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ABSTRACT This paper proposes a novel adaptive fading Kalman filter (AF-KF)-based approach to time-
varying brain spectral and functional connectivity analyses of event-related multi-channel electroencephalo-
gram (EEG) signals. By modeling the EEG signals as a time-varying (TV) multivariate autoregressive
(MVAR) process, a new AF-KF with variable number of measurements (AF-KF-VNM) is proposed for
estimating the spectra of the EEG signals and identifying their functional connectivity. The proposed
AF-KF-VNM algorithm uses a new adaptive fading method to adaptively update the model parameters
of the KF for improved state estimation and utilizes multiple measurements for better adaptation to the
nonstationary signal observations. Experimental results on a simulated data for modeling the TV directed
interactions in multivariate neural data show that the proposed AF-KF-VNM method yields better tracking
performance than other approaches tested. The proposed algorithm is then integrated into a novel method-
ology for combined functional Magnetic Resonance Imaging (fMRI) activation maps and EEG spectrum
analyses for quantifying the differences in spectrum contents and information flows between the target
and standard conditions in a visual oddball paradigm. The results and findings show that the proposed
methodology agrees well with the literature and is capable of revealing significant frequency components
and information flow involved as well as their time variations.

INDEX TERMS Electroencephalogram (EEG), adaptive fading, Kalman filter (KF), multivariate autore-
gressive (MVAR), connectivity analysis.

I. INTRODUCTION
There has been a growing interest in developing multi-
variate approaches for studying brain functions based on
non-invasive neuroimaging techniques such as functional
Magnetic resonance imaging (fMRI), magnetoencephalog-
raphy (MEG) and electroencephalography (EEG). Such
analyses can provide valuable information regarding the
functioning and connectivity of different brain regions for
normal as well as diseased patients [1]–[5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Pietro Savazzi .

A number of mathematical methods have been proposed
to infer the functional and effective connectivity of brains
from EEG data [6]. A commonly used approach is based
on bivariate method, in which the multivariate connectiv-
ity is estimated in a pair-wise manner. Example measures
include the Pearson correlation coefficient [7] and coherence
function [8], [9]. However, these methods only estimate the
correlation between electrodes rather than the direction of the
functional links. Therefore, it may yield large number of con-
nections when cortex areas are highly synchronous. To over-
come this problem, multivariate methods such as Granger
causality [10], partial directed coherence (PDC) [11], and
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directed transfer function (DTF) [12], [13], etc., have been
proposed. Usually, the multichannel EEG signals is modeled
as a multivariate autoregressive (MVAR) model [14] where
the inter-channel dependency is modeled by the linear rela-
tionship between the current samples with those from the
past. Based on the estimated MVAR model, the statistical
correlation between the channels at different frequency bands
can be inferred. An advantage of theMVARmodel is that they
can provide directed inference between different bands in
different channels. Therefore, it facilitates the interpretation
of the information flow related to different neural oscillations
involved in the task. Yet another approach is to perform
source localization and estimate the directional connectivity
from the extracted source signals via source-imaging tech-
niques and connectivity analysis [15], [16]. While it may
identify the source signals and their inter-dependency, its
performance is highly dependent on the brain propagation
model.

In this paper, we propose an alternative methodology by
combining the fMRI activation maps and EEG spectra for
quantifying the information flows. In particular, we propose
an adaptive fading Kalman filter with variable measurement
(AF-KF-VNM) -based autoregressive (AR) method to com-
pute the spectra of the EEG signals captured at those elec-
trodes which lie in the close vicinity of the activation maps
obtained from the fMRI analysis. This helps to character-
ize the frequency bands possibly involved in the activated
brain regions under the standard and target conditions in a
visual oddball experiment. We then compute the information
flows between these relevant electrodes using the proposed
AF-KF-VNM-based MVAR method and established regions
with significant p values for further analysis. Furthermore,
a source analysis is performed to validate the findings.

Generally, methods for estimating MVAR model can be
classified into two categories, namely 1) the sliding-window
approaches, such as short-time directed transfer function
(STDTF) [12], [17], and 2) the parametric methods, e.g.,
Kalman filter (KF)-based algorithms [18]–[22]. The former
employs a time shifting window to extract a short-time
data segment from the original signal at a time point of
interest. These local data samples are assumed to be wide-
sense stationarity and hence the MVAR coefficients of each
segment can be estimated independently at different time
instants using classical AR identification methods [23]. The
selection of the window size is crucial to the performance
of the sliding-window approach. Too small a window size
may yield large variance of the estimated model coeffi-
cients, while too large a window size will cause tracking lag
that degrades the tracking performance. Therefore, automatic
window selection is an important practical problem, which
may considerably affect the analysis of nonstationary sig-
nals. On the other hand, the parametric method formulates
the MVAR model as a state-space model under Gaussian
processes. Consequently, the model coefficients can be opti-
mally estimated by the celebrated KF algorithm provided that
the model parameters are known a priori. In fact, variants

of KF, called the General Linear Kalman Filter [24]–[26]
have been successively applied to analysis of laser-evoked
brain potentials and related applications. It treats observa-
tions from multiple trials as measurement and hence can
be applied to EEG with more channels.1 A Dual Extended
Kalman Filter has also been applied to study the time-varying
cortical connectivity analysis of newborn EEG [27]. More-
over, KF has been successively applied in fMRI analysis via
Dynamic Causal Modelling (DCM) [28], dynamic granger
causality [29], etc. In [29], the KF is applied to infer the
causality from the MVAR model of the functional networks
obtained by independent component analysis. DCM is based
on generative models in which models are compared within
a Bayesian framework in order to infer the functional con-
nectivity between neuronal populations or brain regions from
the observed EEG, MEG, or fMRI data [28], [29]. In many
such real-world applications, the model parameters of the KF
are often unknown and they have to be estimated or chosen
by trial and error [19], [30], [31]. Therefore, it is desirable to
develop new adaptive algorithms for automatic estimation of
these model parameters in these KF algorithms.

The proposed AF-KF-VNM algorithm aims to identify
the MVAR models from nonstationary EEG signals. It is an
extension of our previous KF algorithm for single channel
AR model estimation using a variable number of measure-
ments [32], [33] instead of using a single or fixed number of
measurements as in the conventional KFs [18]. The use of
variable number of measurements enables better adaptation
to the nonstationary EEG signals. Moreover, it is found that
the conventional KF can be used to implement suchKF-VNM
algorithm by using measurement and noise covariance matri-
ces with a dimension which varies with the number of mea-
surements used. Furthermore, a novel adaptive fading (AF)
method is proposed to adaptively update possiblemismatched
model parameters in estimating the MVAR coefficients. This
helps to alleviate the problem of selecting the unknown or
time-varying (TV) model parameters required for the KF.
The proposed AF approach differs from the conventional AF
KFs [34]–[40] in that the fading parameters are formulated
in form of a linear regression, which can be conveniently
solved using another low order KF. In addition, the proposed
AF approach extends naturally to the KF-VNM case where
the measurements dimension is locally time-varying. Due to
page limitation, the comparison between the proposed and
conventional AF approaches is included in the supplementary
material. A comparison between the proposed AF-KF-VNM
and the particle filter proposed in [41] is also given. It is
shown that that the proposed filter offers significantly bet-
ter performance than the conventional KF and achieves a
comparable performance to that of PF, but at a much lower
arithmetic complexity.

