from the recorded videos. After image processing
operations including resizing, rotation, gray scale processing,
and reverse color processing, we can get a gray scale image
set F={f1, f2, · · · , ft } and any pixel value of these gray scale
images ranges from 0 to 255. Therefore, the background
image can be modeled through:

bt (xi, yi) =
1
L

L−1∑
k=0

ft−k (xi, yi), (1)

where bt (xi, yi) is the pixel value at location (xi, yi) in the
background image bt , ft−k (xi, yi) is the pixel value at location
(xi, yi) in the image ft−k , L is the number of images used for
computing bt (xi, yi). After all the background pixel values
are computed, we can get the background image bt . Let
ft (xi, yi) be the pixel value at location (xi, yi) in the current
gray scale image ft , then we compute the difference value
between bt (xi, yi) and ft (xi, yi) for detecting a foreground
pixel with:

|bt (xi, yi)− ft (xi, yi)| > T , (2)

where T is a threshold that is utilized to determine whether
the pixel at location (xi, yi) belongs to the foreground target or
not. If (2) is fulfilled, then the pixel is defined as a foreground
pixel, or it belongs to the background.

After the target detection, let Q=
{
q1, q2, · · · , ql

}
be the

set of the detected foreground pixel locations, where qi =(
xqi , y

q
i

)
, i ∈ {1, 2, · · · , l}. Then we search the pixel location

that can represent the human target’s location most accu-
rately. After intensive research, we study that the foreground
pixel location in set Q that is the nearest to the pixel location
of the panoramic camera rP = (xP, yP) can represent the
human target’s location most accurately and therefore can
be considered as the target’s location. To search this fore-
ground pixel location, we calculate the Euclidean distance di,
i ∈ {1, 2, · · · , l} between the foreground pixel location qi,
i ∈ {1, 2, · · · , l} and the pixel location of the panoramic
camera rP and then select the foreground pixel location qn
with the minimum distance dn as the human target’s location
qIm in the image, which can be denoted by:{

dn = min
{∥∥rP − qi∥∥2} , i ∈ (1, 2, · · · , l)

qIm = qn,
(3)

where ‖·‖2 is the l2-norm.

C. EDGE DETECTION AND AREA PARTITION
1) EDGE DETECTION
We first binarize the background image and then perform
morphological operations in order to recognize independent
objects accurately in the binary image. Using connected com-
ponent labeling [26], proximity relationship among the pixels
can be evaluated to determine whether a pixel belongs to an
already recognized object or not. So the connected compo-
nents can be labeled with different digits. Then the maximum
connected component, namely the maximum object, can be
recognized in the observed image plan. We detect the edge of
the maximum object with Canny edge detection algorithm.
The main steps of the algorithm are as follows:

(1) Image Smoothing
In order to restrain noise, the input image is smoothed by

a Gaussian filter and the Gaussian filter outputs G (x, y).
(2) Gradient Magnitude and Direction Calculation
The algorithm calculates the horizontal derivative Gx and

vertical derivative Gy. Then the gradient magnitude M and
direction θ are calculated with Gx and Gy.
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FIGURE 1. Training data augmentation through transforming pixel
locations to one subarea from the ones in the other three subareas.

(3) Non-Maximum Suppression
In order to thin the edge, the non-maximum suppression

of Canny edge detection algorithm is able to suppress all
the non-maximum gradient values except the local maximum
one. The local maximum gradient value denotes a pixel loca-
tion with the sharpest change of intensity value.

(4) Edge Extraction
Through empirically selecting the high and low gradient

thresholds, Canny edge detection algorithm filters out the
edge pixels with a low gradient value and preserves the edge
pixels with a high gradient value to determine the final edge
of the object in the image.

Meanwhile, we also measure the location and outline of
the maximum object in the target area and draw an accurate
layout map. The edge of the maximum object in the layout
map can also be detected using the same algorithm.

