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ABSTRACT In the forthcoming era of IoT, where everything will be connected, mobile devices will play a
key role in providing data sharing and user-centric services between devices. In such a service environment,
if a mobile application is vulnerable to security threats and exposed to malicious behavior, malware can
spread to hundreds of millions of connected devices. In particular, it is important to isolate and respond
quickly to malicious mobile code. This requires the prediction of malicious behavior. Currently, security
risk assessment schemes based on the permission use the description of the application or user review,
but these schemes mostly offer a subjective evaluation, which inevitably reduces accuracy. In this paper,
we thus propose a scheme for assessing security risk of Android mobile applications by analyzing their
application programming interfaces (APIs) using machine learning. The key idea of the proposed scheme is
to extract the APIs from the execution code of the application with reverse engineering analysis, such that
each API can be compared with the malicious API database built from the existing malware dataset. Instead
of simply judging the applications as malicious or benign, our scheme shows their risk as a score. To do
this quantitative evaluation, we use an ensemble of tree boosting machine learning algorithms. To prove the
practicality of the proposed scheme, we experiment with a set of benign and malicious real world samples,
and compare our results with existing schemes. Experimental results show better performance and accuracy
than conventional schemes based on Naive Bayes and simple ensemble algorithms. Our proposed scheme is
expected to significantly contribute in responding rapidly to ever-more-intelligent malware of the future.

INDEX TERMS Malware detection, machine learning, XGBoost, risk assessment.

I. INTRODUCTION
The mobile application market is growing at a fast pace and
so is the scale of mobile malware. According to McAfee’s
report, the number of mobile malware that reached 10 mil-
lion in the first quarter of 2016 has increased to approx-
imately 31 million in the fourth quarter of 2018 [7]. The
largest share of devices affected by these mobile malware
run on Android. Not only is the Android applications’ mar-
ket share the highest, but because of the open market pol-
icy of Android applications, anyone can easily modify and
redistribute them [17]. Even if it is not a malicious applica-
tion, it may require unnecessary personal information. Con-
sequently, users continue to suffer from damages such as
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personal information leakage and financial losses. Therefore,
there is a need for a scheme to assess the security risk of
an application quantitatively based on its actual behavior.
Research to assess the risk of applications has been ongo-
ing [11]. DroidRisk [28] uses a permission-based evaluation
method, whereas WHYPER [23], evaluates based on the
application’s description. RiskMon [16] and AutoReb [20]
evaluate user reviews to assess risk, and APK Vulnera-
bility Identification System (AVIS) [18] does the same
based on application programming interfaces (APIs). Among
these, schemes based on permissions, descriptions, and user
reviews clearly indicate limitations in accurately analyzing
the application’s actual behavior. Conversely, in the case of
API-based evaluation schemes such as AVIS, it is possible
to evaluate the actual operation of the application accu-
rately by analyzing the APIs based on the actual functional
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characteristics of the application. Although the AVIS scheme
is meaningful in the sense that it takes the initial approach
to evaluate security risk based on APIs, its classification
accuracy is not high. This problem exists because it uses
machine learning algorithm that unsuitable with data features.
For example, according to the experiment results discussed
later in this paper, even though the Naver Dictionary appli-
cation [5] is a commonly used benign application, AVIS
shows a false negative result by classifying it as malicious
applications. To overcome the shortcomings of these existing
schemes, we propose a scheme that overcomes the short-
comings of the existing scheme and greatly improves the
accuracy by using the eXtremeGradient Boosting (XGBoost)
algorithm [9] for API classification, which is an essential part
of the API-based risk assessment scheme.

Our work contributes to the existing literature by suggest-
ing a detailed system design, and how the XGBoost is applied
in the learning and decision phases for risk assessment of
Android applications. It also contributes by providing a com-
parative analysis of the accuracy of the existing schemes
through various experiments on benign and malware samples
such as ransomware, adware, trojan, and spyware.

This paper is organized as follows. In Section II, we review
the existing risk assessment schemes for Android applica-
tions. Section III summarizes the background of the XGBoost
algorithm used in this work. Section IV describes in detail
the proposed scheme. In Section V-C, we implement the
proposed scheme and present the experimental results by
evaluating security risk of an application against the actual
dataset. Finally, we conclude the paper in Section VI.

