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ABSTRACT Measuring similarity is of a great interest in many research areas such as in data sciences,
machine learning, pattern recognition, text analysis and information retrieval to name a few. Literature has
shown that possibility is an attractive notion in the context of distinguishability assessment and can lead
to very efficient and computationally inexpensive learning schemes. This paper focuses on determining the
similarity between two possibility distributions. A review of existing similarity measures within the possi-
bilistic framework is presented first. Then, similarity measures are analyzed with respect to their capacity to
satisfy a set of required properties that a similarity measure should own. Most of the existing possibilistic
similarity measures produce undesirable outcomes since they generally depend on the application context.
A new similarity measure, called InfoSpecificity, is introduced and the similarity measures are categorized
into three main methods: morphic-based, amorphic-based and hybrid. Two experiments are being conducted
using four benchmark databases. The aim of the experiments is to compare the efficiency of the possibilistic
similarity measures when applied to real data. Empirical experiments have shown good results for the hybrid
methods, particularly with the InfoSpecificity measure. In general, the hybrid methods outperform the other
two categories when evaluated on small-size samples, i.e., poor-data context (or poor-informed environment)
where possibility theory can be used at the greatest benefit.

INDEX TERMS Classification, distance, entropy, learning, measures of specificity, possibility distributions,
similarity, uncertainty.

I. INTRODUCTION
Determining similarities is part of a fundamental process
of a human sense-making mechanism that consists of three
elements: an object or event, a mental model, and an asso-
ciation between them [1]. Similarities represent the core of
that association scheme. The notion of similarity has been
exploited in various fields of Computer Sciences [2]–[5] such
as in machine learning pattern recognition [4], classification
[6], image processing [7] and decision making [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Lara .

Similarity in amachine learning context is required to com-
pute the ‘‘closeness’’ between elements in a dataset. It allows
to understand the structure within the input data [8]. More-
over, it is widely used in classification tasks in order to find
the best match between new instances and the already known
ones (by training) [9]. Several researchers in the machine
learning field have an ongoing interest on similarity methods
[8]–[12]. Refining the estimation of similarity scores leads
to the improvement of algorithms accuracy as well as the
minimization of errors and confusions.

The similarity notion is useful to describe the degree of
relationship between concepts or entity models. It represents
a crucial tool to ensure comparison,matching, discrimination,
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sets distinguishability, determination of equivalence, and
classification. Therefore, a measure of similarity must be
sensitive to the nature of the data and must have the ability
to describe existing links between data sets. Significant effort
[2], [13]–[15] has been done to develop adequate measures
tailored to specific problems.

The definition of standard similarity measures has been
conducted in situations where data is accurate, unambiguous
and complete. However, in real-world applications, we are
dealing with imprecise, uncertain or even missing data. This
can be linked to a natural variability in an experiment mea-
surement (random uncertainty) or to the lack of knowledge
of the modeled phenomenon (epistemic uncertainty). Thus,
these types of imperfections should be taken into account in
the definition of a measure within an appropriate framework
that best models these imperfections.

Probability theory is the most traditional tool for modeling
imperfect information. Its major concern is to represent the
variability of a phenomenon. Other types of imperfections
such as the epistemic uncertainties or the incompleteness of
a data set is hardly modeled by this theory. This has led to the
development of new uncertainty theories like P-boxes [16],
fuzzy set theory [17], evidence theory [18] and possibility
theory [19].

In this paper, we are interested in studying similarity mea-
sures in a context where the information is characterized
by epistemic uncertainty. Possibility theory offers an ade-
quate representation of this kind of uncertainty. Literature has
shown that possibility is an attractive notion within the con-
text of distinguishability assessment and leads to very effi-
cient and computationally inexpensive learning schemes [20].
The study starts by comparing existing similarity measures
defined within the possibility theory framework. The existing
measures have been categorized into amorphic, morphic and
hybrid ones depending on what aspects they are addressing
with respect to similarity: amplitude, shape, color, functions,
etc.

