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ABSTRACT In this work we propose a novel spatial knowledge discovery pipeline capable of automatically
unravelling the ‘‘roads of the sea’’ andmaritime traffic patterns by analysing voluminous vessel tracking data,
as collected through the Automatic Identification System (AIS). We present a computationally efficient and
highly accurate solution, based on a MapReduce approach and unsupervised learning methods, capable of
identifying the spatiotemporal dynamics of ship routes and most crucially their characteristics, thus deriving
maritime ‘‘patterns of life’’ at a global scale, without the reliance on any additional information sources or
a priori expert knowledge. Experimental results confirm high accuracy of results and superior performance
in comparison to other methods, with the entire processing duration completing in less than 3 hours for more
than a terabyte of non-uniform spatial data. Finally, to clearly demonstrate the applicability and impact of
our proposed method, we evaluate its ability to detect real world ‘‘anomalies’’, such as maritime incidents
reported in the European Marine Casualty Information Platform. Numerical results show the advantages
of our scheme in terms of accuracy, with an achieved anomaly detection accuracy of higher than 93%,
by detecting 313 out of 335 relevant maritime incidents.

INDEX TERMS AIS, anomaly detection, data driven maritime traffic, patterns of life, routes.

I. INTRODUCTION
With more than 80% of the global trade today being carried
by sea, shipping routes or ‘‘sea roads’’ are vital to the global
economy [1]. Sea going vessels follow specific paths when
travelling across the vast blue ocean; these roads connecting
major ports are some of the busiest places on earth, often
only a few kilometres wide, scattered with many physical
constraints (e.g., reefs), where enormous vessels perform
risky manoeuvres under constantly changing environmental
conditions (e.g., wind, sea currents). These waterways form
a global maritime exchange network. More than often these
connections are not direct lines (e.g., the shortest distance
from the point of departure to destination), but ‘‘climatologi-
cal routes’’ along which higher speeds can be achieved due
to the existence of currents or the prevalence of wind, sea
or swell.
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Sea roads though are not paved in concrete, as the location
of the connector, its width and its content, can vary signif-
icantly over space and time, under the influence of various
trade and carrier patterns, but also due to large infrastruc-
ture investments (e.g., canal expansions), climate changes
(e.g., global warming), traffic restrictions (e.g., Emission
Control Areas), political events and other international inci-
dents (e.g., increase of piracy in specific regions). Accurately
modelling this network and the spatiotemporal characteris-
tics of ship traffic patterns is vital for improving maritime
decision making and for applications such as navigation,
traffic optimisation, policy making, environmental impact
assessment and many more. Especially with respect to safety
and security, a well-defined network of connections makes it
possible to detect vessels deviating from normalcy. As such,
anomaly detection can be understood as a method that sup-
ports situational assessment by indicating objects and situa-
tions that, in some sense, deviate from the expected, known or
‘‘normal’’ behaviour. But in the last century, less than a dozen
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maps of worldwide maritime flows based on actual shipping
data were published [2].

While in the past this could have been attributed to the
lack of accurate surveillance data, today this is not the case.
Nowadays, a multitude of tracking systems produce massive
amounts of maritime data on a daily basis. The most com-
monly used is the Automatic Identification System (AIS),
a collaborative, self-reporting system that allows vessels to
broadcast their identification information, characteristics and
destination, along with other information originating from
on-board devices and sensors, such as location, speed and
heading [3]. AIS messages are broadcast periodically and can
be received by other vessels equipped with AIS transceivers,
as well as by on the ground or satellite-based sensors. Since
becoming obligatory by the International Maritime Organisa-
tion (IMO) for vessels above 300 gross tonnage to carry AIS
transponders, large datasets are gradually becoming available
and are now being considered as a valid method for maritime
intelligence [4].

Towards this end, there is a growing body of literature on
methods of exploiting AIS data for safety and optimisation of
seafaring, namely traffic analysis, anomaly detection, route
extraction and prediction, collision detection, path planning,
weather routing, etc., [5]. Route definition andmotion pattern
extraction is used as a precursor for trajectory forecasting and
anomaly detection. Perceiving and comprehending elements
and their contextual meaning in the environment within a
given volume of time and space, while projecting their status
into a future timeframe, is a critical element of Maritime
Domain Awareness (MDA). MDA is the effective under-
standing of activities, events and threats in the maritime envi-
ronment that could impact global safety, security, economic
activity or the environment.

As the amount of available AIS data grows to massive
scales, researchers are realising that computational tech-
niques must contend with difficulties faced when acquir-
ing, storing, and processing the data. Applying traditional
data processing techniques can lead to processing times of
several days, if applied to global data sets of considerable
size. In addition to this, conventional algorithms are proving
incapable of dealing with the uncertainty and partial truth
present in such datasets [6], [7]. As such, AIS datasets present
some unique characteristics and difficulties. For example,
the update interval for AIS is not constant (as it would be
expected in trajectories generated with traditional positional
trackers), but dependent on ships’ behaviour. More specifi-
cally, it is common for a vessel to broadcast its data every
three minutes when moving with less than 3 knots, while
transmission period decreases to two seconds when travelling
with more than 14 knots or when changing course. Therefore,
in such occasions, the collected positions are spatially and
temporally closer. Additionally, vessels may often travel in
and out of the coastal-based receivers’ network coverage,
leading to surveillance gaps that range from several min-
utes to many hours. Especially in open seas, where coastal
reception is limited, satellite AIS coverage can be used for

tracking; in this case though, delays of several hours are not
uncommon. Most existing studies only focus on analysing
traffic patterns in ports or coastal areas, where these issues are
not present, lacking to address the data uncertainty issue [8].