1Our method can also be applied to this setting. On the other hand,
we process the data from each trial using our algorithm and obtain its average
behavior so as to reduce its sensitive to trial-to-trial variability.
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Experimental results on a simulated data for modeling the
TV directed interactions in multivariate neural data [42] show
that the proposed AF-KF-VNM method yields better per-
formance in tracking the interactions than other approaches
tested. Moreover, the estimated time-varying DTF of the
proposed AF-KF-VNM algorithm also clearly reveals the
influence of the oscillating strength of the various processes.

To illustrate the potential of the proposed methodology in
studying TV brain functional connectivity from EEG signals,
we focus on real-world multi-channel EEG-fMRI recordings
in an oddball paradigm [43]. The results show that the pro-
posed methodology agrees well with the literature and is able
to reveal significant frequency components and information
flow involved as well as their time variations. These and
other findings obtained demonstrate the effectiveness of the
proposed AF-KF-VNM-based spectrum/connectivity analy-
ses and the advantages of combined EEG and fMRI analyses
to understand the neural mechanism for P300 generation.
To our best knowledge, this is the first spectral, connectivity
and localization analyses of the EEG-fMRI recordings of the
visual oddball paradigm.

The rest of the paper is organized as follows. In Section II,
the concept of TV-MVAR model and the DTF metric in
measuring connectivity or information flows are described.
The proposed AF-KF-VNM algorithm for identification of
theMVARmodel is given in Section III. Experimental results
on both simulated and real oddball data are presented in
Section IV. The proposed combined fMRI and EEG analyses
and relevant findings are also described. Finally, conclusions
are drawn in Section V.

II. TV-MVAR-BASED CONNECTIVITY MEASUREMENT
A. STATIONARY AND TIME-VARYING
MULTIVARIATE AR MODELS
In the following, we denote scalars, vectors and matrices
by respectively small, bold, and bold-capital letters. In the
MVAR modeling of multi-uch as the multi-channel EEG
signals, the multi-channel discrete-time signal s ∈ RM is
modeled as follows:

sk =
p∑
j=1

A[j]sk−j + vk , (1)

where k = 1, 2, . . . , denotes the time index, sk =
[s1,k , . . . , sM ,k ]T with sm,k ,m = 1,. . . ,M , the signal captured
at the m-th channel and time instant k ,M denotes the number
of channels and p is the model order. The matrices A[j] ∈
RM×M , j = 1, . . . , p, correspond to model parameters and
vk = [v1,k , . . . , vM ,k ]T is an independent and identically
distributed (i.i.d.) zero mean and temporally white Gaus-
sian noise. That is, E[vk ] = 0, E[vkvHk ] = Cvv�0, and
E[vk ′vHk ] = 0, for k ′ 6= k . For stationary processes, A[j]
will be independent of time index k , while for time-varying
MVAR processes, the matrices A[j] are function of time, i.e.
Ak [j].

To estimate the model parameters, one can convert the
model in (1) to a conventional linear model using the
vectorization operator. Specifically, the matrix parameters
can be converted to a vector via the vectorization operator
vec(A) = [a1,1, . . . , aM ,1, a1,2, . . . , aM ,2, . . . , a1,N , . . . ,
aM ,N ]T , which stacks the columns of a matrix A ∈ RM×N

together and am,n is the (m, n)- th element ofA. Consequently,
the MVAR model in (1) can be rewritten in the following
vector form:

sk = Hka+ vk , (2-1)

where

Hk = IM×M ⊗ [sTk−1, s
T
k−2, . . . , s

T
k−p], (2-2)

a = vec((A[1], . . . ,A[p])T ), (2-3)

⊗ denotes the Kronecker-product of two matrices, and IM×M
represents anM×M identity matrix. The coefficient matrices
A[j] can be readily recovered from the vector a. (2-1) can
be solved using the least square method. For time-varying
processes, one can imagine that the white noise vk is passed
through a time-varying IIR system in the form

sk =
p∑
l=1

Ak [l]sk−l + vk , (3)

where A[l] in (1) is now a time-varying quantity given by
Ak [l]. The linear model corresponding to (2-1) becomes sk =
Hkak + vk , where ak = vec((Ak [1], . . . ,Ak [p])T ).
Due to the difficulty in estimating the time-varying MVAR

coefficients, most conventional methods segment the input
signal using the sliding window method and assume that the
model coefficients are invariant inside each window. In some
cases, the model coefficients are simply assumed to be sta-
tionary. Next, we introduce different conventional metrics to
measure the connectivity at different frequency bands using
the estimated MVAR model.

B. PARAMETRIC TIME-VARYING DTF METRIC
After computing the MVAR model coefficients, the informa-
tion flow between different channels can be quantitatively
estimated from the PDC or DTF measurements. Since DTF
captures not only direct, but also cascade flows, between
channels, it is adopted here to measure the information flows.
For illustration purpose, let’s assume for simplicity that vk
is a deterministic signal. By taking the discrete-time Fourier
transform (DTFT), ={.}, of (1), one gets:

={sk −
p∑
l=1

A[l]sk−l} = ={vk}

⇔ A(f )s(f ) = v(f ), (4)

where

A(f ) = I −
p∑
l=1

A[l]e−j2πfl =
p∑
l=1

B[l]e−j2πfl, (5)
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and ={sk} = s(f ) = 6
p
k=0ske

−j2π fk and ={vk} = v(f ) =
6
p
k=0vke

−j2π fk are the DTFT of sk and vk , respectively. The
frequency range is f ∈ [−fs

/
2, fs

/
2] where fs is the sam-

pling frequency, and j =
√
−1. Eq. (4) can also be written

as s(f ) = (A(f ))−1v(f ) = G(f )v(f ), where G(f ) is the
matrix transfer function at the k-th time instant. If v(f ) is
a temporally white random process, then the DTFT of vk
and sk may not exist but one can work with the autocorre-
lation of sk and vk and the power spectral density of sk is
then given by Ss(f ) = (A(f ))−1(A(f ))−HSv, where Sv =
E[vkvHk ] = Cv is the power spectral density of vk , which
is a positive semidefinite matrix. Moreover, if one assumes
that the process is slowly time-varying, then the DTFT of the
locally windowed samples or short-time DTFT can be written
approximately as sk (f ) = (Ak (f ))−1v(f ) = Gk (f )v(f ), where
Gk (f ) is the matrix transfer function at the k-th time instant.
The power spectral density of sk is then given by Ssk (f ) =
(Ak (f ))−1(Ak (f ))−HSv.
Many measures have been proposed to measure the func-

tional connectivity from thematrix transfer functionG(f ). For
instance, the following normalized DTF [12] can be used to
describe the information flow from channel l to channel m

cm,l(f ) =

∣∣Gm,l(f )∣∣√
M∑
l=1

∣∣Gm,l(f )∣∣2
, (6)

where Gm,l(f ) is the (m, l)-th element of G(f ). It can be
seen that cm,l(f ) is the normalized absolute value of Gm,l(f ),
which has a value between 0 and 1, i.e. [0, 1]. Similarly,
the following time-varying normalized DTF can be used to
describe the information flow from channel l to channel m at
time instant k:

cm,l(k, f ) =

∣∣Gm,l(k, f )∣∣√
M∑
l=1

∣∣Gm,l(k, f )∣∣2
, (7)

where Gm,l(k, f ) is the (m, l)-th element of Gk (f ). As men-
tioned, due to the difficulty in estimating the time-varying
MVAR coefficients, most conventional methods employ the
sliding window method and assume that the model coeffi-
cients are invariant inside each window. Consequently, the
performance is highly dependent on the selection of window
size.We now introduce the proposed AF-KF-VNM algorithm
for estimating the time-varying MVAR model and hence the
connectivity from multichannel EEG signals.