The paper is organized as follows. Section 2 briefly
presents the possibility theory. Section 3, first, presents
the existing possibilistic similarity measures and, then, pro-
poses a new measure called InfoSpecificity. Section 4 shows
the results of a numerical analysis comparison of mor-
phic and magnitude-based (amorphic) similarity measures.
Section 5 presents the performance of the similarity measures
when tested against real data.

II. PRELIMINARIES ON POSSIBILITY THEORY
Possibility theory is derived from the fuzzy set theory [19].
It was defined by Zadeh in 1978 and further developed by
Dubois and Prade [21] since 1988. The possibilistic frame-
work can deal with both imprecision and incomplete informa-
tion through a possibility distributionπ and two set measures:
a possibility measure 5, and a necessity measure N .

Let � be a universe of discourse (or possible states) com-
posed of n elements � = {ω1, ω2, . . . , ωn}.

A. POSSIBILITY DISTRIBUTION
The possibility distribution, denotedπ , is a functionπ : � 7→
[0, 1] ;ωi 7→ π (ωi) that associates a possibility degree to
each element ωi of the universe � of possible states.

B. POSSIBILITY AND NECESSITY MEASURES
Themeasure of possibility5 of an eventA is a functionwhich
associates to A, a coefficient (i.e.,possibility degree) between
0 and 1:

5(A) = {sup [π (x) , x ∈ A]} (1)

The necessitymeasure is defined as themeasure of the impos-
sibility of the opposite event:

∀A ⊆ �,N (A) = 1−5
(
A
)

(2)

where 5
(
A
)
is the possibility of the opposite event.

C. NORMALIZATION
A normalized possibility distribution is assumed to con-
tain at least one element ωi ∈ � which is fully possible,
i.e., π (ωi) = 1. If not, the possibility distribution is con-
sidered as being inconsistent. The degree of inconsistency of
a possibility distribution denoted Inc (π) is defined as being
the maximal possibility degree:

Inc (π) = maxωi∈� {π (ωi)} (3)

D. PRINCIPLE OF MINIMUM OF SPECIFICITY
Possibility theory is driven by the principle of minimal speci-
ficity [22]. In fact, a distribution π1 is said to be more specific
than a distribution π2 if and only if ∀ωi ∈ �,π1 (ωi) ≤

π2 (ωi). This implies that the most specific distribution is the
most informative one.

E. UNCERTAINTY MEASURES
To evaluate the amount of information in a possibility dis-
tribution, several uncertainty measures have been proposed
in the literature [23]. In this section, we limit the discussion
to the following measures: the U-Uncertainty measure [24]
and the Specificity measure [22] and we consider π =
{π (ω1) , π (ω2) , . . . , π (ωn)} as an ordered possibility dis-
tribution such as π (ω1) ≥ π (ω2) ≥ . . . ≥ π (ωn).

1) U-UNCERTAINTY MEASURE
The U-uncertainty measure [18], [19] is given by the follow-
ing equation:

U (π) =

[
n∑
i=1

(π (ωi)− π (ωi+1)) log2(i)

]
+
[
(1− π (ω1)) log2(n)

]
(4)

with π (ωn+1) = 0.
Note that the range of U is

[
0, log2(n)

]
, with U (π) =

0 in the case of ‘‘complete knowledge’’ and U (π) =
log2(n) in the case of ‘‘complete ignorance’’. Also, the term
(1− π (ω1)) log2(n), provides a generalization for sub-
normalized distributions.
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2) SPECIFICITY MEASURE
The specificity measure [22] is a function defined by Sp :
π (�) ∈ [0, 1] where:

Sp (π) = π (ω1)−

n∑
j=2

pjπ
(
ωj
)

(5)

with pj is a weight such that pj ∈ [0, 1]. In addition, it must
satisfy: pj ≥ pi, ∀ 1 < j < i and