2) AREA PARTITION
After we get the edge pixels of the maximum object in the
observed image, we assume that the set of these edge pixel
locations is denoted byOIm. Then we partition the target area
in the image into four subareas with straight lines A and B
that go through the pixel location of the panoramic camera
rP = (xP, yP) and are parallel to the height and width of the
image, respectively, as shown in Fig. 1. Accordingly, the set
of the edge pixel locations OIm is divided into four sets Oi,

i ∈ {1, 2, 3, 4}, which belong to the four subareas from the
up-left subarea to the up-right subarea in a counter-clockwise
order, respectively.We can also assume that the set of the edge
pixel locations in the map is denoted by LMa and is divided
into four sets Li, i ∈ {1, 2, 3, 4} using the same area partition
method.

D. PIXEL LOCATION MATCHING AND TRAINING
DATA AUGMENTATION
1) PIXEL LOCATION MATCHING
According to the result of area partition, we match the edge
pixel locations of each subarea in the image with the ones in

the layout map to generate training data automatically. Let
Oi=

{
oi(1), oi(2), · · · , oi(m)

}
and Li=

{
l i(1), l i(2), · · · , l i(n)

}
be the sets of edge pixel locations of the ith subareas in
the image and layout map, respectively, where m and n
are the numbers of the edge pixel locations in the two sets.
For the ith subarea, if m is not equal to n, then we delete the
redundant data in the image to obtain a new set denoted by
O′i or delete the redundant data in the layout map to obtain a
new set denoted by L′i, so that the numbers of the edge pixel
locations in the two sets can be equal for matching. If m is
equal to n, then we directly match the pixel locations in the
two sets in turn. The matched pixel location pairs can be the
generated training data. The proposed pixel location match-
ing algorithm is described in Algorithm 1. After matching
the edge pixel locations in each subarea, the two edge pixel
location sets in the image and layout map can be denoted by
O′Im and L′Ma, respectively, and they have the same number
of the edge pixel locations.

2) TRAINING DATA AUGMENTATION
As mentioned above, we transform the edge pixel locations
to one subarea from the ones in the other three subareas
in turn. In Fig. 1, we take four pixel locations oi= (xi, yi) ,
i ∈ {1, 2, 3, 4} in the image as an example, then the horizontal
and vertical distances li and hi between rP and oi can be
calculated by: {

li = |xi − xP|

hi = |yi − yP| .
(4)

According to the symmetry, we can obtain the three trans-
formed edge pixel locations oj,1, j ∈ {2, 3, 4} from the down-
left, down-right, and up-right subareas to the up-left subarea,
respectively. So we can have four edge pixel locations in
the up-left subarea shown in Fig. 1. Similarly, after we
obtain the sets of edge pixel locations O′i, i ∈ {1, 2, 3, 4} in
the image through the pixel location matching, the sets of
the transformed pixel locations from the down-left, down-
right, and up-right subareas to the up-left subarea can be
calculated and denoted by O′j,1, j ∈ {2, 3, 4}, respectively.
In the same way, we can also obtain the sets of edge pixel
locations L′i, i ∈ {1, 2, 3, 4} in the layout map and then the
transformed sets from the down-left, down-right, and up-right
subareas to the up-left subarea can be calculated and denoted
by L′j,1, j ∈ {2, 3, 4}, respectively. So we can have four
sets of the edge pixel locations in the up-left area of the
image or layout map. Then we transform the corresponding
sets of the edge pixel locations to the down-left, down-
right, and up-right subareas from the other three subareas,
respectively. After the training data augmentation, we can
have two new sets of edge pixel locations of the whole area
denoted by O′Im_New=

{
O′i,O

′
j,i, i, j ∈ {1, 2, 3, 4} , i 6= j

}
and L′Ma_New=

{
L′i,L

′
j,i, i, j ∈ {1, 2, 3, 4} , i 6= j

}
, which are

used for constructing the regression models. The number of
the edge pixel locations in the new setO′Im_New or L′Ma_New is
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Algorithm 1Algorithm ofMatching Edge Pixel Locations of
Subareas in the Image and Layout Map
Input:

The edge pixel location setsOi and Li of the ith subareas
in the image and layout map;

Output:
The matched result of the edge pixel location setsO′i and
L′i of the ith subareas in the image and layout map;

1: Calculating the numbers of edge pixel locations in the
two sets m and n;

2: if m > n then
3: calculating s = [m/(m− n)];
4: for k = 0 : (m− n)− 1 do
5: oi,k·s+s = 0;
6: end for
7: Deleting 0 in Oi and obtaining a new set O′i;
8: L′i = Li;
9: Matching pixel locations in O′i and L′i;
10: else if m < n then
11: calculating s = [n/(n− m)];
12: for k = 0 : (n− m)− 1 do
13: l i,k·s+s = 0;
14: end for
15: Deleting 0 in Li and obtaining a new set L′i;
16: O′i = Oi;
17: Matching pixel locations in O′i and L′i;
18: else
19: O′i = Oi;
20: L′i = Li;
21: Matching pixel locations in O′i and L′i;
22: end if

three times more than the number of the edge pixel locations
in O′Im or L′Ma.

E. GRNN MODEL CONSTRUCTION
Becausewe partition the target area into four subareas, we can
construct one GRNN model for each subarea and select one
of the four constructed GRNNmodels for human localization
according to the target’s pixel location in the image, which
alsomeans the coverage area of eachGRNNmodel is reduced
to one fourth of the whole area. In order to improve the
localization performance still, we calculate the radius ρi(k)
and angle θi(k) of the kth pixel location oi(k) =

(
xi(k), yi(k)

)
in

the ith subarea of the image and also used them as the inputs
of the GRNN model. The radius ρi(k) and angle θi(k) can be
computed by:

ρi(k) =

√(
xi(k) − xP

)2
+
(
yi(k) − yP

)2
θi(k) = arctan

∣∣yi(k) − yP∣∣∣∣xi(k) − xP∣∣
(5)

We can have an input vector of theGRNN si(k) that contains
the pixel location coordinates

(
xi(k), yi(k)

)
, radius ρi(k), and

angle θi(k). We model the relationship between the vector si(k)

FIGURE 2. The structure of the GRNN model.

in the image and the pixel location vector l i(k) in the layout
map using the GRNN denoted by:

l i(k) = Fi
(
si(k)

)
. (6)

Regarding the GRNN, it is a variation of the radial basis
function (RBF) neural network and has been widely used for
function approximation [27]. A basic GRNN has four layers
that are the input layer, the pattern layer, the summation layer,
and the output layer shown in Fig. 2. A GRNN does not
need an iterative training process as an MLP trained by BP
algorithm and also does not require a tremendous number of
calculations as deep learning algorithms. Meanwhile, GRNN
has a better performance than the MLP or RBF [28] and has
only one key parameter to be determined called the spread
parameter, which can be calculated through cross validation.
Thus, we exploit GRNN for human localization in this paper.

We assume that the input and output vectors of a GRNN
are denoted by x={x1, x2, · · · , xn} and ŷ=

{
ŷ1, ŷ2, · · · , ŷm

}
,

respectively, and the set of training samples is denoted by
T =

{
xi, yi, i ∈ {1, 2, · · · , t}

}
. The goal of the GRNN is

to compute the output vector ŷ. The number of neurons in
the input layer is the same as the number of inputs and each
neuron in the input layer is connected to the neurons in the
pattern layer. Each neuron in the pattern layer calculates a
Gaussian function denoted by:

gi = exp

(
−
D2
i

2σ 2

)
D2
i = (x− xi)

T (x− xi) ,

(7)

where σ is the spread parameter and D2
i is the squared dis-

tance between x and xi.
As shown in Fig. 2, the summation layer has two kinds

of neurons. The jth neuron in the first kind calculates the
weighted sum of the pattern layer outputs Swj and the single
one neuron in the second kind calculates the sum of the
pattern layer outputs S, then the jth component of the output

48840 VOLUME 8, 2020



Y. Sun et al.: Panoramic Camera-Based Human Localization Using Automatically Generated Training Data

FIGURE 3. The experimental floor plan.