III. TV-MVAR-BASED CONNECTIVITY MEASUREMENT
In this section, we first formulate the problem of estimating
the TV MVAR model parameters as a state-space model
and introduce the celebrated KF for tracking the model
parameters.We then introduce the KF-VNMalgorithmwhich
utilizes a variable number of measurements (VNM) for
better identification of the TV coefficients in nonstation-
ary scenarios. Finally, a new adaptive fading (AF) method

is proposed for adaptively updating the covariance matri-
ces of the KF-VNM algorithm, which yields the proposed
AF-KF-VNM algorithm.

A. KALMAN FILTER FOR MVAR MODELS
One of the difficulties in estimating the TV MVAR model
in (3) is to determine the size of the window, inside which
the MVAR model is to be estimated. Too large a window
size will introduce significant bias in the estimated MVAR
parameters, whereas too small a window size will introduce
significant variance in the estimated parameters. Moreover,
it is important to ensure the continuity of the estimated param-
eters. In fact, each sample of (2-1) in the neighborhood of the
current time instant can be viewed as the observation or data
term in conventional maximum likelihood function whereas
the continuity can be viewed as the prior information in the
maximum a posterior probability estimation. An effective
recursive method to incorporate such prior information in
(2-1) is to introduce an additional dynamic equation, which
leads to the following state-space model:

ak = Fkak−1 + wk , (8-1)

sk = Hkak + vk , (8-2)

where Fk is the state transition matrix, wk and vk are respec-
tively the state and measurement noises which are assumed to
be mutually independent and zero mean Gaussian distributed
random vector, i.e. wk ∼ N (0, Qk ) and vk ∼ N (0, Rk ).
Normally,Fk is chosen as an identitymatrix IM2p×M2p, which
gives rise to the so-called random walk model. (8-1) implies
that ak is equal to ak−1 except for an additional random error
distributed as N (0, Qk ). This helps to enforce the continuity
constraint. An advantage of such state space formulation is
that the state variable ak can be optimally estimated in the
minimum mean square error sense using the celebrated KF
algorithm. More precisely, with appropriate initialization of
the state vector â0|0 and its covariance P0|0, the KF estimates
ak using the following prediction and correlation steps:
Prediction

âk|k−1 = Fk âk−1|k−1, (9-1)

Pk|k−1 = FkPk−1|k−1FTk + Qk , (9-2)

Correction

ek = sk −Hk âk|k−1, (9-3)

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk )
−1, (9-4)

âk|k = âk|k−1 + Kkek , (9-5)

Pk|k = (I − KkHk )Pk|k−1, (9-6)

where ek is the prediction error of the measurement vector,
Kk is the Kalman gain matrix, and âk|k−1 and âk|k represent
respectively the estimator of ak given the measurements up to
time instant k−1 and k .Pk|k−1 andPk|k are the corresponding
covariance matrices of âk|k−1 and âk|k .
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B. KF WITH VARIABLE NUMBER OF
MEASUREMENTS (KF-VNM)
Though (8) can be estimated optimally using the KF if the
state and measurement noise parameters are known, it only
makes use of the current measurement and relies entirely
on the state dynamic to reduce the variance of the esti-
mation. Like the sliding window approach, it is advanta-
geous to employ as many as possible neighboring samples
to reduce the estimation variance. However, care has to
be taken to select a proper number of measurements. It is
because the use of more measurement will help to reduce
the bias error due to the prior if the system state is fast
time-varying. On the other hand, when the state changes
slowly, including more measurements can help to reduce the
estimation variance. Ideally, a variable number of measure-
ments should be employed in the measurement equation.
Suppose that the set of measurements used for state estima-
tion at time instant k lies in a symmetric window around sk ,
sk = [sTk−Wk

, sTk−Wk+1
. . . , sTk , . . . , s

T
k+Wk−1

, sTk+Wk
]T , where

(2Wk + 1) is the window size. Including the augmented
measurement vector into (8-2) yields:

sk = Hkak + vk , (10)

where Hk = [HT
k−Wk

,HT
k−Wk+1, . . .H

T
k , . . . ,H

T
k+Wk−1

,

HT
k+Wk

]T and the measurement noise vector becomes

vk ∼ N (0, Rk ) with R̃k = blkdiag{Rk−Wk ,Rk−Wk+1, , . . . ,

Rk , . . . ,Rk+Wk−1,Rk+Wk }. Here, blkdiag{·} denotes the
diagonal concatenation of block matrices. The variable mea-
surement equations in (10) can be augmented to the state
equation in (8-1) to form a measurement-augmented state-
space model at each time instant. Moreover, we can see that
the previously described KF algorithm in Section III-A is also
applicable to this augmented system by replacing Hk and Rk
in (9-4) with Hk and Rk respectively. Note that the window
size 2(Wk + 1) and hence Hk and Rk will vary according
to the signal at each iteration. In the context of EEG signal
analysis, slight delay can usually be tolerated and hence a
symmetric window can be used. If such delay is undesirable,
a non-symmetric or even a one-sided window can be used to
reduce the delay due to the use of future measurements.

Next, we shall introduce a method for determining the
number of elements to be used in the augmented measure-
ment vector. It is based on the observation that significant
state changes are usually associated with fast varying param-
eters and the number of neighboringmeasurements to be used
should be reduced accordingly. To this end, we estimate the
derivative or change of the system state using the following
equations:

ck = âk−1 − ãk−1, (11-1)

ãk = λãk−1 + (1− λ)âk−1, (11-2)

where ck is the approximated time derivative of the state
estimate âk , and λ is a positive forgetting factor less than
one for smoothing âk to form ãk . The change can then be
measured using the 1-norm of ck , which is denoted by ‖ck‖1.

When the TVAR process varies slowly, ‖ck‖1 will decrease
and converge gradually from its initial value to a very small
value. This idea has been used previously in [22] for varying
the step-size in the LMS-type algorithms. In contrast, ‖ck‖1
will become large while the system changes rapidly. There-
fore, ‖ck‖1 serves as a measure of the time variation of the
state, and it can be used to determine the window size. More
specifically, the following four-step algorithm is proposed to
determine the number of elements in the augmented measure-
ment vector sk :
Step 1. Compute the absolute value of the approximate

derivative of ‖ck‖1 as: βk =
∣∣‖ck‖1 − ‖ck−1‖1∣∣.

Step 2. Smooth βk by averaging it over a time window of
length Ns to obtain: β̃k = 1

Ns
6
Ns
k=1βk .

Step 3. Normalize β̃k with the first N0 data as follows:
βk =

1
Nsβ̃0

6
Ns
k=1βk , where β̃0 =

1
N0
6
N0
k=1βk .

Step 4. Calculate the number of elements as follows:Wk =

max{LL , round[LL + (1− βk )(LU − LL)]}, where LL and LU
denotes respectively the lower and upper bounds of Wk and
LU ≥ LL ≥ 0.