∑n
j=2 pj = 1. In fact,

the specificity measure of a possibility distribution decreases
when the degree of possibility of its elements is increasing:
if π (ω1) ≥ π (ω2), then Sp (π (ω1)) ≤ Sp (π (ω2)). Finally,
the specificity measure presents the following two extreme
cases:
• Complete knowledge: Sp (π) = 1
• Complete ignorance: Sp (π) = 0

III. EXISTING POSSIBILISTIC SIMILARITY MEASURES
AND A NEW ONE: InfoSpecificity
The comparison of data sets of uncertain information depends
on their representation models. In particular, comparing
uncertain information in the possibility framework reverts to
compare their possibility distributions. Therefore, a similarity
measure must be able to evaluate the similarity between two
possibility distributions.

A. BASIC MATHEMATICAL PROPERTIES OF A
POSSIBILISTIC SIMILARITY MEASURE
A similarity measure between two normalized possibility
distributions is a function s : π (�)2 7→ [0, 1] ;(
πi, πj

)
7→ s

(
πi, πj

)
that must satisfy a set of basic

properties as listed below [10], [26]. Let π1 and π2, be two
possibility distributions.

Property 1: Non-negativity

s (π1, π2) ≥ 0 (6)

Property 2: symmetry

s (π1, π2) = s (π2, π1) (7)

Property 3: Upper bound

∀πi, s (πi, πi) = 1, and ∀πi, πj, s
(
πi, πj

)
≤ 1 (8)

The upper bound is equal to 1 and this bound is obtained only
if all the elements of the two distributions are identical.

Property 4: Lower Bound

If ∀ωi ∈ �,π1 (ωi) ∈ {0, 1} , π2 (ωi) ∈ {0, 1} ,

π2 (ωi) = 1− π1 (ωi) ,

then s (π1, π2) = 0 (9)

The lower bound is equal to 0 and this bound is reached only
when the compared distributions are contradictory.

Property 5: Specificity
The similarity measure should satisfy the principle of min-

imum of specificity:

If ∀ωi ∈ �,π1 (ωi) ≤ π2 (ωi) , π2 (ωi) ≤ π3 (ωi)

then, s (π1, π2) ≥ s (π1, π3) (10)

Property 6: Permutation
Let π1 and π2 be two possible distributions and let ρ be a

permutation of their indexes, then:

∀π1, π2, s (π1, π2) = s
(
πρ(1), πρ(2)

)
(11)

So, the similarity between two distributions of possibilities
π1 and π2 does not change if the order of the elements is
changed.

B. EXISTING POSSIBILISTIC SIMILARITY MEASURES
Although, several recent works have been done on the appli-
cations of similarity measures [27]–[32] in different fields
of research, relatively few ones are dedicated to measure the
similarity between possibility distributions.

1) INFORMATION CLOSENESS: InfoCloseness
Higashi and Klir proposed a kind of seminal work [25] on
measuring similarity between possibility distributions. This
measure is based on the U-uncertainty measure. It computes
the variation of information between the compared distribu-
tions. The G-similarity between two possibility distributions
π1 and π2, denoted G, is defined as:

G (π1, π2) = g (π1, π1 ∨ π2)+ g (π2, π1 ∨ π2) (12)

with g
(
πj, πi

)
= U

(
πj
)
− U (πi) ,∨ represents the max-

imum operator and U is the uncertainty measure given by
equation (4). Then, the similarity measure, InfoCloseness,
derived from the function G (π1, π2) is defined as follows:

InfoCloseness = 1−
G (π1, π2)
Gmax

(13)

with Gmax = 2 ∗ log2(n) − log2 (n− 1) which is achieved
when comparing a possibility distribution of ‘‘complete
knowledge’’ and its complementary possibility distribution.

2) SANGÜESA DISTANCE
Sangüesa [26] has conducted a study in the context of learn-
ing possibilistic causal networks. He has defined a measure,
called Sang, that represents the uncertainty of the difference
between two possibility distributions.