II. RELATED WORKS
This section discusses existing security risk assessment
schemes for Android mobile applications.

A. PERMISSION-BASED SCHEMES
These schemes evaluate the security risk of an application
by analyzing the permissions that are requested by the target
application and create a risk score by comparing the requested
permissions to the predefined risk ranking. Representative
schemes include DroidRisk and APKAuditor [27]. As these
schemes depend on permissions, developers need to know
which permissions are important for their applications. How-
ever, this evaluation method may not be accurate because
application developers often require unnecessary permissions
without knowing their exact meaning and/or necessity.

B. DESCRIPTION-BASED SCHEMES
These schemes measure the security risk of an application by
analyzing the description of the application to infer what per-
missions are essential to run the application. Representative
schemes include WHYPER and ADROIT [21]. Here, rather
than simply looking at the requested permissions, the risk
is assessed by comparing the permissions that are deemed
necessary with regard to the execution of the application
and the permissions that are actually requested, resulting in

better accuracy than the aforementioned permission-based
risk assessment schemes. However, because of the descrip-
tions are written entirely by the developers themselves, there
is a limit to accepting them as objective evaluation results.

C. USER REVIEW-BASED SCHEMES
Another approach of risk assessment based on user reviews
is taken by RiskMon and AutoReb. These schemes evaluate
security risk by analyzing the user reviews of the application
and comparing the application’s expected behavior to the
actual behavior. However, as the assessment is based on
a general user’s review, an operation outside the function
actually used by the user cannot be reflected in the evaluation
and the probability of a reliable objective review is limited.

D. API-BASED SCHEMES
Recently, various schemes for analyzing security risk accord-
ing to the sensitivity of the API used in the application have
been proposed. By using APIs that actually function in the
application, we can analyze the actual and accurate behavior
and function of the application. If the API applied to the
target application is also used in a large number of malicious
applications, the target application is considered to be at high
risk. Hence, an objective statistical analysis is possible here,
which is why we propose a quantitative scheme based on this
approach.

1) CHO’s SCHEME
Cho’s Scheme [10] is a quantitative assessment of the obfus-
cation techniques applied to protect the functionality of an
application. The scheme uses the Naive Bayes [12] classi-
fier to classify sensitive APIs to be protected. In terms of
accessing a text classification method characterized by API
characteristic information, it can be said that this scheme
is closer to analyzing the actual behavior of the application
than previous evaluation methods based on description and
permission. However, the Naive Bayes classification used in
this scheme is not suitable for API classification because it
assumes the independence of each characteristic information.
In addition, because of the use of a single classifier, the classi-
fication result is calculated to either 0 or 1. For example, even
if the difference between the probabilities of being a sensitive
and non-sensitive APIs are very small, it is classified into
a slightly larger probability category, thereby significantly
distorting the final classification result.

2) APK VULNERABILITY IDENTIFICATION SYSTEM
To improve upon the shortcomings of Cho’s scheme, AVIS
was introduced, which uses bagging ensemble that utilizes
10 classification algorithms, including Naive Bayes and deci-
sion tree [24]. The scheme combines these 10 different algo-
rithms to analyze data from various perspectives and uses
the average of all results to produce more stable results than
Cho’s scheme. However, the disadvantage is that the 10 algo-
rithms are applied without flexibly configuring parameters
according to the feature of the target data.
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FIGURE 1. Example of CART prediction in XGBoost.

III. BACKGROUND
This section describes the XGBoost algorithm used in the
proposed scheme and explains the reasons for its adoption.

A. XGBoost
XGBoost is an evolution of AdaBoost [13] and gradient
boost [14], among decision tree-based boosting algorithms.
Notably, it has the advantage of using a Classification and
Regression Trees (CART) model [26] that allows classifica-
tion and regression as well as the use of gradient descent to
minimize errors. XGBoost also has the advantage of being
able to compute complex calculations quickly using parallel
and distributed processing.

1) CART
CART is a tree model used when making an ensemble model
in XGBoost. In general, CART extends branch based on
Gini impurity value, but CART in XGBoost makes a tree
using gain value after selecting the root node (see subsec-
tion III-A.3). In this case, boosting is an algorithm of pre-
dicting accuracy by combining several simple classifiers,
so that the depth variable is adjusted, and the tree is not
deepened. Then, we update the weights to minimize the Obj
value and proceed with tree boosting (see section III-A.2).
Unlike most decision trees, which make only 0 or 1 deci-
sions at leaf nodes, CART has a constant value of not only
0 or 1 leaf nodes but also weights. As a result, even mod-
els having the same classification result can be compared
with superiority through constant values, thereby allowing a
more sophisticated result analysis. Figure 1 illustrates how
CART calculates each API’s score after being generated by
XGBoost when using the APIs the as training dataset. For
example, suppose that x CARTs are generated by learning the
XGBoost algorithm for a training dataset. In this case, in the
API test dataset consisting of three APIs, {getDeviceId,
getId, dataToString}, getDeviceId receives a
leaf node value of 1, 0.9, and 0.5 by CART 1, CART 2, and
CART 3, respectively. Next, we use 1 + 0.9 + 0.5 = 2.4,
which is the sum of the leaf node values of each CART, as the
score forgetDeviceId. Similarly,getId receives the leaf
node values of 0.2, 0.9, and−0.5 in each CART and the score
becomes 0.2 + 0.9 + (−0.5) = 0.6; the dataTostring
score becomes (−2) + (−0.9) + (−0.6) = −3.5. If the