A number of empirical studies, attempt to support the
understanding of maritime behaviour by generating heat
maps or density maps of the data for operator engagement and
supporting stakeholder decision making [9]–[11]. However,
huge amounts of data overwhelm the end user and chal-
lenge the established analysis workflows, thus requiringmore
complex approaches to deal with the volume and veracity
of implicated data [12]. Although heatmaps can be a useful
visualisation tool, the resulting visualisations can be heavily
affected by gaps inherent in the dataset; either due to limited
network coverage in specific geographical regions or simply
by rarely travelled areas. Consequently, important connec-
tions (i.e., commercial routes) may not be detected. A number
of publications rely on statistics to generate simple analytics
of ship traffic and frequencies [13], [14]. More complex
solutions can be categorised to (i) grid based approaches
or (ii) methods of using vectorial representations of traffic.

In grid based approaches the area of coverage is split into
cells, which are characterised by the motion properties of
the crossing vessels to create a spatial grid (e.g., [15]–[21]).
For example in [15] a data-driven methodology is proposed
to estimate the vessel arrival times in port areas. Grid based
anomaly detection algorithms include Fuzzy ARTMAP [16],
Holst Model [17], [18], Support Vector Machine [22], Geo-
Hash encoding [23] and others [19]. In [18], Ristic et al.,
use kernel density estimation (KDE, also known as Parzen
Window estimation) to learn the distribution of kinematic
variables (position and velocity) in each cell. Grid based
methods have been considered effective only for small area
surveillance where the majority of literature was focused
and the computational burden was regarded as its limitation
when increasing the scale [20], as well as the need for a pri-
ori selection of the optimal cell size. In areas characterised
by complex traffic, like intersecting sea lanes, the resulting
multi-modal behavioural description would lead to complex
algorithms to perform anomaly detection. In [19], Wu et al.,
demonstrate the ability of a grid based method for com-
puting shipping density, fast enough to be performed at
a global scale. Specifically, 33 months of data (i.e., from
August 2012 to April 2015) were used to produce global
monthly ship density, traffic density and AIS receiving fre-
quency maps in 56 hours of processing.

In the second category, vessel trajectories are modelled as
a set of connected waypoints. Thus, vessel motions in large
areas (e.g., at a global scale) can be managed thanks to the
high compactness of the waypoint representation [24], [25].
In [26], Mazzarella et al., apply a Bayesian vessel predic-
tion algorithm based on a Particle Filter (PF) on AIS data.
Pallotta et al., present the TREAD (Traffic Route Extrac-
tion and Anomaly Detection) methodology, which relies on
the DBSCAN algorithm for automatically detecting anoma-
lies and projecting current trajectories and patterns into the
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future [20]. In [24], Li et al., present a two-step method
to achieve a balance between computational time and per-
formance; first performing data simplification by applying
the Douglas-Peucker (DP) algorithm before processing the
simplified trajectories with Kernel Density Estimation. Sim-
ilarly in [27] a DBSCAN is used for clustering purposes,
before Ant Colony algorithm is used to find the optimal
path from the starting turning node to the ending turning
node. In [13], a big data analytical approach that analy-
ses ship traffic demand and the spatiotemporal dynamics of
ship traffic in Singapore’s port waters using big AIS data is
described. Recently [28], [29] presented an approach to learn
automatically and represent compactly commercial maritime
traffic in form of a graph, whose nodes represent clusters
of waypoints, which are connected together by a network
of navigational legs (graph edges). This work also focuses
on a limited geographical region, specifically the Iberian
Coast and the English Channel where network coverage is
potentially good and there are few gaps in the dataset. In [30],
Breithaupt et al., attempt to compute vessel routes between
ports and to delineate route boundaries for a dataset covering
the Atlantic coast of the US over a ten year time span. This
approach resulted in continuous but not smooth boundaries
that in some cases had boundary lines changing abruptly
at transects. A combined trajectory classification and long
short-termmemory (LSTM) networks framework is proposed
in [23] where the longest common subsequence algorithm
is used to measure similarity when performing trajectory
clustering with DBSCAN. Clustered trajectories indicate ves-
sels’ mobility patterns that are further modelled via LSTM
networks for long-term prediction. However, the algorithm
is applied in small geographical area and the prediction is
accurate only for few minutes ahead.

Table 1 below summarises the shortcomings that recent
studies have faced. In summary, our approach attempts to
overcome those shortcomings, by i) increasing accuracy
while avoiding information loss and dealing with data uncer-
tainty present at global scales, ii) adopting big data processing
techniques so as to minimise processing time and iii) making
use of methods which do not require manual tuning or a priori
expert knowledge as this would impact the generalisation
capacity of the proposed solution.

