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ABSTRACT Computational strategies play a vital role in the prediction of adverse drug events (ADEs)
owing to their low cost and increased efficiency. In this study, we used the strengths of the Jaccard
and Adamic–Adar indices to build feature fusion-based predictive network models (FFPNMs) with three
different machine learning (ML) methods respectively to predict drug–ADE associations. Our FFPNM
with the logistic regression (LR) model improved to an area under the receiver operating characteristic
curve (AUROC) value of 0.849, while the corresponding AUROC values for the pharmacological network
model (PNM) and model based on similarity measures were 0.824 and 0.821, respectively. FFPNM with
random forest (RF) is the best model among them with an AUROC value of 0.856, and the performance of
FFPNM with SVM is close to that of FFPNM with RF and higher than that of FFPNM with LR. In these
models, the bipartite network consisted of 152 drugs and 633 ADEs, which were obtained from the FDA
Adverse Event Reporting System (FAERS) 2010 dataset. To better evaluate the performance of FFPNMs,
we performed model predictions by different network consisting of 1177 drugs and 97 ADEs which were
from the data of the first 120 days of FAERS 2004. FFPNM with RF achieved the best predictive result with
AUROC value of 0.913. The results show that FFPNMs with ML methods, specially RF, have a superior
prediction performance and robustness using only the topology features of the drug–ADE network. From
our findings, the optimal, concise, and efficient models as computational methods for drug-ADE association
predictions, were revealed. Source codes of this paper are available on https://github.com/Coderljl/FFPNM.

INDEX TERMS Adverse drug event, prediction, complex network, machine learning, local-information-
based similarity measure, feature fusion-based predictive network model.

I. INTRODUCTION
Predicting adverse drug events (ADEs) accurately and ear-
lier is a significant challenge for pharmacovigilance studies.
In the United States, millions of people are hospitalized every
year owing to ADEs [1]. In some cases, severe deaths have
been reported, and ADEs have become the fourth leading
cause of death after cancer and heart disease [2]. Various
measures have been enforced to avoid increased morbidity
and mortality rates due to ADEs. Unfortunately, small-scale
clinical trials cannot detect rare events or ADEs during the
pre-approval stage. Meanwhile, a lot of information is col-
lected during the post-market phase in an effort to construct
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a variety of databases, which contain information on ADEs
and support the post-market safety surveillance program.
Therefore, the development of database-based computational
methods to predict ADEs is urgent and necessary. Accord-
ingly, the computational strategy complements this effort due
to its low cost and increased efficiency.

Recently, many effective computational methods based
on the various databases have been proposed for ADEs
prediction, such as the well-known system pharmacology
and signal detection algorithms. Signal detection algorithms
have been developed to detect drug–ADE associations using
FAERS or other similar databases [3]–[7]. Disproportionality
analysis is one of the well-known signal detection algorithms
based on methods such as the frequentist and Bayesian
methods. At the same time, many system pharmacological
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methods have been proposed to predict ADEs [8]–[16]. Sys-
tem pharmacology is considered a promising approach that
uses drug pharmacology attributes derived from multiple
databases to build a predictive model using the pharmacolog-
ical framework. In general, data is used and integrated by the
network pharmacology model [17], [18].

Additionally, complex network-based methods have been
extensively used in the field of bioinformatics, e.g., protein–
protein relationships [19], the relationship between drugs
and targets [20]–[22], and the relationship between drugs
and diseases [23]–[25], which can be predicted based on
the reconfiguration and topological properties of the net-
work. For example, Cami et al. developed a pharmacological
network model (PNM) that integrated the network struc-
ture with safety, taxonomic, and biological data to predict
unknown drug–ADE associations [9]. Liu et al. proposed
a machine-learning-based approach to predict 1385 ADEs
of 832 approved drugs [11]. Cheng et al. published a drug
side-effect similarity inference (DSESI) to predict the drug–
target interaction with 621 drugs and 893 targets based
on the drug side-effect database known as MetaADEDB,
which included 1,330 drugs, 13,200 ADEs, and more than
520,000 drug-ADE associations [13]. Lin et al. published
a network-based external link prediction method to predict
the unknown drug adverse reactions only based on the use
of topological features of complex networks [15]. Davazda-
hemami and Dursun proposed to combine network analytics
approach with ML methods to predict ADEs [26]. Therefore,
network-based models and machine learning (ML) methods
have demonstrated the potential value and application in the
predictions of ADEs.