calculated API score is positive, it is classified as a malicious
API, whereas if it is negative, it is classified as a benign API.

2) GRADIENT BOOSTING
To evaluate risk using XGBoost, the aforementioned CART
has to be generated through pre-learning. After dividing the
API provided by the training dataset into tokens, CART
is constructed by receiving quantified values. Specifically,
the performance of CART is measured by calculating the size
of the error, not the accuracy of the tree, using the objective
function. The objective function consists of regularization,
which represents training loss and the complexity of the tree,
and finds a combination of trees that maximizes performance
by obtaining the optimal weight to minimize the objective
function value. At this time, the gradient descent method is
used to calculate the minimum error value using the slope
of the function, which is much better than the simple error
calculation method used in AdaBoost. In XGBoost, given
the labeled data yi, the predicted value ŷi and its objective
function Obj are calculated as follows:

ŷi =
S∑
s=1

fs(xi), fs ∈ F (1)

Obj =
n∑
i=1

L(yi, ŷi)+
S∑
s=1

�(fs) (2)

where S indicates the number of different tree models, fs()
means the CART function generated in round s, xi means
the training data, and F does the space of trees. Also, L()
represents training loss and �() represents tree complexity,
i.e., an XGBoost process of finding weights that minimize the
loss function and tree complexity. In this case, the predicted
value in round t may be expressed as ŷ(t)i = ŷ(t−1)i + ft (xi) so
the objective function is as follows:

Obj =
n∑
i=1

L(yi, ŷ
(t−1)
i + ft (xi))+�(ft )+ constant (3)

Now, as the round passes, training loss L is expanded until
t = 1 to find the weight that minimizes the error of the model.
For example, if we define training loss as square loss, we can
expand as follows:

Obj(t) =
n∑
i=1

(yi − (ŷ(t−1)i + ft (xi)))2 +�(ft )+ const

=

n∑
i=1

[2(ŷ(t−1)i − yi)ft (xi)+ ft (xi)2]+�(ft )+ const

(4)

Then 2(ŷ(t−1)i − yi) becomes training loss in t − 1 rounds.
Because the formula of t rounds becomes the formula of t−1
rounds, it is possible to expand until t = 1 rounds. To do this,
we expand the formula using the Taylor series. Prior to this,
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we define gi = ∂ŷ(t−1)L(yi, ŷ
(t−1)), hi = ∂2ŷ(t−1)L(yi, ŷ

(t−1)).

Obj(t) ∼=
n∑
i=1

[L(yi, ŷ
(t−1)
i + gift (xi)+

1
2
hif 2t (xi))]

+�(ft )+ constant (5)

After excluding terms that are considered constants at time
t , the following equation remains:

Obj(t) ∼=
n∑
i=1

[gift (xi)+
1
2
hif 2t (xi)]+�(ft ) (6)

Because the functions g and h are derivatives at time point
t − 1, they can be expanded until t = 1 rounds. Looking at
the�() function where γ is the number of leaves and w is the
leaf score, XGBoost defines it for a tree T as follows:

�(ft ) = γT +
1
2
λ

T∑
j=1

w2
j (7)

Eventually, these two parameters will determine the com-
plexity of the model. Now, organizing the objective function
for w-s produces the following equation:

Obj(t) ∼=
T∑
j=1

[(
∑
i∈Ij

gj)wj +
1
2
(
∑
i∈Ij

hi + λ)w2
j ]+ γT (8)

where Ij means the instance set of leaf j. We now have a
quadratic equation for w, so we can find w in which the value
of the objective function is minimal. Therefore, the value
of the optimum weight w∗ and minimum of the objective
function at that time are as follows:

w∗j = −
Gj

Hj + λ
, Obj = −

1
2

T∑
j=1

G2
j

Hj + λ
+ γT (9)

where Gj =
∑

i∈Ijgi and Hj =
∑

i∈Ijhi. Gradually applying
the weights calculated for a tree T to the next CART to
minimize the error is called gradient boosting.