A. RESEARCH CONTRIBUTIONS
In this paper we present a distributed data driven approach
for uncovering the ‘‘roads of the sea’’ and maritime traffic
patterns. We propose a maritime data modelling methodol-
ogy, named ROTA (Maritime ROute ExTrActor), capable of
accurately extracting ‘‘origin to destination’’ connections and
their spatial characteristics at a global scale automatically,
without the reliance on any additional information sources
(e.g., nautical maps) or a priori knowledge. The main con-
tribution of this work is to address the challenge of auto-
matically generating an accurate data driven representation
of maritime traffic. Our novel methodological contribution
shows how to overcome big data challenges (i.e., processing

huge volumes of uncertain data that arrive at unprecedented
speed) and transform surveillance data into a representative
model of vessel traffic patterns. The proposed methodology
addresses a number of important requirements and literature
shortcomings. More specifically, our key contributions are
the following:

1) The majority of related literature is focused on specific
geographic areas or short time periods as presented
in Table 1, where the volume and veracity of the data is
manageable with traditional architectural and algorith-
mic approaches. ROTA is capable of extracting traffic
patterns at a global scale from non-uniform spatial and
irregular temporal data distributions without requiring
manual tuning or expert knowledge. ROTA proposes
a spatial big data processing pipeline capable of auto-
matically processing huge amounts of global data in a
short time period. The entire maritime traffic network
can be produced on request in a few hours by using
big data technologies (Spark and MapReduce) on a
cluster of distributed computing nodes so as to depict
any changes in the network.

2) Most of the related literature define ‘‘sea routes’’ as
thin lines connecting ports across the globe, causing
substantial information loss. In the real world though,
ships do not travel on thin lines, as traffic corridors
have a variable width, volume, and distribution. ROTA
is capable of identifying the specific characteristics
of each corridor, and fundamentally the spatial varia-
tions of ship traffic dynamics. For our work, we adopt
the guidelines published by the UK Department of
Trade & Industry, the Department for Transport and the
Maritime & Coastguard Agency, according to which
a route’s width should be such that the route accom-
modates 95% of all traffic transiting it [31]. Addition-
ally, ROTA is capable of defining contextual routes
capturing variations in traffic patterns e.g., routes fol-
lowed by different categories of vessels under specific
conditions. Thus, ROTA supports understanding the
organic behaviour of maritime traffic and ‘‘patterns of
life’’, a feature currently lacking from the majority of
navigation charts [12].

3) ROTA is tested against a series of maritime secu-
rity incidents officially published by the European
Maritime Security Agency achieving highly accurate
results. To the best of our knowledge this contribution
is the only approach that provides evaluation against
ground truth.

B. ORGANISATION
The structure of this paper is as follows. Section II presents
the proposed knowledge discovery approach and the dis-
tributed method for maritime data modelling, capable of
automatically extracting ship routes and their spatial charac-
teristics at a global scale. Following this, we report on the
experimental and evaluation results in Section III and analyse
the results from five real world serious maritime incidents.
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TABLE 1. Previous research methods for route extraction and anomaly detection.

Then, we discuss the merits and the limitations of our work
in Section IV, before concluding this research in Section V.

II. BIG DATA KNOWLEDGE DISCOVERY APPROACH
Knowledge discovery from data (KDD) and data mining are
not new topics; The first knowledge discovery in databases
workshop was held back in 1989 in Detroit, during IJCAI-89.
The basic problem addressed by the KDD process is one of
mapping low-level data into other forms that might be more

compact (e.g., a short report), more abstract (e.g., a descrip-
tive approximation or model of the process that generated the
data), or more useful (e.g., a predictive model for estimating
the value of future cases) [32]. At the core of this process
is data mining, an essential step in the KDD process con-
sisting of applying data analysis and discovery algorithms
that, under acceptable computational efficiency limitations,
produce a particular enumeration of patterns over the data.
Hence, extracting patterns also means fitting a model to the
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data, finding structures, or in general any high-level descrip-
tion of a set of data. The fitted models play the role of inferred
knowledge [32]. As previously discussed, nowadays KDD
is hindered by the volume, velocity, variety, and veracity of
data produced by numerous distributed real-world sensors
and systems.

Within this context, ROTA is a maritime big data mod-
elling approach, capable of accurately identifying the spa-
tiotemporal dynamics of ship routes and most crucially their
characteristics (such as route variable width, types of vessels,
direction of travel, etc.), thus deriving the maritime ‘‘patterns
of life’’ at a global scale, without the reliance on any addi-
tional information sources or a priori knowledge. ‘‘Patterns of
Life’’ are understood as observable human activities that can
be described as patterns in the maritime domain related to a
specific activity (e.g., fishing) taking place at a specific time
and place [33]. Essentially, vessel based maritime activity
can be described in space and time, while classified to a
number of known activities at sea (fishing etc). The spatial
element describes recognised areas where maritime activity
takes place; thus, including ports, fishing grounds, offshore
energy infrastructure, dredging areas, etc. The transit paths
to and from these areas also describe the spatial element
(e.g., commercial shipping, ferry routes, etc.), while the tem-
poral element often holds additional information for cate-
gorising these activities (e.g., fishing period, time of year,
etc.). The development of an accurate network for modelling
these activities, enables the deployment of relevant descrip-
tive and predictive analytics, which are critical for improved
situational awareness and anomaly detection.