Feature extraction and combination of extracted features
are two important factors used for the prediction performance
of models. Our goal is to design a simple and efficient
network-based method to predict drug–ADE associations.
Herein, we use a modified algorithm that uses the strengths
of the Jaccard and the Adamic–Adar (AA) indices to extract
improved features to build feature fusion-based predictive
network models (FFPNMs) to improve the ADE predictions
based on a bipartite network. In this network, nodes denote
drugs or ADEs, and edges denote the drug–ADE associa-
tions. In our FFPNMs, the improved features, i.e., the Jac-
card and AA drug fusion (JADF) and Jaccard and AA–ADE
fusion (JAAF), are trained based on the use of the logistical
regression (LR) model, support vector machines (SVM) and
random forest (RF), respectively. As a comparison, a PNM
and other models based on five different classical similarity
measures are discussed in relation to the prediction of ADEs
with LR based on the FAERS 2010 data of 152 drugs and
633 ADEs. Our FFPNM with LR achieved a superior pre-
diction performance among the three tested models. More-
over, we investigated the performance of FFPNMs with SVM
and RF respectively, and compared their performance with
FFPNM with LR based on the above data. FFPNM with RF
was evidently the best model among them, and the perfor-
mance of FFPNM with SVM is close to that of FFPNM

with RF and higher than that of FFPNM with LR. Finally,
to further prove the superior performance of FFPNMs we
used different data.

Our study differs from previous studies in that: (i) the
similarity measures based on local information defined are
introduced as the features for ADE predictions, (ii) we define
the improved features as JADF and JAAF based on the mod-
ified algorithm, and propose the concise, efficient FFPNMs,
in which different ML methods are used as the classification
algorithms, to optimize the drug–ADE predictions.

II. MATERIALS AND METHODS
A. DATA DESCRIPTION
The US Food Drug Administration’s (FDA) adverse event
reporting system (FAERS) is the largest spontaneous report-
ing system that collects data from clinicians, individuals, and
pharmaceutical companies, and is updated quarterly [27].
ADEs in FAERS are annotated in the Medical Dictionary
for Regulatory Activities (MedDRA) [28]. Herein, we chose
two sets of data for analysis, which included the FAERS data
from 2010 to 2015 and the FAERS data from 2004 to 2009,
respectively. Firstly, FAERS data from 2010 to 2015 that
contained 152 cancer drugs and 633 ADEs was chosen for
analysis. Drug Bank identities (IDs) were used to normalize
the drug names [29], and ADEs with the preferred ADE terms
(PTs) were mapped to their high-level terms (HLTs). Finally,
33947 drug-ADE associations were applied to construct a
bipartite network with FAERS 2010 data, which was also
used as the training set. Moreover, FAERS data from 2011 to
2015 were used to construct the validation set containing
21065 new drug–ADE associations, which were not in the
training set.

Conversely, the first 120 days data of FAERS 2004 was
selected to further evaluate our proposedmodels. The purpose
of choosing this period was the early prediction of drug–
ADE associations from the perspective of the FDA due to
the collection of the FAERS data started in the first quarter
of 2004. All drugs were selected during this period and
were also standardized with the Drug Bank IDs. From these
data, 1177 distinctive drugs were obtained as the training set.
Furthermore, we selected ADEs that the hospitals focused on,
including 97 ADEs (at the PT level). Finally, 10307 drug-
ADE associations constructed the drug–ADE network with
1177 drugs and 97 ADEs, and the drug–ADE association
network, as shown in Fig. 1. FAERS data from the rest of
the period until 2009 was used as the validation set, which
included 22358 new drug–ADE associations that were not
present in the first 120 days of 2004, and an additional
1148 drug–ADE associations in the intersection of FAERS
and side effects resource (SIDER) [30]. In summary, the train-
ing and the validation sets described above were all selected
in chronological order.