It can be seen from the equation in step 4 that as βk
approaches 1, which indicates that the estimated state vari-
ation is getting large, Wk will approach the lower bound LL .
This means that a smaller number of measurements will be
chosen. When the estimated state change is small, βk will
be nearly zero and a large Wk will be used. This yields the
proposed KF-VNM algorithm, which uses a variable number
ofW k = 2Wk + 1 measurements to estimate the system state
recursively.

C. ADAPTIVE FADING KF WITH VNM (AF-KF-VNM)
The conventional KF algorithm and the KF-VNM above
assume that the state and measurement noise covariance are
known a priori. However, this information may not be avail-
able and hence its performance may be degraded, especially
for time-varying or environmental dependent scenarios. For
better adaptability and hence estimation of the states, we pro-
pose in this section a new AF-KF-VNM algorithm based on
the adaptive fading method for updating these parameters.

The basic idea is to update the nominal covariance of the
state and measurement noises by computing their empirical
averages. Though there are previous works on using adap-
tive fading [34]–[40], to our best knowledge, the proposed
approach is the first that can deal with a variable number of
measurements in a single framework. Also, the proposed AF
approach has a better performance than these conventional
algorithms as shown in the supplementary material. Specifi-
cally, the prediction error in the KF-VNM can be calculated
by modifying (9-3) as follows

ek = sk −Hk âk|k−1, (12)

from which, one can obtain the following equation

Pek = E(ekeTk ) = Hk P̃k|k−1H
T
k + R̃k , (13)
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relating the covariance of the prediction error with the true
state error covariance P̃k|k−1 and the measurement noise
covariance R̃k . They may be different from their nominal
values which are denoted by Pk|k−1 and Rk , respectively.
Here, we aim to find positive scalar correction or fading
factors fs, k and fm, k for Pk|k−1 and Rk respectively such that

P̃k|k−1 = fs, kPk|k−1, (14)

R̃k = fm, kRk , (15)

so as to satisfy (13). Substituting (14) and (15) into (13) gives
an equation for the desired factors in terms of other known
quantities:

Pek = fs, kHkPk|k−1H
T
k + fm, kRk . (16)

Instead of matching the whole matrix, we take the trace of
the left and right-hand sides of (16) and it gives the following
equation: tr(Pek ) = fs, k tr(HkPk|k−1HT

k )+ fm, k tr(Rk ). Here,
the measurement residual covariance Pke can be estimated
empirically as

P̂
e
k =

W k

M

k∑
t=k−M+1

eteTt
W t

, (17)

whereM specifies the window size for estimating the empir-
ical covariance. Consequently, the estimation of the fading
factors reduces to the following recursive linear regression
problem over time:

tr(P̂
e
k ) ≈ fs, k tr(HkPk|k−1H

T
k )+ fm, k tr(Rk ), (18)

where k = 1, 2..., fs, U ≥ fs, k ≥ fs, L ≥ 0, fm, U ≥ fm, k ≥
fm, L ≥ 0, and fs, U and fs, L are respectively the upper and
lower bounds of fs, k (likewise for fm, k ). The purpose of the
normalization factor (W t )−1 in (17) is to ensure that each
equation in (18) over time will have the same influence, as the
number of measurements used at each time instant W k may
be different.

To solve this recursive linear regression problem, one can
use a KF with the following state-space model:

xck = Fckx
c
k−1 + ξ k , ξ k ∼ N (0,Qck ), (19-1)

yck = Hc
kx

c
k + ηk , ηk ∼ N (0,Rck ), (19-2)

where xck = [fs, k fm, k ]T is the state vector containing the

fading factors, Hc
k = [tr(HkPk|k−1H

T
k ), tr(Rk )], F

c
k = I ,

yck = tr(P̂
e
k ), and ξ k and ηk are the corresponding state

and measurement noises, respectively. This allows the fading
factors to be estimated recursively using the conventional KF
with a random walk model. Moreover, during each recursion,
the estimated parameters will be projected to the lower and
upper bound constraints above. Finally, we summarize the
proposed AF-KF-VNM algorithm in Table 1.

TABLE 1. The proposed AF-KF-VNM algorithm.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
We first test the AF-KF-VNM method and compare it with
other conventional methods (including recursive-least square
(RLS), RLS with a constant forgetting factor (RLS-FF),
the conventional KF [18], Adaptive AR model (AAR) [19]
and short time DTF (STDTF) [12], [17]) for identify-
ing simulated MVAR models. Moreover, to examine the
effectiveness of using future data for estimation, we also
implement an online version of the proposed AF-KF-VNM,
AF-KF-VNM-ONLINE, which is the AF-KF-VNM with
one-sided window containing only past and the current mea-
surements and compare it with the AF-KF-VNM using sym-
metric window and the Kalman smoother (KS). Then the
proposed AF-KF-VNM algorithm is used to study the brain
connectivity from a real-world EEG recording in an oddball
paradigm.

A. EVALUATION ON SIMULATION DATA
1) SIMULATION MODEL DESCRIPTION
We first evaluate the performance of the various algorithms
using a simulated data set consisting of a 3-dimensional
MVAR process. The data has been previously used to assess
the time-varying directed interactions in multivariate neu-
ral data [42], which contains a stochastically driven relax-
ator and two damped stochastically driven oscillators with
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FIGURE 1. Simulation results of MVAR(2): (a) the computed DTF by using the proposed AF-KF-VNM algorithm; (b) summarizes the averaged RMSEs during
the estimation of bk and ck using various algorithms; (c)-(f) plot the model parameter bk and ck obtained by the tested algorithms.

time-varying interaction as follows:

s1,k = 0.59s1,k−1 − 0.2s1,k−2+bks2,k−1 + cks3,k−1 + v1,k ,

s2,k = 1.58s2,k−1 − 0.96s2,k−2 + v2,k ,

s3,k = 0.60s3,k−1 − 0.91s3,k−2 + v3,k . (20)

The time-varying parameters bk and ck are plotted
in Fig. 1 with black lines, which serve as ground truth for
subsequent comparisons. It can be seen that the process s1,k
is influenced by s2,k via bk as oscillating strength, whereas
s3,k influence s1,k with increasing strength in the first half

of the simulation and with decreasing strength in the second
half.

2) PARAMETER SETTINGS
The specific configurations of various algorithms are summa-
rized as follows: 1) For the RLS-FF algorithm, the constant
forgetting factor used is 0.996. 2) For the KF, the covariance
of the state and measurement noises are respectively 10−5

and 1, which were manually chosen by trial and error. 3) For
the AAR algorithm, the update coefficient is set as 0.003
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and the state noise covariance is adaptively calculated based
on the trace of the Kalman gain matrix. 4) In the STDTF,
the window length is chosen as 100 with 99 overlap. The
least square method is used to estimate the model parameters
in each window. 5) In the proposed AF-KF-VNM algorithm,
the settings for the fading factors are 1.001 ≥ fs, k ≥ 1,
1.001 ≥ fm, k ≥ 1, Qck = diag(104, 10−4) and Rck = 1. The
settings for the KF part in the AF-KF-VNM are the same as
in 2) for a fair comparison. To determine the number of mea-
surements, we use λ = 0.999, Ns = N0 = 50, LL = 50 and
LU = 100. 6) The configuration for AF-KF-VNM-ONLINE
is identical to that of AF-KF-VNM, except that no futuremea-
surements is used in order tomimic the case for online estima-
tion without any sample delay. 7) For the KS, the concept of
Rauch–Tung–Striebel backward smoothing is employed to
update the results of KF using the whole measurements.