Sang (π1, π2) = U (πd ) (14)

with πd (ω) = |π1 (ωi)− π2 (ωi)| ,∀ωi ∈ �.
In order to have values in interval [0, 1], the measure, Sang,

is normalized as:

Sang (π1, π2) =
Sang (π1, π2)

max (U (πd (ωi)))
(15)

3) INFORMATION DIVERGENCE
The information divergence measure [33] is proposed from
an analogy to the probabilistic measure of divergence. It uses
discrete Choquet integral of the distribution difference πd
such that πd (ω) = |π1 (ωi)− π2 (ωi)| ,∀ωi ∈ �.

51
(
Aσ(i+1)

)
] (16)
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with σ is a permutation of indexes such that: πd
(
ωσ(i)

)
≤

. . . ≤ πd
(
ωσ(n)

)
,Aσ(i) =

{
ωσ(i), . . . , ωσ(n)

}
, i = 1 . . . n

and Aσ(n+1) = ∅

SD (π1, π2) = 1− D (π1|π2) (17)

4) DELTA δ
The similarity measure δ [34], between two distributions π1
and π2, is defined by:

δ (π1, π2) =

∑n
i=1 (π1 (ωi) ∧ π2 (ωi))∑n
i=1 (π1 (ωi) ∨ π2 (ωi))

(18)

where ∧ represents the minimum operator and ∨ represents
the maximum operator.

5) MINKOWSKI DISTANCE
Since possibility distributions are represented by vectors of
real values in the interval [0, 1], the Minkowski distance can
be applied to assess similarity in the possibility framework:

Lp (π1, π2) = 1 p

√√√√ n∑
i=1

|(π1 (ωi)− π2 (ωi))|
p (19)

Similarity measures based on the particular cases of the
Minkowski distance are:
• Similarity measure based on the normalized Manhattan
distance

SM (π1, π2) = 1−

∑n
i=1 |(π1 (ωi)− π2 (ωi))|

n
(20)

• Similarity measure based on the normalized Euclidean
distance;

SE (π1, π2) = 1−

∑n
i=1 (π1 (ωi)− π2 (ωi))

2

n
(21)

• Similarity measure based on the normalized Maximum
distance

SC (π1, π2) = 1−maxni=1 (π1 (ωi)− π2 (ωi)) (22)

6) INFORMATION AFFINITY: InfoAffinity
The information affinity measure [10], called here InfoAffin-
ity, applies the concept of inconsistency to perform the degree
of conflict between distributions. The proposed measure con-
sists of combining the distancemeasure and the inconsistency
value of the two possibility distributions:

InfoAffinity (π1, π2) = 1−
α · d (π1, π2)

α + β

+
β · Inc (π1 ∧ π2)

α + β
. (23)

where d (π1, π2) is the Manhattan distance between the two
compared distributions, Inc (π1 ∧ π2) is the inconsistency
degree given by the equation (3) where ∧ denotes the min
operator, α and β are two coefficients such that α > 0 and
β > 0.

C. A NEW SIMILARITY MEASURE CALLED INFORMATION
SPECIFICITY: InfoSpecificity
The information specificity measure, initially defined in [11],
is based on two robust measures: 1) a distance measure that
compares the accuracy of the information by the means of
‘a point to point’ scheme; and, 2) a specificity measure that
allows to quantify the variation of the amount of information.

We use a standard metric distance such as the normalized
Manhattan distance to compare the distributions point to
point. In addition to the Manhattan distance, we exploit the
information based upon the ranking of possibility degrees
belonging to the distribution support. This is defined by the
principle of minimum of specificity that is well illustrated by
the specificity measures [35]. Then, the specificity relation
between possibility distributions can be combined with the
Manhattan distance, in order to qualify the native relation
between the compared possibility distributions. To that end,
we use the specificity measure proposed by Yager [22], given
by equation (5). In fact, equation (5) offers an intuitive con-
ception that is easy to apply. The measure belongs to the unit
interval [0, 1] without a need for normalization and it satisfies
the main properties of a possibilistic measure of similarity.