B. PHARMACOLOGICAL NETWORK MODEL FEATURES
A PNM is proposed to predict the unknown ADEs based
on the drug–ADE bipartite network. Using this network,
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FIGURE 1. Visualization of drug-ADE bipartite network with 1177 drugs and 97 ADEs produced with Cytoscape
(http://www.cytoscape.org). The drug nodes are colored in blue, and ADE nodes in orange. The size of an ADE node is proportional
to its degree. The edge in the training set is purple, and edge in the validation set is gray. Only a few drugs and ADEs are labeled for
illustration.

14 features, including eight network features, four taxo-
nomic features, and two intrinsic features, were generated.
An overview of a PNM is shown in Fig. 2.

Each feature is described in detail as follows: first, eight
network features are based on the topological nature of the
complex network. Among them, the degree-prod is the pref-
erential attachment (PA), and denotes the similarity mea-
sure based on local structural information [31]. Degree-prod
X1 (i, j) and degree-sum X2 (i, j) are given by the following
expressions:

X1 (i, j) = D (i)× D (j) (1)

X2 (i, j) = D (i)+ D (j) (2)

where node i denotes drug, node j denotes theADEs, andD (i)
and D (j) denote the degrees of nodes i and j, respectively.
The degree ratio X3 (i, j) and the degree absdiff X4 (i, j) are

the same as the defined above, as described by Cami et al. [9].
The aim of these four features is whether high-degree drugs
tend to be associated with high-degree ADEs or low-degree
ADEs. The Jaccard-drug-max and Jaccard-ADE-max indices
are given by

X5 (i, j) = max
k∈N (j)−{i}

|N (i) ∩ N (k)|
|N (i) ∪ N (k)|

(3)

X6 (i, j) = max
k∈N (i)−{j}

|N (j) ∩ N (k)|
|N (j) ∪ N (k)|

(4)

Herein, J (i, k) = |N (i) ∩ N (k)|
/
|N (i) ∪ N (k)| is also

known as the Jaccard index [32], and represents a similarity
measure based on local information, and N (i) denotes the set
of neighbors of node i. The definitions of N (j) and N (k) are
similar to those of N (i). These features are used to quantify
structural similarities between drug and ADE pairs.

The Jaccard–drug–Kullback–Leiber (KL) [X7 (i, j)] and
Jaccard–ADE–KL [X8 (i, j)] features are used to take advan-
tage of the full distribution of similarities in local neigh-
borhoods between drugs and ADEs. These eight features
described above are all the network features that use the
topological features of drug–ADE network.
Taxonomic and intrinsic features consider the network

structure and attributes of nodes. The attributes are the chem-
ical biology codes, biochemistry, which could be obtained
from PubChem [33], Anatomical Therapeutic Chemical clas-
sification system (ATC), and MedDRA codes. These features
are listed in Table 1.

C. SIMILARITY MEASURES BASED ON LOCAL
INFORMATION
For nodes i and j, similaritymeasures based on local structural
information of complex network are as follows:

(1) Common Neighbors (CN) [34]: This measure assumes
that if two nodes have more neighbors, they tend to have
associations. It is defined as

Sij = |N (i) ∩ N (j)| (5)

(2) Salton Index [35]: This measure is also called the cosine
similarity, and it is defined as

Sij =
|N (i) ∩ N (j)|
√
D (i)D (j)

(6)

(3) Hub Promoted Index (HPI) [36]: This index considers
nodes with larger degrees of associations that are more likely
to be connections. It is defined as

Sij =
|N (i) ∩ N (j)|

min
(
Di,Dj

) (7)
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FIGURE 2. Overview of PNM. First, three types of data are integrated, including FAERS, taxonomic, and intrinsic data. Second, the drug–ADE
network is constructed based on the drug–ADE associations. Next, the network features, taxonomic features, and intrinsic features are
generated based on the drug–ADE network. An LR model was then trained using the training set (FAERS 2010 data). Finally, the prediction
performance of PNM was evaluated using the new drug–ADE associations in the validation dataset.