3) SIMULATION RESULTS
The estimated time-varying DTF of the proposed
AF-KF-VNM algorithm is shown in Fig. 1a, where we can
see that the influence of the oscillating strength of process
s2,k on s1,k is correctly identified. We can also see that
the increasing and decreasing influence of s3,k on s1,k is
clearly revealed. The performance of the proposed algorithm
is compared with those from the other algorithms (including
RLS, RLS-FF, KF, AAR and STDTF) in Figs. 1c and 1d. The
plotted bk and ck parameters are averaged by 10 Monte Carlo
realizations. It can be seen from Figs. 1b and 1c that, among
all algorithms tested, the RLS algorithm (with a forgetting
factor of one) gives the worst performance as all past data
up to the current time instance are used in the estimation.
The performance of RLS-FF, KF and AAR algorithms are
quite similar and much better than that of the RLS algorithm.
However, all of them exhibit tracking lags in estimating the
model coefficients. In contrast, the STDTF and AF-KF-VNM
algorithms offer improved tracking capacity without incur-
ring significant delays as compared with the other algorithms.
Such improvement can be explained by the fact that both
STDTF and the proposed AF-KF-VNM methods have uti-
lized future data in their estimation, which help to miti-
gate the delay caused by estimation from past observations
alone. Moreover, as compared with the STDTF method, the
AF-KF-VNM algorithm offers much better performance in
terms of a smaller tracking variance and more accurate
tracking results. This demonstrates the effectiveness of the
adaptive fading approach in the proposed AF-KF-VNM algo-
rithm for updating the covariance matrices.

To examine the effectiveness of using future data for cur-
rent estimation, we also compare the AF-KF-VNMwith sym-
metric window against the online version of AF-KF-VNM
(AF-KF-VNM-ONLINE) and the Kalman smoother (KS).
The estimated parameters of bk and ck are plotted in Fig. 1e
and It can be seen that there are more time delays for the
estimates obtained by AF-KF-VNM-ONLINE in comparison
with those of AF-KF-VNM using symmetric window. This
suggests that the use of future data in the AF-KF-VNM

algorithm can alleviate the lagging problem to some extent.
Similar phenomenon can be observed by comparing the
results between KF and KS in Fig. 1e and 1f, where it can be
seen that the lagging problem is significantly mitigated by the
KS which uses the entire measurements for state estimation.
However, smoothing with the entire data as done in the KS
may result in over-smoothed estimates. This is evidenced
by the inferior estimates of KS around the peak point at
time sample 2500 in Fig. 1f. In contrast, the AF-KF-VNM
algorithm using symmetric window is able to offer better
estimates which is attributed to the use of variable number
of measurements in the AF-KF-VNM method. Finally, the
performance of tested algorithms for the estimation of bk and
ck are compared in terms of the following averaged root mean
squared error (RMSE):

RMSEAV =
1
N

∑N

k=1

(√
1
M

∑M

m=1
(xk (m)− x̂k (m))2

)
,

(21)

where xk (m) and x̂k (m) denote respectively the true and esti-
mated parameters at the m-th Monte Carlo run. The quanti-
tative results are summarized in Fig. 1b. It can be seen that
the mean estimation accuracy of the AF-KF-VNM algorithm
and the KS are significantly better than those obtained by the
other approaches.

B. ANALYSIS OF fMRI/EEG SIGNALS IN THE
ODDBALL EXPERIMENT
As mentioned earlier, the studies of the oddball paradigm is
inspired by the P300wave, an ERP component elicited during
decision making which is also utilized in brain-computer
interface [44], [45]. Previous studies [46] have shown that
P300 components can be maximally observed from parietal
electrodes. Its generation is also known to be related to atten-
tion and memory processing. This suggests that there may
be considerable information flows between parietal and other
brain areas, which we shall now analyze.

1) DATA DESCRIPTION AND EXPERIMENTAL SETTINGS
We first evaluate the performance of the various algorithms
on a real-world oddball experiment from the OpenfMRI
database [43] with accession ID ds000116. Seventeen sub-
jects participated in the visual oddball paradigm. During the
oddball experiment, subjects were instructed to respond to
target stimuli and ignore standard stimuli, which are dis-
played sequentially in the center of the screen. Main variables
manipulated in the paradigm are stimulus type and frequency.
In the experiment, the target and standard stimulus are
denoted by a large red circle and a small green circle respec-
tively. The target and standard stimuli appear alternately
with a 2–3s uniformly distributed variable inter-trial inter-
val (ITI) and each stimulus lasts for 200 milliseconds (ms).
There are totally 375 stimuli in the oddball experiment,
20% of which are target. When target stimulus appears in
sight, participants are required to press on an MR-compatible

VOLUME 8, 2020 51237



J. Li et al.: Novel AF-KF-Based Approach to TV Brain Spectral/Connectivity Analyses of Event-Related EEG Signals

button response pad with the right index finger. Scalp EEG
and functional magnetic resonance image (fMRI) data are
simultaneously recorded during the experiment. Functional
echo-planar image (EPI) data are continuously collected
by a 3T Philips Achieva MRI scanner. The whole brain
data are covered by obtaining 32 slices of 64 × 64 voxels
with a 2000 ms repetition time (TR) and 25 ms echo time
(TE). EEG data are simultaneously recorded using a custom-
built MR-compatible EEG system and 43 bipolar pairs are
recorded. Before EEG analysis, 43 bipolar EEG signals are
re-referenced to the 32-channel electrode space.

2) METHODOLOGY
To obtain a better picture of the brain activities involved in
the experiment, we first identify the regions with significant
difference (p < 0.001) in activation between the standard
and target stimulating conditions in the fMRI data using the
SPM toolbox (details are given later in this section). We then
employ the AF-KF-VNM-based AR model to compute the
spectra of the signals captured at those electrodes which lie
in the close vicinity of the activation maps obtained from the
fMRI analysis. This helps to characterize the significant fre-
quency bands possibly involved in the activated brain regions
under the two conditions. We then computed the information
flows between these relevant electrodes using the proposed
AF-KF-VNM-based MVAR method and established regions
with significant p values. The combined analyses allow us to
contrast the agreement of the two analyses as well as reveal-
ing more information regarding the spectrum composition of
the EEG signals involved their time variations and possible
information flow.
fMRI Data Processing: The processing of fMRI data fol-

lows the standard procedure and is based on the SPM toolbox
with first-level statistics including slice-time correction, spa-
tial realignment, spatial normalization, and smoothing [47].
The regressors for first-level statistics are derived from the
timing of stimulus onsets convolved with a modeled hemo-
dynamic response. Then, second-level group analysis is per-
formed across two conditions through 17 subjects. The fMRI
activation maps are shown in Fig. 2a.
EEG Data Processing: Since the gradient artifacts and

ballistocardiogram (BCG) artifacts in the dataset [48] were
removed by the authors, the following preprocessing proce-
dure of the gradient-free EEG data in the oddball paradigm is
adopted: the averaged reference signal (obtained by averag-
ing the data of all electrodes) is firstly subtracted from the
data. Then, the resulting signals from −300ms to 1000ms
post-stimulus are extracted and further corrected with a base-
line reference [49] calculated using data from −300ms to
0ms. Finally, artifact-free trials are down-sampled to 256 Hz
for subsequent estimation of information flows between dif-
ferent channels. We also discarded trials containing eye-blink
artifacts by visual inspection, and about 95% of the target
trials are retained for analysis.