The data used in this study includes three sources:
a) AIS data covering the entire globe for an extended period
of 2 years (January 2016 till December 2017), b) port
geometries as provided by the World Port Index from the
National Geospatial Intelligence Agency [34] and c) infor-
mation regarding nautical accidents and incidents which took
place in European waters. This dataset is provided by the
European Maritime Safety Agency and used for validation
purposes [35]. Regarding the AIS data, there is an upper
limit of 64 possible types of messages that AIS transceivers
can exchange [3]. These message types may be related to
vessel position tracking, vessel’s identification or voyage
information. In our study we focus on types 1-3, 18, 19 that
are linked to tracking vessel positions and type 5 which com-
prises vessel identification and voyage information. Table 2
provides an overview of the all the AIS information fields
taken into account in our analysis. Our AIS dataset contains
approximately 9 billion positions, broadcast from more than
200,000 ships of all ship types. Although the collected data
includes all the required information to identify spatiotem-
porally the operation of each ship, significant processing is
needed to extract additional value. In the following subsec-
tions we provide a detailed analysis of the approach followed
and the impediments ROTA had to overcome for effectively
constructing an accurate representative model of vessel

TABLE 2. AIS data fields description [3].

traffic patterns. A high level overview of the spatial knowl-
edge discovery pipeline is provided in Fig. 1.

A. DATA PREPROCESSING: ORIGIN-DESTINATION
ASSIGNMENT
A safe ship journey begins and ends at a sea port (or an
anchorage within or close to the port’s operational area).
An essential preprocessing task is assigning to all positional
data collected through AIS, origin-destination information.
Although AIS messages often include a destination port, this
field is ignored in our study, as it is manually entered by
each vessel’s crew, without following a specific standard,
making it thus prone to errors. For this purpose we recalculate
destination and departure ports by making use of the World
Port Index dataset, which contains the location and physical
characteristics of major ports and terminals worldwide [34].
We execute a spatial query to assess intersections of port
geometries (or operational areas) with vessel positions.
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FIGURE 1. ROTA a spatial knowledge discovery pipeline. The above figure depicts the several steps the methodology proposes and are
analysed in detail in the following sections.

All the positions that intersect with a port geometry are
assigned the corresponding geometry unique identifier (i.e.,
port id). Then, ROTA sorts data per ship id and timestamp
and for each consecutive pair of messages with the same
ship id, it detects changes in port id, to determine port call
events (i.e., departures / arrivals). As depicted also in Table 3,
four different cases may occur for each pair of consecutive
messages received:
• Only the 1st message has a port id assigned: Since the
messages are sorted chronologically, this case indicates
that the vessel moved out of the port’s geometry, which
is marked as a port departure event.

• Only the 2ndmessage has a port id assigned: Reversely to
the previous case, this one indicates that a vessel arrived
at a port.

• Both messages have the same port id: This means that
the vessel was moving inside a port.

• Neither of the messages has a port id assigned: This
indicates that the vessel was travelling in open sea.

Following this, all vessel positions that are between depar-
ture and arrival time are considered as part of the same
voyage. As a second curation step, voyages are automati-
cally confirmed and any erroneous entries are removed. For
instance, a vessel that is travelling at open sea, may intersect
with a port geometry without necessarily calling at that port
(e.g., unintended crossing). This may occur due to a complex
port geometry in relation to the trajectories vessels follow in

TABLE 3. Port call events.

the given area. Such a case would lead to a port arrival event
followed by a port departure event, that would split incor-
rectly the vessel’s voyage into two different voyages. How-
ever, when a vessel arrives at its destination port, it is obliged
to reduce speed as it moves inside the port, and typically will
spend several hours (or even days) at the port. Thus, based
on the state changes described afore we generate sessions
(in-port stay) by binding positions and calculating aggregates
of each port-call session such as minimum, maximum and
average speed of the vessel and in-port stay duration. The
latter will let us distinguish the actual port call events and
merge parts of voyages that were split due to unintended
crossings. Another case of unintended crossing occurs when
anchored vessels drift and cross multiple times a geometry
boundary due to weather conditions. This behaviour results
in falsely identifying multiple port visits, though for some
vessels (e.g., pilot vessels, fishing boats, etc.) this can be
considered as typical behaviour. Consequently, additional
preprocessing and data cleaning steps are performed in our
work (both on the static and dynamic data), such as:
• Evaluating for each data field whether it is complete and
determining its integrity.

• Identifying for each vessel if dynamic positional reports
received are possible based on kinematic equations.

• Removing entries with empty, erroneous, inconsistent
(e.g., ship characteristics such as ship dimensions,
changing during a voyage) or conflicting fields (e.g.,
ship name changing during voyage).

The majority of these processes are beyond of the scope of
the current paper, but are adequately documented in related
papers such as [36].

B. DATA PARTITIONING AND COMMON ROUTE
EXTRACTION
After the initial curation process all the positional data are
linked with a specific journey (voyage id). However, vessel
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voyages should be grouped according to their departure and
their arrival port to perform route analysis. Furthermore,
vessel type limitations should be applied when extracting
‘‘Origin to Destination’’ routes. For instance, tankers and
cargo ships are not capable of sailing in areas with shallow
waters and thus different routes will be followed in each
case. Thus, all the positions of each voyage are assigned an
identifier that uniquely characterises the ‘‘Origin to Desti-
nation’’ connection for the specific type of vessel. Due to
the volume of related data, a distributed MapReduce pro-
gramming approach is adopted for this step, executed on
a spark cluster [37]. During the map phase each position
is transformed into a key-value pair where the key is the
identifier and the value is the message itself. Then, taking
advantage of the inherent parallelisation of Spark, a reduce-
by-key method is applied upon the data to group them into
lists, each one containing a ‘‘common route’’. A common
route comprises all the messages of the voyages that have
the same identifier, meaning that they have the same vessel
type, departure port and arrival port. The data is processed
and stored in a distributed fashion across the worker nodes
in the form of those key-value pairs. ROTA leverages the
distributed architecture of Spark to process multiple routes
simultaneously in different nodes. After this step, we filter
out all messages that correspond to in-port movements and
thus are not useful for our analysis. The resulting data set
comprises of more than 1 million unique connections distinct
by ‘‘Origin to Destination’’ and vessel type.