TABLE 1. Definitions of taxonomic and intrinsic features.

(4) Hub Depressed Index (HDI) [37]: This index has the
opposite effect compared with the hub promoted index, and
is defined as

Sij =
|N (i) ∩ N (j)|

max
(
Di,Dj

) (8)

(5) Adamic–Adar (AA) index [38]: This measure considers
that a smaller degree ismore conducive to the connectionwith
a common neighbor, and is defined as

Sij =
∑

k∈N (i)∩N (j)

1
logD (k)

(9)

(6) Resource Allocation (RA) index [37]: This index is sim-
ilar to AA in form, and is mainly inspired by the resource
allocation model in the network. It is expressed as

Sij =
∑

k∈N (i)∩N (j)

1
D (k)

(10)

All the above indices can be defined as features of the
drug–ADE network. These features can be trained by a logis-
tical regression model for the prediction of ADEs, and then
compared with the features in the PNM.

D. FEATURES BASED ON THE MODIFIED ALGORITHM
In this section, we propose a modified algorithm named Jac-
card andAAFusion as the improved feature pairs for theADE
predictions using the drug–ADE network, which is a bipartite
network consisted of known drug–ADE associations. The
modified algorithm of the Jaccard and AA Fusion is given
by

S (i, j) =
∑

k∈N (i)∩N (j)

 |N (i)∩N (j)|
|N (i)∪N (j)|

logDk
+

1
logDk

 (11)

The improved features are the JADF and JAAF based on
the modified algorithm. These are expressed as follows:

XJADF (i, j) =
∑

k∈N (j)−{i}

(
|N (i)∩N (k)|
|N (i)∪N (k)|

logDk
+

1
logDk

)
(12)

XJAAF (i, j) =
∑

k∈N (i)−{j}

 |N (j)∩N (k)|
|N (j)∪N (k)|

logDk
+

1
logDk

 (13)

JADF combines the strengths of both the Jaccard index and
the AA index based on the drug pairs. This feature not only
considers the structural similarity, but also takes advantage
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FIGURE 3. Overview of FFPNMs. First, a drug–ADE network was constructed with the use of the drug–ADE associations from the FAERS data.
Second, improved features were generated based on the drug–ADE network. Three different ML methods as classification algorithms were then
employed with the use of the training set. Finally, its performance was evaluated with the use of the new drug–ADE associations in the validation
set.

FIGURE 4. Illustration of selected feature effects. Probability of the
existence of an association as a function of features degree-prod (A),
degree-ratio (B), degree-sum (C), degree-absdiff (C), Jaccard-drug-max
(D), and the Jaccard-ADE-max (D) in the PNM.

of the degrees of the nodes. JAAF is the abbreviation for the
fusion of the Jaccard and AA–ADE, and is the same as JADF.
It is defined based on the ADE pairs.

E. PREDICTION MODEL
We used the training data to train and build our prediction
models named FFPNMs based on the defined features. Three
different ML methods were employed as the classification
algorithms, namely, LR, SVM and RF. Finally, an overview
of FFPNMs is shown in Fig. 3.

In the LR model, the probability that the drug–ADE pair is
true is given by

pij = exp
(∑

s qsxs (i, j)
)/[

1+ exp
(∑

s qsxs (i, j)
)] (14)

Herein, qs denotes the regression parameter and xs denotes
the features. The model fit by the training data is deter-
mined using the Akaike Information Criterion (AIC) through
10-fold cross validation, where optimal parameters are
obtained through the optimal model that has the lowest AIC.