Nevertheless, a specificity measure, such as Yager’s one,
when considered alone, is not highly efficient for assess-
ing similarity. To illustrate the issue, consider the following
example.

Example: Let π1 and π2 be two possibility distributions
such that π1 = [0, 1] (complete knowledge) and π2 =
[1, 0] (complete knowledge). Using Yager’s definition of a
specificity measure, we obtain Sp (π1) = Sp (π2) = 1. In this
case, we are facing with two different distributions and the
Yager’s measure gives the same amount of information.

A new similarity measure is then being defined as equation
(24) below with two weights α and β that are being used to
balance the contribution of: 1) a distance measure of ‘a point
to point’ scheme; and, 2) the Yager’s specificity measure
quantifying the variation of the amount of information.
Definition of InfoSpecificity: Let π1 and π2 be two dis-

tributions defined on the same universe ω. An information
specificitymeasure, denoted here InfoSpecificity, is proposed
as follows:

InfoSpecificity (π1, π2)

=


1−

α · distManh (π1, π2)+ β · distSp (π1, π2)
α + β

if distManh 6= 1
0 if distManh = 1

(24)

where distManh is the normalizedManhattan distance between
the compared distributions, distSp is the difference between
the specificities of the two possibility distributions, using
Yager’s definition of a specificity measure given in equation
(5), such that: distSp (π1, π2) = |Sp (π1)− Sp (π2)|, and α
and β are two coefficients such that α ∈ [0, 1] , β ∈ [0, 1].

In the general case, the same weight can be assigned to the
two coefficients α and β. However, it is worth mentioning
that the strategy to select the coefficients has a crucial impact
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on the results since it decides about which one of the two
aspects (point-to-point, Yager’s specificity) is mostly consid-
ered. Therefore, the choice of the two coefficients α and β is
strongly depending on the context of application.

InfoSpecificity satisfies the properties of a measure of
similarity such as described in Section III.a:

Non-negativity
i) By definition, Sp (π1) ∈ [0, 1] ,Sp (π2) ∈ [0, 1], then,

distSp (π1, π2) ∈ [0, 1].
ii) distManh (π1, π2) ∈ [0, 1].
i) and ii) imply InfoSpecificity (π1, π2) assumes values on

the interval [ 0, 1] and then it is always positive.
Symmetry
i) distSp (π1, π2) = distSp (π2, π1).
ii) distManh (π1, π2) = distManh (π2, π1).
i) and ii) imply
InfoSpecificity (π1, π2) = InfoSpecificity (π2, π1)
Upper Bound
If π1 = π2 then,
i) distManh (π1, π2) = 0
ii) distSp (π1, π2) = 0
i) and ii) imply InfoSpecificity (π1, π2) = 1
Note that distSp (π1, π2) = 0 is obtained, even when π1 6=

π2, when the compared distributions have the same amount
of information. In this case we have distManh (π1, π2) 6=

0, so the InfoSpecificity (π1, π2) will be different from 1.
Moreover, the maximum value of InfoSpecificity measure,
is reached only if the compared distributions are identically
similar.
Lower Bound
i) If ∀ ωi ∈ �,π1 (ωi) ∈ {0, 1} , π2 (ωi) ∈ {0, 1}, then

distManh (π1, π2) = 1
i) implies, InfoSpecificity (π1, π2) = 0.
The InfoSpecificity achieves its lower value only when the

compared distributions are perfectly contradictory.
Specificity
If Sp (π1) ≥ Sp (π2) and Sp (π2) ≥ Sp (π3), then obvi-

ously we have:
i) distSp (π1, π2) ≤ distSp (π1, π3)
ii) distManh (π1, π2) ≤ distManh (π1, π3)

i) and ii) imply
InfoSpecificity (π1, π2) ≥ InfoSpecificity (π1, π3)

IV. NUMERICAL ANALYSIS OF MORPHIC AND
AMORPHIC-BASED SIMILARITY MEASURES
The shape of a distribution of possibilities informs about its
informative value. Thus a shape resemblance between two
possibilities distributions can lead to the deduction of the
proximity between their encoded information. From this fact,
we propose to group the possibilistic similarity measures into
three categories: those based on the evaluation of the morphic
aspect, those based on the magnitude as amorphic-based
ones, and the hybrid category that combines morphic and
amorphic criteria to assess similarity. The morphic category
groups similarity measures based on information quantifi-
cation concepts and usually rely on uncertainty measures.