3) SPLIT FINDING
Gradient boosting allows you to calculate the performance of
the tree at every step, so by infinitely increasing the branch of
the tree, you will find the tree structure with the best perfor-
mance. Theoretically, it would be ideal to make and compare
all the tree combinations, but as that is not practical, we use a
somewhat greedy algorithm to calculate the information gain.
At every stage of pruning, the information gain is calculated
as follows:

Gain =
G2
L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)2

HL + HR + λ
− γ (10)

where L means left branch score and R means right branch
score. Now make a myriad of trees, and calculate the infor-
mation gain at the time of splitting the tree branch. Then,
if the score is less than 0, you can split the branches to avoid
overfitting and get a T tree combination model that achieves
the best performance.

TABLE 1. Feature comparison of API based schemes.

B. FEATURE COMPARISON
Now, based on our analysis of API-based risk assessment
schemes described in Section II-D, we will examine the
reasons for using XGBoost in this paper. First, Cho’s scheme,
although using a simple Naive Bayes classifier, is somewhat
less accurate. However, it is a significant contribution in the
sense that it was the first to present a way to evaluate an appli-
cation based on an API. In the case of AVIS, it can be said
that it is good to try to prevent overfitting by classifying the
training dataset by the restorative extraction method using ten
different algorithms. However, the weighting mechanism is
not applied individually, and as the simple average value
is determined as the final score during classification, there
is a limit to reducing errors and increasing accuracy. For
this reason, we utilize XGBoost. The XGBoost algorithm not
only randomly samples the training dataset but also recalcu-
lates the weight at each step, thus preventing overfitting and
underfitting. In addition, the general boosting algorithm has a
disadvantage in that the performance of the model is slightly
lower than the bagging that can be processed in parallel
because the classifiers are generated sequentially. However,
because XGBoost uses the parallel and distributed processing
method, the learning and classification speeds are also fast.
Table 1 compares the proposed scheme with Cho’s scheme
and AVIS.

IV. PROPOSED SCHEME
The proposed scheme has been divided into a preprocessing
phase, a learning phase, and a decision phase. In the prepro-
cessing phase, an API is extracted from benign and malicious
samples to construct an initial unclassified training dataset.
In the learning phase, a trained database is constructed from
an unclassified training dataset using XGBoost algorithm.
In decision phase, upon input of a target application, it is
determined whether the target application is malicious or
not. The overall structure of the proposed scheme is shown
in Figure 2.

A. PREPROCESSING PHASE
1) API EXTRACTION
To use the data for learning, we analyze, extract, and label the
APIs commonly used in benign and malicious applications
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FIGURE 2. Overall architecture of proposed scheme.

FIGURE 3. How to extract APIs from .dex.

to generate the training dataset. To extract the APIs used
in an application, we first analyze the classes.dex file
that contains the code related to an Android application’s
functionality. Figure 3 shows the structure of the .dex file
of the application [3] and the API extraction method.

The .dex file consists of eight fields, and it can be
seen that method-related data are included in the Method
Table and the Class Def Table. The Class Def
Table is a list of user-defined classes. It contains class
information such as Class Data Item. Direct and
Virtual Methods have information about each method
in the class. Direct Method contains information
indicating the offset of the method, which indicates the
index of the Method Table. Finally, when reaching the
String Table through the Name index value obtained
by calculating the difference between the Method index
offsets of the Direct and Virtual Methods in the
Method Table, it is possible to find and extract the API
name in the Data Section. After the API is extracted,
static analysis [1] is used to generate a list of commonly
used APIs.

2) FILTERING AND LABELING
After extraction, the APIs are filtered according to whether
the frequency of occurrence in two different populations
exceeds a given threshold. Specifically, we define m− thd as

FIGURE 4. Learning phase structure.

the threshold inmalicious samples, b−thd as the threshold in
benign samples, m− value as the frequency of occurrence of
the API in malicious samples, and b− value as the frequency
of occurrence in benign samples. Then, ifm−value ≥ m−thd
and b− value < b− thd , the API is classified as a sensitive
API, and labeled with a value of 1. Conversely, m− value <
m − thd and b − value ≥ b − thd , the API is classified as a
non-sensitive API, and labeled with a value of 0.

B. LEARNING PHASE
After the preprocessing phase, the API is vectorized in the
learning phase. We then generate an ensemble model using
k-fold cross validation [19] and select the best model to deter-
mine the API’s ranking. A detailed structure of the learning
phase is shown in Figure 4.