Once we have the fully trained model, the probability of
each drug–ADE association in the validation set is predicted

as follows:

pr ij = 1
/[

1+ exp
(∑

s
qsxs (i, j)

)]
(15)

FFPNM with SVM and FFPNM with RF were trained
through 10-fold cross validation using the training set respec-
tively, to obtain the optimal models with optimal parameters.
Subsequently, the performance of the prediction models was
evaluated using the validation set.

III. RESULTS
A. COMPARISONS OF PREDICTIVE RESULTS OF FEATURES
IN PNM AND FEATURES BASED ON SIMILARITY
MEASURES
The drug–ADE network is built with 152 drugs and
633 ADEs from the FAERS 2010 data. Correspondingly,
21065 new associations from FAERS 2011–2015 data are
used as the validation set. Table 2 presents the analyzed
results of the features in the PNM and the features based on
the similarity measures, and lists the features trained by the
LRmodel. AUROC values were determined on the validation
data.

In the univariate analysis of the network features of PNM
(Table 2), the degree-prod, which is also called PA, has
the best performance (AUROC = 0.79). The multivari-
ate analysis result of the combination of the Jaccard-drug-
max and Jaccard-ADE-max is higher (AUROC = 0.825)
than the multivariate analysis result of the combination of
degree-prod, degree-sum, degree-ratio, and degree-absdiff
(AUROC = 0.798). It should be noted that the univariate
analysis results of the Jaccard-drug-max and Jaccard-ADE-
max features are not high (AUROC = 0.732, AUROC =
0.704, respectively), but their combination yields a better
predictive outcome. The univariate analysis outcomes of the
Jaccard-drug-KL and Jaccard-ADE-KL indices are AUROC
= 0.654 and AUROC = 0.551, respectively, and their mul-
tivariate analysis outcomes are AUROC = 0.621. Finally,
the result of the network model is 0.824. When the Jaccard-
drug-KL and Jaccard-ADE-KL are eliminated, the perfor-
mance of the network model is AUROC = 0.826, which

48816 VOLUME 8, 2020



J. Li et al.: Improving the Prediction of ADEs Using FFPNMs

TABLE 2. Comparisons of predictive results of different features based on AUROC.

FIGURE 5. Illustration of the effects of selected similar measures. Probability of the existence of associations as functions of
Salton-drug-max and Salton-ADE-max (A), AA-drug and AA-ADE (B), and RA-drug and RA-ADE (C).

is the highest. Moreover, the performance of the combi-
nation of all network features does not improve the ADE
predictions in the network model, and the best multivari-
ate fitting is the combination of degree-prod, degree-sum,
degree-ratio, degree-absdiff, Jaccard-drug-max and Jaccard-
ADE-max. Their statistics are listed in Table 3, and the illus-
tration of their effects is presented in Fig. 4.

In the univariate analysis of taxonomic features and intrin-
sic features in the PNM, the outcomes of each of the features
were too low, and the multivariate results were higher than
their univariate analysis results. Compared with the network
model (AUROC= 0.824), the performances of the taxonomic
and intrinsic model were much lower (AUROC= 0.707). The
performance of the combination of the three types of features
yield no improvement (AUROC = 0.824), and it is still
smaller than the result yielded by the combination of some
features in the network model (AUROC = 0.825 and 0.826).
Above all, the prediction of ADEs could be measured using

FIGURE 6. Illustration of the improved feature effects. Probability of
existence of associations as functions of JADF and JAAF in the FFPNM.

only network features, and yields a superior performance
compared to the prediction of the effects of the pharmaco-
logical features of PNM.

Meanwhile, the predictive results of the local-information-
based similarity measures are also presented in Table 2.
The univariate analysis results of the Salton-drug-max and
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TABLE 3. Multivariate model feature outcomes of PNM.

TABLE 4. Results of univariate and multivariate analyses of similarity measures.