FIGURE 1. A typology of morphic and amorphic similarity measures.

For the amorphic category, it groups similarity measures
according to a generalization of the metric measures. In this
category, a similarity value is calculated from an estimated
distance between points in a metric representation space.

Fig. 1 presents a sort of typology of the similarity mea-
sures. We note that both information affinity and informa-
tion specificity measures are built considering two aspects:
morphic-based and amorphic-based. Two numerical exam-
ples are hereafter considered to analyze the behavior of the
similarity measures.

A. EXAMPLE 1: EVALUATION OF SIMILARITY BETWEEN
TWO POSSIBILITY DISTRIBUTIONS
The first example intents to show the ability of the similarity
measures to recognize the five (5) degrees of distribution
resemblance labeled as: (i) Identical, (ii) Near, (iii) Informa-
tional divergent, (iv) Far and (v) Dissimilar. In fact, we con-
sider two possibility distributions π1 and π2 defined over
� = {ω1, ω2, ω3, ω4} as shown in Table 1. Nine measures of
similarity between these two possibility distributions are eval-
uated versus five decreasing grades of similarity: identical,
near, informational divergent, far and dissimilar. Results are
given in Table 1. For InfoAffinity and InfoSpecificity mea-
sures (the last two rows), an equal weight has been assigned
to both coefficients α and β.

Table 1 presents results where the measures are being
calculated on specific numerical cases. It shows that the simi-
larity measures cannot always recognize the degree of resem-
blance between the distributions. For example, we observe
that Sangüesa distance assigns a full similarity degree to
contradictory distributions (right column of Table 1). Table 2
presents in a Yes-No tabular way, if the measures of similarity
respect the required properties discussed in Section III.

B. EXAMPLE 2 - EVALUATION OF SIMILARITY VERSUS
THE EXTREME CASES OF CERTAINTY (COMPLETE
KNOWLEDGE AND TOTAL IGNORANCE)
The possibility theory is mainly devoted to model uncertainty
and to handle incomplete information. This implies that a
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TABLE 1. Similarity evaluation of similarity between two distributions
(
π1and π2

)
.

TABLE 2. Measures of similarity versus the six required properties: (Y=property RESPECTED; N=property not respected).

similarity measure should reflect the closeness in terms of
the uncertainty level. Therefore, it is expected to reach a
very low similarity when comparing two distributions that are
extremely different in terms of certainty.

Let π1 and π2 be two possibility distributions such that
π1 = [0, 1] (i.e. complete knowledge) and π2 = [1, 1] (i.e.
total ignorance). Table 3 shows the ability of the similarity
measures to discriminate between these extreme knowledge
cases.

C. RESULT ANALYSIS OF EXAMPLES 1 AND 2
This section discusses the results presented in Tables 1-3.
We present our remarks in point-form notes according to the
main two categories of measures: morphic and amorphic.

• Morphic based similarity measures are not always able
to reveal the exact state of knowledge.

• Information Closeness doesn’t respect property 4. It
cannot detect contradictory distributions (s (π1, π2) =
0.179 6= 0) as it is shown in Table 1.

• Sangüesa distance does not satisfy properties 3 and 4.
It assigns a full similarity degree between two contra-
dictory possibility distributions. In fact, it reaches its
maximum value when the distribution difference rep-
resents the complete ignorance, which is the case for
contradictory distributions.