1) API TOKENIZING
As shown in Figure 5, when the training and test
dataset are prepared, the API is divided into tokens
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FIGURE 5. Word tokening procedure of API information.

into units of words, which is the input form of the
ensemble learner, to generate the API ranking through
the ensemble learner. For example, given the API path
“android/telephony/TelephonyManager+get
DeviceId”, it will go through Removing Punctuation,
Word Tokenizing, Removing Stopwords, Word Stemming, and
will finally decompose into six word tokens: telephon,
telephon, manag, get, devic, and id. In addi-
tion, the API description, as well as the API path, are
entered as learner input. In this case, Removing Stopwords is
used to remove meaningless articles or periods. For exam-
ple, we decompose the API description Returns the
unique device ID of a subscription into five
tokens: returns, unique, device, id, and
subscription.

2) TF-IDF VECTORIZATION
Word tokens are vectorized using the Term Frequency-
Inverse Document Frequency (TF-IDF) [8] vectorizer.
TF-IDF is a weight used for character string analysis and
indicates how important a word is in the document and the
entire document group. Term Frequency (TF) is a value that
indicates how often a particular word appears in the docu-
ment. In general, if the word has a high TF value, it is judged
to be an important word in the document. However, if the
word appears in almost all documents included in the entire
document group, it is difficult to determine whether the word
can represent the characteristics of the document. This is
called Document Frequency (DF), and TF-IDF is a product
of TF and Inverse DF (IDF). Therefore, a word having a high
TF-IDF value indicates an important word. In equation 11,
t represents a specific word and d represents a document,
that is, property information of an API such as Table 2. D
represents the entire document set, that is, the entire property
information set of all APIs. f (t, d) is a function for finding the
total frequency of the word t in document d . As the frequency
can be too large for f (t, d), we use the augmented frequency
to adjust this. Augmented frequency is fixed to a maximum
of 1 so that it represents the relative frequency of words

TABLE 2. Property Information of ‘‘getDeviceID’’ API.

along the length of the document. The following equation
is the augmented frequency TF-IDF calculation used in the
proposed scheme:

tf (t, d) = 0.5+
0.5× f (t, d)

maxf (w, d) : w ∈ d

idf (t,D) = log
|D|

|d ∈ D : t ∈ d |
tf − idf (t, d,D) = tf (t, d)× idf (t,D) (11)

Once we have completed string vectorization, we are ready
to train with the classifier. Now we are going to classify all
the APIs with the machine learning classifier. The algorithm
used for classification is based on the XGBoost algorithm
described earlier. For example, assuming that the property
information of the getDeviceID, API is given as shown
in Table 2, the process of classifying the getDeviceIDAPI
through the XGBoost algorithm can be shown as in Figure 5.
When this property information passes through API

Tokenizer and TF-IDF vectorizer, it is vectorized into
10 tokens such as {android: x1, telephon: x2, . . . ,
subscription: x10}. At this time, the values of x1, x2,
. . . , x10 are TF-IDF values and are given differently for each
other. After that, if the API is classified through each tree,
the classification result for each tree is obtained according to
the previously generated vector value. If the sum of all the
values is positive, it is classified as a sensitive API; but if
negative, the API is classified as a non-sensitive API.

3) PARAMETER OPTIMIZATION
Because the training dataset depends on the k value of
k-fold cross validation, we also need to select the appropriate
k value. To take advantage of the high accuracy and analysis
power of the XGBoost algorithm, and the stability and ‘‘what
can score the results’’ of the bagging ensemble algorithm,
we use a combination of p XGBoost classifiers as the ensem-
ble model. When generating the classifier, we proceed with
parameter optimization to find the optimal parameter value
for the classification. As the accuracy of the classifier varies
greatly depending on the parameter value, we directly experi-
ment with various parameter combinations to find the optimal
parameter value. Representative parameters of the XGBoost
classifier include n_rounds, which sets the maximum num-
ber of trees; early_stopping_rounds, which sets the
minimum number of trees that can stop the expansion of the
tree when the best results are obtained; and max_depth,
which limit tree pruning. In the case of gradient boosting,
it is important to find the optimal parameter through several
experiments because if the size tree of the entire tree becomes
too large, there is a risk of overfitting.
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FIGURE 6. Tree boosting process of XGBoost.