FIGURE 2. (a) fMRI activation maps. Group statistical maps of blood
oxygenation level-dependent signal difference for the target condition
compared with standard condition, p<0.001 (in red color). (b) Source
difference between target and standard conditions in different time
durations (p<0.01). The color bar means the absolute mean of the target
condition minus that of the standard condition. (c) Power spectrum
differences between target and standard conditions. Spectrum power in
target condition is significantly higher and lower than standard condition
in yellow and black areas, respectively (p<0.05).
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Since previous studies [46], [50], [51] have found that the
absolute power topography of the ERP response is mainly
concentrated in the frontal, central and parietal areas, and
according to our fMRI activation analysis in Fig. 2a, eight
relevant channels, namely Fz, C3, Cz, C4, CP5, CP6, Pz and
Oz, are selected for subsequent spectrum and brain connec-
tivity analysis. The locations of these electrodes in the stan-
dard EEG system are shown in the supplementary materials.
Frequency range below 80 Hz is used for assessment.

For the spectrum analysis of the eight relevant channels,
we model the variation of the signal of each channel by an
AR process, the coefficients of which are estimated using the
proposed AF-KF-VNM algorithm. The spectra can then be
gauged from the estimated AR coefficients as in [32], [41].
The settings of the AF-KF-VNM-based AR method are as
follows: 1) the ARmodel order is selected using the approach
in [52] by evaluating the model order on randomly sam-
pled EEG trails in terms of Bayesian information criterion
(BIC) [53]. In our experiment, the orders of the randomly
sampled trails have a mean value of 7.89 with a standard
deviation of 1.07. Thus, the model order is set to 8. 2) The
parameters for fading factor estimation are set: 1.02 ≥ fs, k ≥
1, 1.001 ≥ fm, k ≥ 1, Qck = diag(104, 10−4) and Rck = 1.
3) The covariance of the state and measurement noises of the
KF in the AF-KF-VNM algorithm are 10−5 and 1, respec-
tively. 4) For the calculation of the number of measurements,
we set λ = 0.999, Ns = N0 = 50, LL = 50 and LU =
100. Compared to the settings of the AF-KF-VNM in the
simulation above, most of the parameters are kept unchanged
except that the lower and upper bounds in estimating the
fading factors are slightly adjusted according to the dynamic
characteristic of the signals.

For the brain functional connectivity analysis, the infor-
mation flows between different electrodes are measured by
the normalized DTF metric where the MVAR coefficients are
estimated using various approaches including AAR, STDTF
and the proposed AF-KF-VNM algorithms for comparison.
The settings for different algorithms are as follows: 1) For
the AAR algorithm, the update coefficient is set as 0.008,
which yields a comparable performance to our best efforts in
running the algorithm multiple times by manually tuning the
coefficient. 2) For the STDTF, we also used the least square
method to estimate the model parameters. Two different win-
dow lengths, 50 with 49 overlap and 100 with 99 overlap,
are used to generate the results for comparison. 3) For the
AF-KF-VNM algorithms, the parameters for fading factor
estimation are: 1.001 ≥ fs, k ≥ 1, 1.001 ≥ fm, k ≥ 1,
Qck = diag(104, 10−4) and Rck = 1; The covariance of the
state and measurement noises of the KF in the AF-KF-VNM
algorithm are 10−5 and 1, respectively; For the calculation
of the number of measurements, we set λ = 0.999, Ns =
N0 = 50, LL = 100 and LU = 200. Comparing with the
setting in the simulation, most of the parameters remain the
same except the lower and upper limits are slightly adjusted
to allow for better adaptation in terms of the number of mea-
surement used. 4) The model order p in the MVAR model for

all algorithms is automatically determined by the Bayesian
Information Criterion (BIC).

3) EXPERIMENTAL RESULTS AND ANALYSIS
a: fMRI DATA ANALYSIS
Figure 2a depicts the fMRI activity in the target condition ver-
sus the standard condition. Regions with significant changes
in activity generated by the target stimuli (p < 0.001) are
shown in red. They include the thalamus, bilateral inferior
parietal lobules, precentral sulcus (PrCS), left postcentral
gyrus, prefrontal cortex (PFC) and right middle frontal gyri.
They were also identified in previous fMRI studies [47], [51],
[54], [55]. Although visual P300 is highly activated around
channel Pz in EEG study, no significant difference was found
in the middle parietal area between the two conditions in the
fMRI activationmap. The activated locations are summarized
in the supplementary material.

b: EEG DATA ANALYSIS
Spectrum Analysis:
To facilitate the spectral analysis, the mean spectrum val-

ues of baseline (from −0.5s to 0s) for each frequency bin
were removed from the calculated spectrum matrix. Then, a
cluster-based permutation approach [56] was used to estimate
the spectral difference between two conditions with 2000 per-
mutations for the correction of multiple comparisons.

The significant difference ( p<0.05) in the spectrum
between the target and standard conditions are shown
in Fig. 2c for the eight channels chosen. From the results,
we find that the target condition has higher low-frequency
power (under 12Hz) and lower high-frequency power (over
15Hz) than the standard condition. The main differences
are observed from 200ms to 800ms after stimulus onset.
For example, in the target condition, significantly increased
power under 10Hz during 200ms to 800ms is observed at
channel Pz. A decreased power between 15Hz to 40Hz is also
observed during the same period. This result is also consistent
with the previous study [52].
Functional Connectivity Analysis:
To facilitate the analysis of the information flow between

different functional regions of the brain, baseline connectivity
patterns were firstly removed from the calculated information
flows. This is completed by subtracting the averaged DTF
metric within the baseline period from the DTF metric for
each trial in both the target and standard task conditions.
Then, the differences of the connectivity are obtained by
subtracting the DTF metric in standard condition from that
in the target, which are referred to as effective information
flow. Finally, the independent samples t-test (2 tails) was per-
formed to measure the significance of the functional connec-
tivity. The results obtained with various algorithms, including
AAR, STDTF and the proposed AF-KF-VNM algorithms,
are presented in Fig. 3 for visual assessment. Regions with
significant differences in activity generated by the target
stimulus (p-values < 0.05) are marked in boxes with black
color.
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FIGURE 3. Differences between the information flows in the target and standard conditions within a time duration of −300 to 1000 ms post-stimulus
onset and a frequency range of 0–80 Hz. Red and blue areas denote the information transfers in target condition, which are higher and lower than
those in the standard condition, respectively. Black boxes indicate significant difference which have p-values smaller than 0.05.