FIGURE 4. (a) The mounted 28mm panoramic camera, (b) TP-LINK
TL-WR845N AP.

vector can be calculated by:

ŷj =
Swj
S

Swj =
t∑
i=1

yijgi

S =
t∑
i=1

gi,

(8)

where ŷj and yij are jth components of the vectors ŷ and yi,
respectively. With the constructed GRNN, the human target’s
location coordinates in the layout map can be calculated.

IV. EXPERIMENTAL SETUP, RESULTS, AND ANALYSES
A. EXPERIMENTAL SETUP
We collected all the experimental data on a typical office floor
with dimensions of 51.6m×20.4m×2.7m shown in Fig. 3.
As shown in Fig. 4(a), we mounted a 28mm CMOS
panoramic camera at the central area of Room 620, which is a
rectangle office roomwith dimensions of 5.1m×8.5m×2.7m.
In order to obtain the outputs of a regressionmodel for its con-
struction, we measured the location and outline information
of the maximum object in Room 620 for the edge detection.
We used 1200 images as the testing data derived from the
videos of the human target in Room 620 recorded by the
mounted panoramic camera.

For localization performance comparison, we also per-
formed fingerprinting and PM localization methods using
Wi-Fi in the same experimental scenario. We deployed
7 TP-LINK TL-WR845N access points (APs) shown in
Fig. 4(b) at a height of 2.2m on the office floor. Meanwhile,
we collected received signal strength (RSS) samples with a

FIGURE 5. Results of image processing and pixel location search:
(a) resized and rotated image, (b) gray scale image, (c) constructed
background image, (d) detected foreground target with searched pixel
location.

Meizu m2 smart phone at a height of 1.2m. We installed
a self-developed Android application on the smart phone
and the RSS samples could be collected by the smart phone
at a rate of one RSS sample per second. In Room 620,
a total of 1920 RSS samples were collected at 16 reference
points (RPs) to establish a radio-map for fingerprinting local-
ization and 780 RSS samples were collected for testing the
fingerprinting and PM localization performance.

B. RESULTS OF TARGET DETECTION AND
PIXEL LOCATION SEARCH
As mentioned before, we detect a human target and search
the target’s pixel location in the image. We take one testing
image as an example and the results of image processing and
pixel location search are shown in Fig. 5. Specifically, for
performance improvement, the observed image is first resized
and rotated shown in Fig. 5(a). The obtained gray scale image
is shown in Fig. 5(b). In Fig. 5(c), we can see the background
image that is modeled with (1). Then we calculate the pixel
difference values between the current gray scale image and
background image using (2). In this paper, we empirically set
the threshold T in (2) to be 32 to distinguish whether a pixel
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FIGURE 6. Edge detection results of the maximum object: (a) detected
edge of the maximum object in the image, (b) detected edge of the
maximum object in the layout map.

is a foreground pixel or not. So the foreground target can be
determined and shown in Fig. 5(d). According to (3), the min-
imumEuclidean distance between a foreground pixel location
and the pixel location of the panoramic camera is calculated
and searched. Then the human target’s pixel location in the
image can be determined, which is denoted with a red dot
in Fig. 5(d).

C. RESULTS OF EDGE DETECTION AND AREA PARTITION
After we obtain the background image shown in Fig. 5(c),
we binarize it and apply morphological operations to it for
recognizing the connected components accurately. Then we
label all the connected components with different digits and
the maximum component, that is the maximum object, can be
recognized in the observed image plan. We detect the edge of
the recognized maximum object with Canny edge detection
algorithm. In the same way, we also detect the edge of the
maximumobject in the layoutmap. The edge detection results
in the image and layout map are shown in Fig. 6.