4) GRADIENT BOOSTING
The p XGBoost classifiers generated after parameter opti-
mization are combined as ensemble models. To generate
the ensemble classifier, we randomly extract the training
dataset and generate n training dataset. Next, we generate
p XGBoosts in parallel using k training dataset through
k-fold cross validation. Then, for boosting, we generate the
first CART from the training dataset again and increase the
number of trees up to q by calculating the tree performance
with gradient boosting each round. When growth causes per-
formance to deteriorate or the risk of overfitting is expected,
the XGBoost algorithm stops growing the tree and generates
an XGBoost classifier. Figure 6 shows the process of boosting
three trees by calculating Gain (refer to subsection III-A.3)
and Obj (refer to subsection III-A.2) when a training dataset
is entered. When the training dataset is put in, the criteria
are randomly set, and CART1 is grown only while the Gain
value is positive. If the Gain is negative, we do not divide
the branch. We find w to minimize Obj and write it as the
leaf node value. Then this value is passed to the input of the
next CART. For example, for {getDeviceId, getId,
dataToString}, the 3 training dataset are classified as
{getDeviceId, getId} = w1, {dataToString} =
w2 in CART1. This leaf node values become weighted and
are delivered with data to CART2, as shown in Figure 6. With
the received data, CART2 also divides the branch until Gain
becomes negative, sets the leaf node value through Obj, and
sends it to CART3. In this way, tree boosting is carried out
by repeatingGain andObj calculations for each round of tree
generation and passing the weighted data to the next tree.

5) VOTE MANAGEMENT
After the k classifier is generated, we use k-fold test dataset
to get the accuracy of k classifiers. We select the classifier
with the highest accuracy as the final best model. If the API is
classified through the selected best model, the API is scored

using the average value of the total p classification results.
For example, if 10 of the 10 XGBoost classifiers classify an
API as sensitive, then a score of 1.0 is assigned to the API.
If 7 of the 10 classifiers classify as sensitive, a score of 0.7 is
assigned. Algorithm 1 shows the pseudocode of the ensemble
learner described so far.

C. DECISION PHASE
After an API’s risk ranking is generated through an ensemble
learner, the decision maker evaluates the application’s secu-
rity risk by comparing the risk ranking to the APIs used by
the target application. After the API extractor extracts the
APIs from the target APK file and the database connector
loads the API’s ranking previously created by the ensemble
learner, the score evaluator compares the extracted APIs with
the API ranking list and assigns scores to each API. The
number of APIs corresponding to scores between 0.0 and
1.0 is multiplied by each score and all the values are added
together and divided by the total number of APIs to generate
the final application risk score. We then update the input
dataset by adding the newly generated scores from the target
application to the training dataset.

V. EXPERIMENTS
This section describes our implementation and experimental
results of the proposed scheme.

A. EXPERIMENTAL SETUP
The experiment environment consisted of Windows 10 Pro
using Java Development Kit version 1.8.0 and Python 3.6.5.
We use XGBoost algorithm, which provides the gradient
boosting framework for API classification, scikit, a rep-
resentative Python algorithm library, and nltk for natural
language processing.

The initial training dataset was constructed using
2,700 benign samples, selected from the top 10% applications
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in each category in Google Play Store [4], and 7,400 mali-
cious samples, provided by VirusShare [6] and
Contagio [2].

Algorithm 1 Pseudocode of the Proposed Ensemble Learner
Input: API DataSet
Output: prediction
1: load the APIs
2: Text tokenizing and TF − IDF vectorization
3: k − fold cross validation

(Divided into training and test dataset)
4: for i := 1 to k do
5: p = number of XGBoosts
6: for j := 1 to p do
7: q = Maximum number of CARTs

(= round)
8: input Training DataSet into CART 1
9: for r := 1 to q do

10: learn the CART
11: split finding
12: if Gain(r) < 0 then
13: split terminate
14: end if
15: boost the tree
16: if Obj(r) < Obj(r + 1) then
17: boosting terminate
18: end if
19: end for
20: sum predictions
21: end for
22: mean predictions
23: input Test Dataset into

i− th XGBoost Model
24: end for
25: Select Best Model
26: Make API ranking

B. CONFIGURATION
1) TRAINING DATASET LABELING
Each API’s initial label in the initial training dataset was
determined by experimenting with a target sample of benign
and malicious applications. Figure 7 shows the number of
APIs used in the benign and malicious application groups;
it also analyzes the frequency of occurrences of each API in
benign and malicious applications.