From the 7th column of each figure, it can be seen that both
the STDFT and AF-KF-VNM algorithms yield significant
in- and out-going effective information flows at Pz. However,
in contrast, no significant connections related to Pz can be
captured by the AAR method (see the 7th column in Fig. 3b).
Since it has been confirmed that the parietal lobule (Pz) plays
a crucial role in P300 generation [54], it is expected that there
should be more connections at Pz than the other electrodes.
Thus, the results of STDFT and AF-KF-VNM are likely to
be more convincing than that obtained by AAR. Moreover,
by comparing the results in Fig. 3c and Fig. 3d, it can be
seen that the STDTF approach is quite sensitive to the win-
dow length selection. It seems that when the window length
becomes smaller, the significant connections will spread to
wider frequency bands and hence the results will become
more dispersive. This may be caused by the larger variance
of STDTF as shown in the simulation results in Section IV-A.
In contrast, the results of the proposed method can offer more
stable results.

Next, we shall focus on the results of the proposed
AF-KF-VNM algorithm and study the effective information

flows in separated frequency bands over different time inter-
vals. More specifically, the information inside the following
frequency bands: δ (0.5-3.5 Hz), θ (4-7 Hz), α (8-13 Hz),
β1 (14-20 Hz) and β2 (21-30 Hz) are integrated (summed)
at seven time-intervals with 100ms duration during the whole
time course from 0 to 700ms. The choice of the interval
length is based on previous studies on the generation of
P300 [57], [58]. The results are demonstrated in Fig. 4.
It can be seen that most significant connectivity differences
occur after 200ms post-stimuli. After that, from 200ms to
800ms, most brain regions are highly controlled by the pari-
etal area (Pz). It can be also noticed that there exists a constant
connection from the central area to the occipital area starting
from stimuli onset to 800ms. However, in the same duration,
the effective information transfers from Cz to C4 and from
CP6 to C3 decrease dramatically. Our main observations are
summarized in Table 2, with p < 0.05.
EEG Source Analysis:
To further validate the above findings, a source analysis

is also is performed using the standardized low resolution
electromagnetic tomography method (sLORETA) [59] in the
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TABLE 2. Main observations and interpretations for the odd ball experiments From EEG signals.

FIGURE 4. Information flows in the target condition, which are
significantly stronger ( p-value<0.05) than those in the standard
condition: Arrows indicate the direction of the connections; different
connections are denoted with different colors.

Brainstorm toolbox [60]. The source space is generated by
SPM with a default 5124-cortex nodes, and the orientation of
each source is restricted to be perpendicular to the cortical
surface. A three-layer forward model is used to estimate the
source signal. The paired sample t-test is performed to com-
pare two conditions across six time durations. The significant
difference of the absolute mean value is shown in Fig 2c
(p < 0.05, FDR corrected).

The target condition always shows stronger activities than
the standard condition. More specifically, in the first 100ms,
the occipital area (OA) and the central area (CA) have
stronger activations in the target condition than in the standard
condition, and the difference on CA lasts about 500ms after
stimulus onset. This result agrees with the fMRI activations
(increased activations at right lingual, left precentral and left
postcentral, left supplementary motor areas at target condi-
tion) and our connectivity findings, which show that in the
first 500ms, the central area always has stronger connections
with other areas in target condition. Moreover, the parietal
area also shows stronger activities in the target condition

between 100ms to 600ms, which also agrees with our con-
nectivity results and the fMRI results (increased activations
at left and right supramargial gyri, left and right angular gyri,
right precuneus, left and right inferior parietal gyri, left post-
central area at target condition2). It can also be seen that both
the source localization and our connectivity analysis better
reveal the strong activations at precuneus during 200-600ms,
probably due to continual blood supply to this area in both
target and non-target conditions, which leads to a reduced
difference in activation. On the other hand, both the fMRI
and connectivity results demonstrate a significant difference
in the left post- and pre- central areas. Moreover, our connec-
tivity analysis shows that the time duration is between 300ms
to 600ms, which also agrees with the source localization
analysis. However, at time 600ms to 700ms, the excitations
for the standard and target stimuli from the source localization
analysis are nearly identical and hence there is little difference
in activation as shown in the right subplot at the second row
of figure 2(b). On the other hand, the connectivity analysis
shows that there are still considerable differences in the con-
nectivity between the target and standard conditions. This
suggests that the various analyses can complement each other
to leverage their strengths and somehow mitigate individual
weaknesses, especially on the inherent variations of the data.

C. DISCUSSION AND MAJOR FINDINGS
1) DISCUSSION ON ADAPTIVE FADING KFs
There are several previous works on using adaptive fading to
update the covariancematrices [34]–[36]. These adaptive fad-
ing KFs only consider the case when there are uncertainties in
the state equation of the system model. In practical applica-
tions, however, unexpected uncertainties can also exist in the
measurement equation. Therefore, their performancesmay be
significantly degraded when the measurement equation expe-
rienced considerable uncertainties. To solve this problem,

2Figure 3a shows the activation on the brain surface. It can be seen that
there are also significant activations at left and right supramarginal gyri,
angular gyri and left postcentral area. There is also certain activation at right
precuneus area.
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a more comprehensive approach for systems with inaccurate
state or measurement equation was proposed in [37]–[40].
It uses the ratio between the calculated innovation covari-
ance and the estimated one as the fading factor for adaptive
compensation of the uncertainties. In this paper, we further
employs multiple measurements for further improving its
performance [37]–[40].More simulation results are presented
in the supplementary materials. The above experimental
results also demonstrated the effectiveness of the proposed
AF-KF-VNM algorithm.

2) MAJOR FINDINGS FROM BRAIN
SPECTRAL/CONNECTIVITY ANALYSIS
The P300 neuro responses can be divided into three stages:
i) information integration (0-200ms), ii) decision process
(200ms to P300 latency) and iii) neuronal response (after
P300 peak latency) [68]. From Figs. 3 and 4, it can be seen
that brain-connection differences located in the information
integration stage are fewer than those in other stages. This
suggests that, during the information integration stage, most
of the brain connectivities in the target condition are similar
to that in the standard. This observation is consistent with the
previous study in [58]. It can also be noticed that the ERP
response differences (at around 300ms) are mainly generated
from two brain areas: the parietal area and central area.
Next, we shall elaborate our findings separately for these two
regions.

a: CENTRAL AREA CONTROL IN EARLY ERP
The fMRI activationmap in Fig. 2a shows that the central area
(CA) was more active during the target condition, including
left pre- and post- central gyri, and right-precentral gyrus.
Both our connectivity and source analysis results also show a
stronger activation around the left CA in target conditions at
200 to 600ms, probably due to the pressing of the button at
the target condition and all the participants are right handed.
Li et al. [58] also found that the central area played a crucial
role in the low frequency components in the ERP responses
and suggested that it may control other brain regions by
sending out related activation commands in the early ERP
stage.

Another EEG-fMRI study [48] of the visual and audi-
tory oddball paradigms reported that there is a significant
correlation between the EEG and fMRI signals at left/right
anterior cingulate cortex (ACC), left caudate, left precentral
gyrus and left middle temporal gyrus around 200ms post-
stimulus in the target condition, compared with the standard
condition. Since the positions of our C3 and C4 electrodes
are near the precentral area and they are also activated during
the target task during the same time interval, it suggests that
the electrical activations around these regions are likely to
be captured by these electrodes. In our EEG connectivity
analysis, we find a significantly increase in outgoing-flow
from C4 to electrodes at other brain areas, including CP5,
CP6 and Pz at parietal and C3 near left precentral areas, in the
early 100 milliseconds (the first graph in Fig. 3). Moreover,

prominent information transfers from C4 to other electrodes
are found in the delta band during the first 100ms as shown
in the first plot of Fig. 4.