Salton-ADE-max are AUROC = 0.722 and 0.616, respec-
tively. The multivariate analysis outcome yields an AUROC
of 0.815, which is slightly smaller than the Jaccard index
outcome (AUROC = 0.825). The results of univariate and
multivariate analyses of HDI and HPI are all very low,
with a maximum AUROC of 0.605. Moreover, the multi-
variate analysis outcome of AA (AUROC = 0.821) is bet-
ter than that for RA (AUROC = 0.799). The statistics of
univariate and multivariate analyses of the selected simi-
larity measures are detailed in Table 4, and the illustra-
tion of the selected similarity measure effects are shown
in Fig. 5.

B. PREDICTIVE RESULTS OF JADF AND JAAF IN FFPNM
WITH LR
As shown in Table 2, the highest predictive values are those
associated with the Jaccard index and AA index, which are
defined based on similarity measures with the use of local
information. AA index considers the degree of common
nodes, and the Jaccard index measures the similarity between
the neighborhoods of two nodes. The larger the index value
is, the more similar the two neighborhoods are. The proposed

improved features based on the modified algorithm not only
consider the structural similarity, but also take advantage of
the degrees of the nodes. The illustration of the improved fea-
tures effects is shown in Fig. 6. The univariate and multivari-
ate analysis results of FFPNM first, whereby the univariate
analysis results of JADF and JAAF are AUROC = 0.757 and
0.732, respectively, are presented in Table 5. The multivariate
analysis outcome of their combination is AUROC = 0.849
(21065 new drug-ADE combinations). This is the highest
value in all univariate and multivariate analyses among the
three tested methods that used FAERS data from 2010 to
2015.

To evaluate the robustness and performance of the
improved features and predict ADEs accurately and ear-
lier, the first 120 days of FAERS 2004 data were used as
the training set. These included 10307 drug–ADE associa-
tions between 1177 drugs and 97 ADEs. Correspondingly,
22358 new drug–ADE associations from FAERS 2004 to
2009 (not from the first 120 days of data) constituted the
validation set. The analysis results of univariate model,
and multivariate models with two different drug-ADE net-
works are listed in Table 5. The comparisons of predicted
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FIGURE 7. (A) Comparison of performances of FFPNM and PNM for FAERS 2010 drug–ADE network. (B) Comparison of performances of
FFPNM and PNM for drug-ADE network of FAERS data of the first 120 days of 2004. (C) Comparison of performances of FFPNM and PNM
with the intersection of FAERS and SIDER as the validation set.

TABLE 5. Analysis results of univariate model multivariate models in the FFPNM.

TABLE 6. Predictive results of FFPNMs with SVM, RF, and LR.

outcomes are presented in Fig. 7. Accordingly, AUROC =
0.824 and AUROC = 0.849 are the predicted outcomes of
PNM and FFPNM, respectively, in which the network con-
sists of 152 drugs and 633 ADEs from FAERS 2010 data.
And, AUROC = 0.887 is the predictive result of the FFPNM
compared with the PNM outcomes that yielded a correspond-
ing value of 0.866, whose network consisted of 1177 drugs
and 97ADEs based on the first 120 days of FAERS 2004 data.

Moreover, 1148 drug-ADE associations are in the inter-
section of FAERS and SIDER based on 22358 new drug-
ADE associations. From Fig. 7(C), it is evident that FFPNM
achieves an AUROC value of 0.833 compared with an

AUROC value of 0.783 for PNM based on the intersection
of FAERS and SIDER, which is used as the validation set.
In conclusion, the proposed FFPNM with LR has superior
performance and robustness for ADE predictions, regardless
of the number of drugs and ADEs in the network, and regard-
less of the time period.

C. PREDICTIVE RESULTS OF JADF AND JAAF IN FFPNMs
WITH ML METHODS SVM AND RF
FFPNM with LR had the superior predictive performance.
We further investigated the performance of FFPNMs,
in which SVM and RF are as the classification algorithms,
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respectively. Herein, prediction models were trained by
FAERS 2010 data and the first 120 days data of FAERS 2004,
respectively.