In the distribution, the m− value on the X -axis represents
the frequency of occurrence of the corresponding APIs in the
malicious samples and the b− value on the Y -axis represents
the frequency of occurrence in the benign samples. In other
words, the lower right shows the APIs mainly used for mali-
cious applications and the upper left shows the APIs used
only for benign applications. Among these, only the APIs that
can be clearly classified as sensitive or non-sensitive APIs
are used to generate labels. Through repeated experiments,

FIGURE 7. m-value and b-value distribution for initial training dataset.

TABLE 3. Accuracy by k-value.

the label generation conditions of the experiment showing the
highest accuracy are as follows:

1) Sensitive API (label:1)

• m− value ≥ 60% and b− value < 40%
• m− value ≥ 40% and b− value < 20%
• m− value ≥ 30% and b− value < 10%
• m− value ≥ 10% and b− value < 1%
• m− value ≥ 1% and b− value < 0.3%
• m− value ≥ 0.3% and b− value = 0%

2) Non-sensitive API (label:0)

• m− value < 0.1% and b− value ≥ 50%

2) CLASSIFIER MODELING
The classifier used for API classification goes through k-fold
validation with the gradient tree boosting model provided by
XGBoost algorithm. To find the optimal k value, we mea-
sured the accuracy of the classification model by setting k
from 3 to 20 on k = 10 that had the highest accuracy in
previously proven studies [15], [22], [25]. The measurement
results are shown in Table 3. If k is too large, there may be
underfitting and model generation takes a lot of time, so we
use 10 as the most appropriate k value.
Because we decided to use k = 10, we divided the training

dataset into 10 andmade a classificationmodel with 9 of them
as the training dataset. Then, we measured the accuracy with
the remaining one as the test dataset. After modeling 10 times
(so that all 10 training dataset blocks are used once as test
dataset) wemeasured the accuracy of the classification model
and use the one that has the highest accuracy.
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TABLE 4. Accuracy by XGBoost count.

TABLE 5. Accuracy with 10-fold cross validation (%).

TABLE 6. Classification time (seconds).

We next analyze p XGBoost algorithms to find the appro-
priate number of XGBoost algorithms in the XGBoost
ensemble model. Experimental results in Table 4 show
that the log loss is low while the accuracy is high when
10 XGBoost algorithms are used. Therefore, we choose to
ensemble 10 XGBoost algorithms.

The XGBoost algorithm has parameters such as
n_rounds, early_stopping_rounds, max_depth,
etc., as mentioned in Section IV-B.3. As we are exper-
imenting with each parameter, we use the default val-
ues (n_rounds=10, early_stopping_rounds=0,
max_depth=6) because it does not significantly affect
model accuracy in this paper.

Tables 5 and 6 show the 10-fold cross-validation results
and classification speed comparisons of a single Naive Bayes
classifier (NB), Naive Bayes classifier with bagging ensem-
ble (AVIS), a single XGBoost classifier (XGB), and our
proposed scheme (an XGBoost classifier model with bagging
ensemble). The XGBoost algorithm used in the proposed
scheme is more accurate than the more-generally used Naive
Bayes classifier. In addition, the XGBoost ensemble classifier
that uses both bagging and boosting (proposed scheme) is not
much different from the single XGBoost algorithm in terms
of accuracy, but the classification speed is the slowest.

3) API RANKING
We use our classifier to classify over 30,000 APIs to create an
API risk ranking. The API rankings created by implementing
the proposed scheme are shown in Table 7. It can be seen
that sensitive APIs related to SMS, permission access, device
information, etc., are placed on top.

4) THRESHOLD ADJUSTMENT
Next, we can extract the APIs used by the target application
and compare the extracted APIs with the API risk ranking

TABLE 7. Ranking based on API analysis.

TABLE 8. Threshold value of each classifiers.

TABLE 9. Assessment result with Naver Dic App.

list to assign an application risk score. Prior to the evaluation,
the thresholds are adjusted to facilitate classification accuracy
measurements. Figure 8 and Table 8 show the thresholds set
to measure the classification accuracy of each classifier. The
red color of the graph indicates the score distribution of mali-
cious applications, while the blue color indicates the score
distribution of benign applications. Based on the threshold,
it is evident that the classification is better in the XGBoost-
based classifier than in the Naive Bayes-based classifier.

C. EXPERIMENTAL RESULTS
Once the threshold is adjusted, the target application is classi-
fied as amalicious application if its risk score is above 0.5 and
a benign application if it is less than 0.5. Apart from the
overall results, we discuss results for four specific types of
applications as well.