C. ROUTE MODELLING
During the previous step, the original dataset was segmented
into a set of partitions where keys corresponded to a unique
‘‘Origin to Destination’’ connection per vessel type (route)
and values contained all AIS messages. The next step was to
build a model from the positional data for every ‘‘Origin to
Destination’’ connection. For this, we apply a clustering algo-
rithm with the aim of reducing the size of the initial dataset
and generating a model of normalcy for the trajectories. Most
models and approaches reviewed for AIS trajectory recon-
struction rely on density-based clustering algorithms (such as
DBSCAN). Due to the lack of temporal and spatial unifor-
mity existent in global AIS datasets, density-based clustering
algorithms underperform or require case by case parameter
selection. For example, in coastal areas the spatial and tempo-
ral distance between the collected positions is much smaller
as opposed to open sea journeys where the lack of coverage
can create much sparsely defined trajectories (e.g., a single
position received in several hours). Thus, the high variance
of density poses a serious obstacle to using a density-based
clustering method for identifying the regions, mainly because
it becomes difficult to find a suitable threshold to provide
as a parameter to those methods. Moreover, a density-based
method would identify very few or no regions, based on the
threshold, in sparse areas that are commonly found in the
parts of the route that lack terrestrial coverage. This kind

of output is not suitable for defining the traffic patterns of
vessels, since there would be large gaps in the related routes.

Partitioning clustering methods, on the other hand, do not
require setting any threshold for the density. Though, they do
require a user defined parameter, (k) that indicates the number
of clusters to be identified. However it is possible to provide
an automatic estimate of the number of clusters by making
it proportional to the number of points of each ‘‘Origin to
Destination’’ route, so their importance is proportional to
their density, using the following formula:

k = max{min{b
√
Nc, kmax}, 1}; (1)

where N is the number of points and kmax defines the upper
limit of clusters and equals 300.

The partitioning clustering algorithm we use in our
methodology is an adaptation of K-Means, using the previ-
ous formulation to automatically estimate the k parameter
to cluster AIS positions based on longitude and lati-
tude [38]. To minimise the maximum diameter of clusters
detected, increase stability and computational efficiency of
our approach, regardless of the spatial distribution of the
positions on each route, we provide the k farthest positions
of each route as initial centroids to the k-means algorithm,
instead of using a random selection [39]. Then, the rest of
the positions (i.e., pairs of latitude and logitude values) of
each route are clustered using the route’s centroids.Moreover,
we take full advantage of the parallel processing of routes,
defining the upper bound kmax of clusters to a fixed number,
which in turn bounds the maximum processing time required
per partition. For the specific dataset used in this study,
kmax = 300 is a non reachable upper limit for more than
99% of connections. Bounding the number of clusters to an
upper limit allows us to control the expected size of the output
and minimise processing time, without any significant loss in
accuracy. For most of the routes the number of clusters will be
equal to the square-root of the number of points included in
the route. Square-root is a simple empirical method of finding
number of clusters that allows to have an adaptive threshold
per route.

D. EXTRACTING THE GLOBAL NETWORK AND PATTERNS
OF LIFE
The result of the previous step is a collection of k clusters
calculated from the positions of vessels departing from one
port to another for each ship type. A ‘‘sea road’’ can be
represented as a collection of high level geometries e.g.,
convex hulls or polygons that consist of the positions that
belong to each cluster (Fig. 2). This kind of representation is
particularly suitable for anomaly detection, e.g., identifying
positions that fall outside of convex hulls can be considered
as unusual, raising an alert (Fig. 3).

According to the report published by the UK Department
of Trade & Industry (DTI), in co-operation with the Depart-
ment for Transport (DfT) and the Maritime & Coastguard
Agency (MCA) [31], a route width should accommodate 95%
of all traffic transiting each route, while it is noted that this
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FIGURE 2. A depiction of convex hulls or polygons that consist of the
positions that belong to each cluster. These are then used to model sea
routes (belonging to the same departure and destination port) across the
globe.

FIGURE 3. A random selection of roads of sea. Road of sea as represented
as set of convex hulls. Colours depict quantiles of global distribution of
the calculated density (yellow is low density and red is high density).

process will result in variable route widths (dependent upon
the traffic activity). It also suggested that, where appropriate,
route widths should encompass the lateral deviation associ-
ated with +/−2 standard deviations of the displacement of
the traffic associated with movement between two locations.
In [30], the difficulty of calculating smooth vessel routes
and their accurate boundaries was identified by the authors,
while adopting an approach which could deal with uncer-
tainties and errors in the data. A convex hull is the smallest
(w.r.t. area) polygon created from a set of points that encloses
all of them. Convex hulls are the most accurate geometric
shapes we can use in order to represent the area clusters of
positions occupy.