The predictive results of SVM and RF in FFPNMs are
listed in Table 6. Accordingly, SVM and RF provide bet-
ter predicted results than LR in FFPNM with two different
drug-ADE networks. In general, FFPNM with RF turns out
to be the best model among them with an AUROC value
of 0.856 and an AUROC value of 0.913. The performance
of FFPNMwith SVM is close to that of FFPNMwith RF and
higher than that of FFPNM with LR. Furthermore, accuracy
and the positive predictive values (PPV) of FFPNM with RF
are higher than that of FFPNM with SVM and FFPNM with
LR. The values highlight the superior capability of the ensem-
ble model (RF) over the individual models (i.e., SVM and
LR), and the proposed FFPNM with SVM and FFPNM with
RF have further improved ADE predictions in comparison
with that of FFPNM with LR.

IV. CONCLUSION
In this study, we proposed the simple and efficient FFPNMs,
in which different ML methods were used as the classifi-
cation algorithms, to predict ADEs. The FFPNMs used the
modified algorithms defined based on the similarity measures
as the improved features, which only extracted information
from drug-ADE network. The improved features combined
the strengths of the Jaccard and AA indices and improved
the predictions of ADEs. Our findings provided the crucial
information about the influences of different structural fea-
tures and combinations of features on prediction, and com-
bined with ML methods, to achieve an optimal, concise, and
efficient model as the computational method for drug-ADE
association predictions.

We investigated the PNM proposed by Cami for com-
parison. With the exception of the degree-prod, which was
derived from similarity measures of complex networks,
degree-sum and degree-ratio were generated for complete-
ness from the perspective of PNM. As illustrated, the degree-
ratio effect was opposite compared with the other three
degree features, while the univariate analysis result (AUROC
= 0.524) was the lowest among the four degree features.
Thus, in the definition of features, appropriateness should be
greater than completeness for a better prediction of the per-
formance. Furthermore, the Jaccard-drug-KL and Jaccard-
ADE-KL indices, used as extensions of the network structural
features, yielded poor improvements. Accordingly, the con-
tractor prediction performance of the network model based
on these indices became worse. It suggested that the per-
formances of the Jaccard-drug-KL and Jaccard-ADE-KL
indices may depend on the data, and inappropriate data will
have the opposite effect. Moreover, taxonomic and intrin-
sic features consider the attributes of drugs and ADEs on
the basis of the network structure and introduce pharma-
cological implications to the network model, which mainly
make the model more comprehensive, but also more complex
to apply. Regardless of univariate or multivariate analyses,

the predictive effects of these features are poor, and the
AUROC values are approximately equal to 0.6. These two
types of features do not play important roles, and only a
slight improvement was documented from the perspective
of optimization. Finally, the best performance features were
based on the similarity measure and PNM only presented a
network-based model and did not develop an optimal model.

The predicted outcomes that the five different similarity
measures extracted as features indicate that AA and Salton
indices yield good performances compared with other simi-
larity measures for ADE predictions. Based on the analysis of
PNM and the similarity measures, we extracted the features
of Jaccard and Adamic-Adar indices to build the FFPNMs
with ML algorithms. The FFPNM with LR generated more
concise and efficient predictions, achieved superior predic-
tion performance compared with PNM [10], and were robust.
Especially, FFPNM with RF presented the best prediction
performance, and the result of FFPNM with SVM is close
to RF and higher than LR. We believe that the superior result
is simply due to the power of ensembleML algorithms, which
can capture the sophisticated patterns in data.

Our future work will be extended in the following direc-
tions: firstly, features with improved performances will be
considered as the supplementary features from the attributes
of drugs and ADEs for ADEs prediction. In addition, future
research can extend our approach by developing features
defined based on similarity measures of the path information
of complex network, in an effort to achieve better predic-
tions following the considerations of the weight information.
Moreover, both PNM and FFPNM with LR can generate
probabilities for any drug–ADE association. However, these
probabilities have different interpretations for the drug–ADE
frequencies estimated using spontaneous reporting system
databases. To address this challenging issue, novel integrated
methods need to be developed in the future.
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