1) CASE-1: NAVER DIC APPLICATION
Table 9 shows the results of evaluating the Naver Dictio-
nary application (in the Top Downloads list of Google Play
store for Korea) through the proposed scheme. The Naver
Dictionary application includes APIs with relatively high-
risk scores such as those that are account-related and SMS-
related, so AVIS classified the application as malicious with
a score of 0.5120. In contrast, it was classified as a benign
application by the other three, that is Naive Bayes with a score
of 0.4687, XGBoost with a score of 0.4322, and the proposed
scheme with a score of 0.4635.

2) CASE-2: RANSOMWARE
Table 10 is a list of 47 application samples classified in
Contagio as ransomware. Table 11 shows the accuracy of the
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FIGURE 8. Threshold value selection.

TABLE 10. Selected ransomware list.

TABLE 11. Assessment result with ransomware.

TABLE 12. Selected adware list.

TABLE 13. Assessment result with adware.

test results for each application sample. We can see that the
classification accuracy for ransomware applications is higher
in the proposed scheme than in the other three schemes.

3) CASE-3: ADWARE
Table 12 is a list of 51 application samples classified as
adware in Contagio. Table 13 shows the accuracy of the test
results for each application sample. It can be seen that Naive
Bayes and AVIS are relatively inaccurate, whereas XGBoost
and our proposed scheme classify applications more
accurately.

4) CASE-4: TROJAN/SPYWARE
Table 14 is a list of 107 application samples classified as
Trojan/Spyware in Contagio. The results of experimenting

TABLE 14. Selected Trojan/Spyware list.

TABLE 15. Assessment result with Trojan/Spyware.

TABLE 16. Assessment result for all APKs.

with each sample are shown in Table 15. The accuracy of NB
was 0.33 (highest error rate) and AVIS was 0.5. Conversely,
XGB and the proposed scheme showed high accuracy.

We acknowledge that as there are less than 50 items in
each Contagio dataset, the experiments cannot be considered
accurate. Nevertheless, we can see that the proposed scheme
correctly classifies almost all applications.

5) OVERALL ACCURACY
Table 16 shows the classification accuracy for all applica-
tions. Because of classification, NB did not show a mean-
ingful classification result because of the high false positive
rate. AVIS is more accurate than NB, but there is a problem
in that misclassification occurs for large benign applications.
Conversely, XGB and the proposed scheme classify with very
high accuracy. In particular, the proposed scheme shows a
much higher accuracy than AVIS in benign and malicious
applications.
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TABLE 17. Risk score of benign samples.

The proposed scheme uses both bagging and boosting,
making it the slowest in terms of classification speed. How-
ever, we do not mind that this is a big issue because it
represents the speed of making API ranking lists and not the
classification speed of applications. Rather, the bigger issue is
the classification of malicious applications as benign, which
can put the user’s device at a serious security risk. However,
the proposed scheme could be of the value of research in that
the accuracy of the classification of malicious applications
has been considerably increased.

Table 17 shows the risk score for benign applications.
An application called Qualcomm Lte Broadcast(QLB)
SDK is a benign application commonly used but has been
classified as a malicious application in all four schemes,
including the proposed scheme. However, because this appli-
cation has many functions that can access location-related,
account-related, and network-related personal information
to provide LTE Broadcast Service, it can actually
become a personal information leakage path. Based on the
above, it may seem that the benign application is not detected
properly. However, this is just a special case and the proposed
scheme is 99.07% accurate when tested against 2,700 benign
applications.

Therefore, even in benign application, the user can be
alerted by objectively determining the actual risks and clas-
sifying them as malicious applications. However, as the dif-
ference between the average scores of benign and malicious
applications is not so large, it is necessary to make a clear
distinction by improving the risk scoring scheme.

VI. CONCLUSION
With the growth of the mobile applications market, the dam-
age caused bymalicious applications targeting vulnerabilities
in Android applications is increasing daily. Moreover, due
to the nature of Android, where it is easy to obtain and
redistribute code, general users may not even notice that
their personal information is leaked. In particular, not only
malicious applications but some commonly used applications
also collect personal and sensitive information unnecessar-
ily. Hence, an objective evaluation scheme is needed, not
just for the classification of malicious applications but for
benign applications as well. Conventional application evalu-
ation schemes, which are based on application description or
permissions, are not suitable for analyzing actual application
behavior. However, API-based evaluation schemes, which
have been studied recently, need to be developed further
because they reflect the actual operation of the application.

In this paper, we demonstrated the possibility of a better appli-
cation security risk assessment than conventional API-based
schemes using an XGBoost-based machine learning algo-
rithm that can be easily tuned after learning. In the future,
we expect to increase performance by increasing training
sets or performing additional experiments with more deep
learning algorithms.
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