The adapted K-Means clustering algorithm, used to pro-
duce the clusters-convex hulls, assigns every position to a
cluster (no outliers); therefore, the initially formed clusters
will cover every part of the regions for which training data
exists. It is safe to assume, and indeed our experiments val-
idate this, that not all convex hulls need to be retained to
accurately represent a ‘‘sea road’’. To discard the unnecessary
convex hulls, we create an indicator of the density of a convex
hull, calculated using the following formula:

Density =
Npoints(convex hull)
Area(convex hull)

×
Ntrips(convex hull)

Ntrips(route)
(2)

Convex hulls with high densities indicate areas of high
concentration of vessel traffic. Using this density metric and

a threshold, provided by the user, our method selects which
convex hulls with low density to discard. The threshold reg-
ulates the extent to which the coverage will be affected. As
an additional step we calculate for each convex hull, specific
voyage characteristics; such as median speed, number of
turns, entry exit points etc.

III. EVALUATION AND VALIDATION
In this section we present numerical results on accuracy
categorised per vessel type. As a first validation step we
divide our dataset into a training and a test set separately for
each connection. The hypothesis here is that, the majority of
vessel positions future to the cut-off date used for the route
definitions should fall within the convex hulls (or polygons)
of that sea road.

We maintain a 70/30 ratio for each split for each port-
connection and vessel type, while we maintain the original
order of appearance of transmitted messages (i.e., the last
30% of messages that appeared in a specific connection
are used as the test set). We calculate the accuracy of our
methodology by computing the percentage of the positions
in the test set that fall within the convex hulls produced only
from the training set:

Accuracy =
Npoints(test set intersect convex hulls)

Npoints(test set)
(3)

The aggregated training and test sets include almost 4 bil-
lion and 1,5 billion messages respectively. The output of our
method is consisted of 35 million convex-hulls in total and
approximately 30 convex-hulls on average per connection
and vessel type. The resulting dataset corresponds to more
than 1 million unique combinations out of which only the
18% correspond to periodically transited routes (i.e., there are
at least 10 repetitions of the route within the training set).
We consider sea routes with less than 10 trips within our
dataset to be out of the scope of this work, as these are not
common behavioural patterns and routes.

Fig. 4 which depicts the accuracy of our method is
highly correlated to the number of trips for specific type
of vessels. Moreover, the breakdown of routes per ves-
sel type exposes some characteristics of different ves-
sel types (i.e., AIS reported types) and their markets.
We focus on three key shipping markets (i.e., ‘‘PASSENGER
SHIPS’’,‘‘CARGO’’,‘‘TANKER’’) that follow repetitive pat-
terns due to the nature of their operations. As expected, ship
routes are governed from the characteristics of the market
segment they serve; for example, commodity transportation
frequency and travelling times are regulated by chartering
conditions, while passenger transportation is affected by sea-
sonality. It is evident that vessels in the first category converge
to 95% of accuracy earlier than the later, while the later
achieves higher accuracy on average due to highest average
number of vessels on the same route. Other vessel types that
do not follow repetitive patterns (such as tug boats, fishing
vessels etc.) were excluded from our analysis. Further anal-
ysis and classification of the generic ship types and markets,
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FIGURE 4. Cumulative distribution function of accuracy per number of
trips per route.

TABLE 4. Results and statistics for routes with more than 10 trips.

into more specialised ones, results in a better understanding
of the achieved accuracy and patterns followed. In Table 4,
we split the generic vessel classification into a more spe-
cialised categorisation based on similar vessel characteristics.

The overall accuracy of our approach is depicted in Table 4
where accuracy is above 73% for each vessel type and on
average 78% for all vessel types. So as to be able to compare
ROTA with other state of the art approaches, we calculate
ROTA accuracy in specific geographical areas such as those
reported in [20]. Although an overall global accuracy is not
provided in this work, according to the authors [20], accuracy
in the Strait of Gibraltar (an area of high traffic density)
was 95%, decreasing to 70% in the North Adriatic Sea,
declining further to only 40% in the Indian Ocean due to a
lack of traffic constraints over a large area combined with the
low update rates of satellite-based AIS data. In comparison,
ROTA, is capable of 95% accuracy in the Strait of Gibraltar,
80% in the North Adriatic and 70% in the Indian Sea. In terms
of performance, overall execution time is less than 3 hours,

TABLE 5. Real world accuracy as measured against reported incidents.

indicating that ROTA is at least one order of magnitude faster
than related approaches [19].

To further demonstrate the relevance of ROTA formaritime
anomaly detection and practically validate our hypothesis
that defining normal vessel behaviour can assist in detecting
deviations, we test our method against data from real-world
maritime incidents. Real anomalies leading to accidents or
being indicators of irregular behaviour are rare, as often track-
ing devices malfunction or tracking data is not available, thus
most researchers usually rely on synthetic data for validation
purposes [40].

The European Marine Casualty Information Plat-
form (EMCIP) is a database and a data distribution sys-
tem operated by European Maritime Safety Agency. Data
includes information regarding incidents that took place in
the EU waters; containing information regarding the location
of the incident, the type, nature, ships involved, time, severity,
casualties, and weather conditions. We rely on this data,
to test our method’s accuracy in detecting specific types of
real accidents which took place in the last 7 years. Although
this database contains data on a variety of incidents, we focus
on severe incidents which would cause a vessel to alter its
expected voyage, such as ship collisions, groundings, and
loss of control due to engine failure. In sum, from a total
of 335 maritime incidents reported, ROTA was capable of
detecting 313; achieving an accuracy of 93,4%. In Table 5
below, further statistics are presented.