Our connectivity analysis also reveals stronger in- and out-
going flows fromC4 to other electrodes in the target condition
than that in the standard condition. More precisely, there is
also a continuous connection from C4 to Oz in both the alpha
and beta bands after the onset of the stimulus (approximately
from 200ms to 600ms). There is also considerable inflow
from Pz to C4 during the about interval. Moreover, in [48],
there is also correlates between the EEG with fMRI signals
at 425ms and 475ms in right inferior frontal gyrus, middle
frontal gyrus, pre- and post- central areas. Also, ACC and
anterior supramarginal gyrus respectively correlate with the
EEG respectively at 425ms and 475ms together with some
other areas at temporal and frontal poles. Our connectivity
analysis around 400-500 ms also reveal substantial interac-
tions of the right hemisphere, which aligns with the observa-
tions in [48].

From the power spectrum analysis of C4 and Cz
in Fig. 2(b), we also find that the target response has signifi-
cant larger power than standard response at around 4Hz, (i.e.
delta band) in the first 100 ms (stage 1), and also significant
higher and lower power respectively in stages 2 and 3 at lower
frequency (theta, delta and alpha) bands and higher frequency
(beta and gamma) bands.

In summary, the fMRI analysis suggests that there is con-
siderable activity difference during the 200ms post-stimulus
interval in target condition and the EEG signals recorded
by a nearby electrode C4 also show significant differences
in power between target and standard responses at around
4Hz, (i.e. delta band) in the first 100 ms (stage 1), and also
significant higher and lower power in stages 2 and 3 at theta,
delta and alpha bands and beta and gamma bands respectively.
Therefore, the two analyses are highly consistent with each
other and the EEG spectrum and connectivity further reveal
the frequency bands and their time variations associated with
the stated activation. The results also indicate that the differ-
ence between the target and standard stimuli may be recog-
nized in a very short duration (less than 100 milliseconds)
after stimulus onset.

Moreover, as noticed in row 4 from Fig. 4, a signifi-
cant connection from Cz to C3 arises in the β1 frequency
band at the first 200 ms as well as in the interval between
500–600 ms, while the connection fromCz to C4 is weakened
substantially as shown in Fig. 3(a) (3rd row, 4th column). This
is in agreement with the fact that the movement of the right
hand is controlled by the left cerebral hemisphere of the brain,
which also leads to a decreased activation at C4 in the right
hemisphere.

In fact, relevant studies [62], [63] had shown that an event-
related desynchronization (ERD) at electrode C3 on the left-
brain was observed during the movement of the right-hand.
Such activation of the left central area is also found in our
fMRI and analysis. This is because subjects are required to
press a button using their right index fingers in the target
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condition. Moreover, our connectivity analysis suggests that
it may be induced by the information flow coming from Cz
at the β1 frequency band during the 400 to 600ms interval.
Though it is expected that there will be a similar ERD at C3 in
our spectral analysis, no significant decreased in alpha band
power (ERD) is found at C3. Instead, slight ERD in both beta
and alpha are observed at C5. This is probably due to subject
variability and limited sensitivity of our spectral analysis.

b: PARIETAL AREA CONTROL IN P300 AND LATE ERP
In the fMRI activation analysis, no significant difference
was found between the target and standard conditions in
the middle-parietal area (though there are activation at right
precuneus and other inferior parietal areas), though EEG
signals show a strong positive wave (P300) around Pz as
shown in Fig. 2(b).

The information flows outgoing from Pz as seen in the sev-
enth column in Fig. 3a are much higher than those from other
electrodes in the decision-process and neuronal-response
stages. These significantly increased connectivities occur at
around 200ms after the onset of the stimuli and last to about
700ms. Similar observations were also demonstrated in [68].
Moreover, from plots in the 7th column of Fig. 3a, we can also
find that the information transfer from Pz to other electrodes
during the period from 200 to 500 ms post-stimulus are
mainly located in the low-frequency band (below 12 Hz).
Furthermore, from 400ms to 700ms, the frequency range of
connections from Pz to other electrodes is increased to a
higher frequency band centered at around 20 Hz. The power
spectrum at Pz in Fig. 2(b) also shows significant differences
between the target and standard conditions: significant higher
low-frequency power and lower alpha-beta bands power in
the target condition during the ERP responses.

Two similar components, namely, the early ERP compo-
nent (with increased low-frequency power) and the ERD or
alpha/beta-blocking component (with decreased alpha-beta
bands power) were also observed in the analysis of the ERP
spectrum [32], [33]. However, the associated connectivity
information has not been revealed before. Even though these
two components had opposite changes in the spectrum anal-
ysis, we found that the outgoing flows from Pz were both
increased. The stronger information flows from Pz to other
electrodes in the target condition may indicate the connection
changes between the parietal and other brain areas. One of
the overarching hypothesis of P300 mechanisms is the neuro-
inhibition hypothesis, which suggests that the P300 could
represent rapid neural inhibition of ongoing activity [64].
Coupled with our observations, such inhibition mechanism
may be mostly controlled by the parietal lobule.

All these findings suggest that the proposed
AF-KF-VNM-based spectrum and functional connectivity
analyses of EEG can complement the fMRI analysis and
provide more information on the detailed frequency compo-
nents, their time variations and possible information flows
between different parts of the brain. It thus serves as a promis-
ing alternative for connectivity analysis of nonstationary

multi-channel EEGs and other related signals. Moreover,
the AF-KF-VNM algorithm is very general and may find
other applications in the analysis of biomedical signals.

Previous studies have reported the effect of possible vol-
ume condition (VC) effects in the estimation of DTF from
EEG electrodes [69], [70]. While it is truth that the DTF
results based on EEG scalp data is not completely free from
this effect, DTF based on MVARmethods are less insensitive
to VC comparing to classic connectivity methods and the VC
effect does not ruin critically DTF results [71]. Nunez and
Srinivasan [72] studied both theoretically and experimentally
the VC effect using coherence technique. The results showed
that the VC effect were close to zero when the distance
between two electrodes reached about 7cm. Thus, for the
10-20 system we used in this study, the effect of VC on the
connectivity results is likely to be limited.

V. CONCLUSION
A novel AF-KF-VNF-based approach to TV brain spectral
and functional connectivity analyses of event-related multi-
channel EEG signals has been presented. It models the EEG
signals as a TVMVAR process for estimating the spectrum of
the EEG signals and identifying their functional connectivity.
The proposed AF-KF-VNM algorithm uses a newAFmethod
to adaptively update the model parameters of the KF and uti-
lizes multiple measurements for respectively automatic com-
pensation of possibly imperfect model parameters in the KF
and better adaptation to nonstationary signals. Experimental
results on a simulated data formodeling the TV directed inter-
actions in neural data show that the proposed method yield
better tracking performance than other approaches tested.
A novel methodology for combined fMRI activation maps
and EEG spectrum analyses has also been presented for quan-
tifying the differences in spectrum contents and information
flows between the target and standard conditions in a visual
oddball paradigm. The results and findings show that the pro-
posed methodology agrees well with the literature and is able
to reveal significant frequency components and information
flow involved as well as their time variations. It thus serves as
a promising alternative for spectral and connectivity analyses
of nonstationary biomedical signals like multi-channel EEG.
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