As shown in Fig. 7, the edge pixel locations in the image
and layout map are divided into four sets denoted with differ-
ent colors. The numbers of the detected edge pixel locations
in the up-left, down-left, down-right, and up-right subareas
of the image are 281, 115, 172, and 350, respectively. Mean-
while, the numbers of the detected edge pixel locations in the
four subareas of the layout map are 281, 84, 177, and 374,
respectively. As we can see, only the edge pixel locations in
the up-left subareas of the image and layout map are equal in
number, so we need the pixel location matching algorithm
to make the edge pixel locations of each subarea equal in
number and then be matched.

D. RESULTS OF PIXEL LOCATION MATCHING AND
TRAINING DATA AUGMENTATION
We utilize the pixel location matching algorithm to match
the pixel locations in the image with the ones in the layout
map. The result of the matching algorithm is shown in Fig. 8.

FIGURE 7. Results of area partition for edge pixel locations in the image
and layout map.

FIGURE 8. Result of pixel location matching algorithm.

We connect the pixel locations in the image denoted by ‘‘o’’
with the pixel locations in the layout map denoted by ‘‘*’’ to
show the result clearly. In each subarea, the pixel locations in
the image and layout map are equal in number and matched
in turn. The numbers of the pixel location pairs in the four
subareas after the pixel location matching are 281, 84, 172,
and 350, respectively.

We then augment the training data for constructing the
regression models according to the symmetry. We take the
up-left subarea of the image as an example. The set of edge
pixel locations in the up-left subarea is denoted by O′1 as we
mentioned in Section III-D. The transformed pixel location
sets from the other three subareas to the up-left subarea can
be denoted by O′2,1, O

′

3,1, and O′4,1. Then there are four
sets of the edge pixel locations in the up-left subarea of the
image that are O′1, O

′

2,1, O
′

3,1, and O′4,1. They are denoted
by blue ‘‘*’’ in Fig. 9. The transformed sets of the pixel
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FIGURE 9. Result of training data augmentation in the up-left subarea of
the image.

TABLE 1. Performance comparison of various localization methods.

locations in the up-left subarea of the layout map can be
calculated in the same way and the four sets of the edge
pixel locations in the up-left subarea of the layout map can
be denoted by L′1, L

′

2,1, L
′

3,1, and L′4,1. So the total number
of the pixel location pairs in the up-left subarea increases
to 887 from 281. We also generate the training data for the
other three subareas and the number of pixel location pairs
in each subarea increases to 887. The 887 pixel locations
in the other three subareas have the same relative location
relationship as the 887 pixel locations in the up-left subarea.
So we just show the 887 pixel locations in the up-left subarea
of the image. Then the total number of the pixel location pairs
in the whole target area increases to 887× 4=3548, which is
also the total number of the generated training data samples.

E. LOCALIZATION RESULTS AND ANALYSES
We use 1200 images as the testing data that are derived
from the videos recorded by the panoramic camera. We first
use 887 basic training data samples without training data
augmentation to construct a GRNN model for the whole
target area. For performance comparison, we perform the
K nearest neighbors (KNN), weighted K nearest neighbors
(WKNN), MLP, and support vector machine (SVM) finger-
printing localization algorithms as well as PM localization
method with optimized parameters in Room 620. The experi-
mental results are listed in Table 1. The mean errors of the
KNN, WKNN, MLP, and SVM fingerprinting localization

FIGURE 10. Cumulative probabilities of various localization methods.

TABLE 2. Performance comparison of panoramic camera-based
localization with training data augmentation and different regression
models.

algorithms are 1.70m, 1.65m, 1.73m, and 1.56m, respectively.
Themean error of the PM localizationmethodwith optimized
parameters is 2.33m. Meanwhile, the mean error of the pro-
posed panoramic camera-based localization using the GRNN
model without training data augmentation is 1.19m, which is
less than those of the other localization methods.