In the following sections of our work, we look into five
serious maritime incidents as examples which include real
AIS data as broadcast from the vessels ‘‘Norman Atlantic’’,
‘‘KEIT’’, ‘‘INDRA II’’, ‘‘YM Pluto’’ and the ‘‘Costa Concor-
dia’’ prior and soon after related incidents.

A. INCIDENT 1: THE ‘‘COSTA CONCORDIA’’ GROUNDING
(13th JANUARY 2012)
On the night of January the 13th 2012, ‘‘Costa Concordia’’,
with 3206 passengers and 1023 crew members on board,
was sailing off Isola del Giglio, during its planned seven-
day cruise from Civitavecchia to Savona and five other ports.
After deviating from course the ship struck its port side on a
reef, known as the ‘‘Scole Rocks’’, about 800 metres south of
the entrance to the harbour of port of Giglio, on the island’s
east coast [41]. Soon after running aground, water flushed
in causing the vessel to tilt, while the engine rooms flooded
and propulsion was lost. Thirty two lives were lost, while
the ‘‘Costa Concordia’’ was officially declared a ‘‘construc-
tive total loss’’ by the insurance company, and its salvage
was ‘‘one of the biggest maritime salvage operations’’ [42].
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FIGURE 5. AIS track history for the ‘‘Costa Concordia’’ during the time period of the incident while travelling from Civitavecchia to Savona. The green
polygons depict the commonly travelled route between these ports, while the red star marks the position of the incident.

In Fig. 5 the normal vessel behaviour on route to Savona
is depicted with green polygons (‘‘convex hulls’’), while
the positions of the ‘‘Costa Concordia’’ are depicted with
red markers and the incident location with a red star. It is
evident that the ‘‘Costa Concordia’’ had clearly deviated from
normal behavioural patterns as defined by ROTA; thus being
classified as an anomalous incident.

B. INCIDENT 2: THE YM PLUTO INCIDENT
(27th APRIL 2013)
YM Pluto departed from Ceuta, Spain on the 25th

of April 2013 bound for Rotterdam. On the 27th of
April 2013 the vessel was North of the Western coast of
Portugal while the weather forecast reported northerly winds
of Force 7 to 8 on the Beaufort scale with severe gusts and
very rough seas. During the early morning of 27th April 2013,
the master of YM Pluto was on the forecastle deck in adverse
weather conditions, attempting to stop a water leakage. Unex-
pectedly, the ship slammed into a very large wave. Themaster
was exposed to the violent impact of the breaking wave
and was severely injured. While arrangements were made to
dispatch a helicopter to airlift the master, the vessel altered
its course and headed towards the port of Averio.

In Fig. 6, the depicted normality model defined by ROTA
is presented with green polygons, while the deviation from
the normal maritime traffic patterns by ‘‘YM Pluto’’ is clear.

C. INCIDENT 3: THE NORMAN ATLANTIC
FIRE AT SEA (28th DECEMBER 2014)
On 28th December 2014 the Norman Atlantic caught fire
in the Strait of Otranto, while travelling on route from
Patra (Greece) to Ancona (Italy). As a result of the fire,
11 persons died, 12 went missing and 31 were injured. Sim-
ilarly to the previous incidents, the green polygons (‘‘convex
hulls’’) in Fig. 7 depict the extracted maritime patterns for
this route. It is clear that after the occurrence of the incident
the vessels drifts out of the normal travelling patterns (red
markers), providing indicators of irregular behaviour.

FIGURE 6. AIS track history for the ‘‘YM Pluto’’ during the time period of
the incident while travelling from Ceuta to Rotterdam. The green polygons
depict the commonly travelled route between these ports, while the red
star marks the position of the incident.

FIGURE 7. AIS track history for the ‘‘Norman Atlantic’’ during the time
period of the incident while travelling from Patra to Ancona. The green
polygons depict the commonly travelled route between these ports, while
the red star marks the position of the incident.

D. INCIDENT 4: THE CARGO VESSEL KEIT AUTO PILOT
FAILURE (27th DECEMBER 2017)
The cargo vessel KEIT lost control after an auto pilot failure
while transiting the Kiel Canal on Dec 27th 2017, on route
from Rotterdam to Klaipeda Lithuania [43]. The ship berthed
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FIGURE 8. AIS track history for the ‘‘KEIT’’ during the time period of the
incident while travelling from Kiel to Sodertajle. The green polygons
depict the commonly travelled route between these ports, while the red
star marks the position of the incident.

FIGURE 9. AIS track history for ‘‘INDRA II’’ during the time period of the
incident while travelling from Odessa to Burgas. The green polygons
depict the commonly travelled route between these ports.

near the accident site. Fig. 8 presents the normal route in
green and the position of the incident with a red start, while
vessel positional data as collected through the AIS are high-
lighted with red markers. It is evident that after the incident
the KEIL positions fall outside of the ‘‘normal’’ behavioural
patterns.