The cumulative probability curves of these localization
methods are shown in Fig. 10. The cumulative probabilities
of the KNN, WKNN, MLP, SVM, PM, and panoramic
camera-based localization within a localization error of 1m
are 33.6%, 37.9%, 34.4%, 32.1%, 17.2%, and 32.8%,
respectively. The cumulative probability of panoramic
camera-based localization method within a localization error
of 2m is much higher than those of the other localization
methods. In Fig. 10, almost all the localization errors of the
panoramic camera-based localization method are less than
2m and its localization performance outperforms the other
methods.

With the training data augmentation, we have 887 training
data samples in each subarea and 3548 training data samples
in the whole target area. Besides the GRNN, we also use
the MLP, adaptive neural fuzzy inference system (ANFIS),
RBF, SVM, and maximum likelihood (ML)-based regression
models. As shown in Table 2, the mean errors of the MLP,
ANFIS, RBF, SVM, ML, and GRNN are 0.92m, 1.10m,
1.00m, 0.83m, 0.86m, and 0.77m, respectively. Our proposed
localizationmethod usingGRNNhas a superior performance.
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FIGURE 11. Cumulative probabilities of panoramic camera-based
localization with training data augmentation and different regression
models.

Compared with our previous panoramic camera-based local-
ization method usingMLP in [5], whose mean error is 0.84m,
although the mean error of the localization method using
GRNN without training data augmentation in this paper is
1.19m, it is able to generate the training data automatically,
which saves time and labor costs for collecting the training
data, let alone the mean error of the proposed panoramic
camera-based localization method can be reduced to 0.77m
with the training data augmentation in this paper.

The cumulative probability curves using these different
regression models are shown in Fig. 11. The cumulative
probabilities of the MLP, ANFIS, RBF, SVM, ML, and
GRNN within a localization error of 1m are 69.6%, 64.2%,
60.7%, 69.9%, 60.3%, and 85.9%, respectively. The cumula-
tive probabilities of the MLP, ANFIS, RBF, SVM, ML, and
GRNN within a localization error of 2m are 92.2%, 89.3%,
92.1%, 99.6%, 99.8%, and 91.7%, respectively. Within a
localization error of 1m, the cumulative probability of the
GRNN is much higher than those of the other regression
models. Within a localization error of 2m, the cumulative
probability of the GRNN is a little lower than those of the
MLP, RBF, SVM, and ML. We can know that more local-
ization errors greater than 2m are computed by the GRNN.
In conclusion, the GRNN generally outperforms the other
regression models.

V. CONCLUSION AND FUTURE WORKS
In this paper, we propose a panoramic camera-based human
localization method using automatically generated training
data. Using only one panoramic camera to monitor a room,
the proposed method is able to not only locate a human
target accurately without any terminal device, but also gen-
erate training data automatically for constructing the GRNN
models. We first recognize a feature object and detect the
edge pixels of the object in the image and layout map. Then
we partition the target area into four subareas and match the

edge pixel locations of each subarea in the image with the
ones in the layout map to generate training data. We also
augment the training data using the symmetry and construct
one GRNN model for each subarea. When a human target is
detected, the human target’s pixel location in the image can
be determined. The target’s pixel location coordinates along
with the radius and angle are input into one of four GRNN
models to calculate the target’s location coordinates in the
layoutmap, which are transformed to be the localization coor-
dinates in the coordinate system we constructed. Experimen-
tal results verify that our proposed panoramic camera-based
human localization method using automatically generated
training data outperforms the fingerprinting and PM localiza-
tionmethods. In practical applications, although the proposed
panoramic camera-based localization method is not suitable
for all the application scenarios, it might be an effective
solution for some localization application scenarios in room
environments. Meanwhile, it could also be integrated with
other localization methods for human localization in indoor
environments.

In the future, we might extend the target area through
fusing the observed images from multiple panoramic cam-
eras, improve the localization performance by using advanced
target detection methods, and integrate human action recog-
nition into the proposed localization method.
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