E. INCIDENT 5: INDRA II (9th NOVEMBER 2015)
At 21:05 on 9 November 2015, while the bulk carrier
INDRA II was at about 6 nm off port of Burgas, the main
engine was brought to an emergency stop, due to an ‘‘auto-
matic protection of ME from low oil pressure’’ alarm
appearing [42]. The ship went out of the Traffic Separa-
tion Scheme and drifted on the Burgas roadstead. The crew
commenced cleaning of filters of Oil Lubricating System.
At 23:10 an engineer started opening the main oil filter, after
the oil pump had been stopped. When the cover was released,
the filter unexpectedly blew and hit the engineer in the right
part of his chest. Emergency First Medical Aid was given and
Emergency ShoreMedical teamwas called, but all attempts to
revive the engineer were unsuccessful. In Fig. 9, the irregular
behaviour of the ‘‘INDRA II’’ is evident when compared with
the normality model calculated by ROTA.

IV. DISCUSSION AND LIMITATIONS
The experimental results show that applying distributed com-
putation approaches can achieve high efficiency, thus reduc-
ing processing time (from days as reported in [11], [19]) to
less than 3 hours. In sum, the accuracy of our approach is
above 73% for most types of vessels that frequently travel
on ‘‘sea roads’’, with an overall of 78%. Some interesting
insights of our work include, i) approximately just over
10 percent of global trips have a moderate repetition num-
ber (10 trips in two years are insignificant), while ii) the
accuracy of our method is highly correlated with number
of trips we have in our training set for each route. As it
would be expected, certain types of vessels such as supporting
vessels (e.g., tugs, etc.) are not accurately identified, as they
do not follow spatially and temporally repetitive patterns
(e.g., do not operate in the same geographical area at repeat-
ing times), although, they do have many common character-
istics between their routes (i.e., similar trajectory pattern).

ROTA can be considered as a fundamental step towards
performing anomaly detection on historical and real time
data. We evaluate ROTA’s ability to detect true ‘‘anoma-
lies’’, such as maritime incidents reported in the European
Marine Casualty Information Platform. Our results show the
advantages of ROTA in terms of accuracy, with an achieved
anomaly detection accuracy of higher than 93%, by detect-
ing 313 out of 335 relevant maritime incidents reported in
EU waters. Furthermore we present a number of examples
demonstrating the applicability and accuracy of the suggested
approach.

ROTA performs clustering of historical data (i.e., vessels’
positions) to create ‘‘sea roads’’. A fundamental prerequisite
for the accurate representation of sea roads is the existence
of sufficient amount of data for each route. In areas with
limited network coverage (e.g., open sea at oceans) the data
available are scarce and consequently, the clusters created
are sparse, covering large areas and limiting the precision
of the produced sea roads in those areas. Finally, we avoid
using other data-driven methods that repeat the clustering
process for various k-s (e.g., elbow method, gap statistic
method, etc.), since the clustering method is needed for each
route, and thus, the computational time would be increased
dramatically.

V. CONCLUSION
In this paper we presented a novel methodology that uses
historical AIS positional data and port geometries to extract
maritime ‘‘patterns of life’’ at a global scale. The methodol-
ogy has been applied on a per-port-connection basis, to real-
world data covering the entire globe for an extended period
of 2 years (January 2016 until December 2017). ROTA has
been proven capable of extracting traffic patterns at a global
scale from non-uniform spatial and temporal data distribu-
tions (such as AIS), without requiring manual tuning or a pri-
ori knowledge achieving accuracy higher than 73% for the
produced ‘‘sea roads’’. Furthermore, ROTAwould be of great
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value for maritime security applications, as it has been able
to detect security incidents with accuracy higher than 93%.

Our goal is to extend this work and calculate additional
characteristics for the extracted ‘‘routes’’, on a ‘‘convex-
hull’’ level, which could provide even more early indicators
of irregular behaviour. Our results could become even more
relevant in the years ahead with the advent of autonomous
vessels. For future work, we also intend to examine trajectory
similarity algorithms to capture mobility patterns of vessel
types that do not conform to the presented ‘‘Origin to Desti-
nation’’ connections such as supply vessels and tug boats that
generally perform port operations inside or near port. Finally,
we will extend the clustering algorithm by testing alternative
(to the empirical method) data-driven methods and optimise
the number of clusters used in the k-means algorithm.

REFERENCES
[1] Review of Maritime Transport 2014, UNCTAD, Geneva, Switzerland,

2014.
[2] C. Ducruet, Advances Shipping Data Anal. Modeling: Tracking Mapping

Maritime Flows Age Big Data. Evanston, IL, USA: Routledge, 2018.
[3] M.1371: Technical Characteristics for an Automatic Identification System

Using Time-Division Multiple Access in the VHF Maritime Mobile Band.
Accessed: Sep. 24, 2018. [Online]. Available: https://www.itu.int/rec/R-
REC-M.1371/en

[4] Solas Chapter V—Regulation 19—Carriage Requirements for Shipborne
Navigational Systems and Equipment. Accessed: Sep. 24, 2018. [Online].
Available: http://solasv.mcga.gov.uk/regulations/regulation19.htm

[5] E. Tu, G. Zhang, L. Rachmawati, E. Rajabally, and G.-B. Huang, ‘‘Exploit-
ing AIS data for intelligent maritime navigation: A comprehensive survey
from data to methodology,’’ IEEE Trans. Intell. Transp. Syst., vol. 19, no. 5,
pp. 1559–1582, May 2018.
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