• Information divergence does not satisfy property 2. It
is easy to check that D (π1|π2) 6= D (π2|π1). It does
not respect properties 3 and 4 neither. This measure
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TABLE 3. Evaluation of similarity versus the extreme cases of knowledge.

assigns a full similarity degree to distributions not sim-
ilar. It also assigns the lowest similarity degree to dis-
tributions not extremely dissimilar that could adversely
affect its ability to discriminate different states of
knowledge.

• The amorphic-based similarity measures can deal with
the basic mathematical properties of a possibilistic sim-
ilarity measure (introduced in section III) since they
already satisfy the properties associated to point-to-
point distances (i.e. non-negativity, symmetry, iden-
tity, and triangle inequality). However, they are not
able to assess two extremely different states of knowl-
edge (i.e. complete knowledge and total ignorance) as
being dissimilar (s (π1, π2) = 0.5) as it is shown
in Table 3.

• Similarity based on the maximum distance does not
satisfy property 4 since it assigns a null degree when
comparing distributions being not contradictory (when
comparing ‘informational divergent’ and ‘far’ distribu-
tions). In fact, it achieves its minimum value when the
distributions share the highest degree for the same ele-
ment (i. e. Inc (π1, π2) = 1).

• Hybridization of the two types (morphic and amorphic)
of similarity measures is a way to enrich the expression
of the degree of closeness between distributions.

• Authors in [36] have demonstrated that InfoAffinity
satisfies the six basic mathematical properties of a pos-
sibilistic similarity measure. Moreover, we have demon-
strated (in previous section), that InfoSpecificity also
satisfies all the six properties.

• The performance of these measures in a specific con-
text is related to the ability of their composition to
assess the degree of closeness between two distributions
(respectively, inconsistency measure and the specificity
measure).

• InfoAffinity relies on the inconsistency measure and
the metric distance. Remember that the inconsistency
is the max (min (π1, π2)). It expresses the highest value
of agreement between the two possibility distributions
π1 and π2. The impact of the inconsistency use may
make the similarity increasing more than desirable as

it is shown in Tables 1 and 3 (respectively, the case of
informational divergent and the extreme cases of cer-
tainty).

• InfoSpecificity uses a measure related to the variation
of the amount of information between distributions,
combined with a classic metric distance. Information
specificity detect well whether the distributions are iden-
tical, near, informational divergent, far or contradictory.
Also, referring to Table 3, it achieves the expected low
value when comparing distributions that are extremely
different in terms of certainty.

We recall that both InfoAffinity and InfoSpecificity rely on
a coefficient that can decide whether we rely more on the
morphic or the amorphic aspect. The choice of coefficients
can have a significant impact on the performance of these
measures. Discussion on this impact is beyond the scope of
this paper.

V. EXPERIMENTAL RESULTS
This section presents results of an experimental investigation
using four benchmark data sets extracted from the UCI repos-
itory [37] of machine learning databases. These databases
are specifically dedicated to classification problems. The
size of the databases is sufficiently large to infer a refer-
ent possibility distribution that we can consider as ground
truth.
• Base1: Banknote authentication data sets that contains
1372 instances of 10 features extracted from images
of banknotes to decide whether the banknote is gen-
uine or forged.

• Base2: Page blocks classification data sets that is
devoted to document analysis. It contains 5473 instances,
each one describes a block of a document that can be
identified according to the values of 10 attributes, in one
out of 5 classes.

• Base3: Pima Indians diabetes data set that aims to pre-
dict diabetes disease referred on 768 individuals and
based on eight factors.

• Base4: Statlog data set (Vehicle Silhouettes) that seeks
to classify a given silhouette from 946 instances as one
of four vehicles types, using a set of 18 features extracted
from the silhouette.

To assess the performance of a similarity measure, we have
to consider a large variety of conditions or factors that may
affect the performance. These factors are:
• Data quality: Degraded data quality may be due to
high sensor noise, the interference from other signals
during acquisition or other alterations that affect the data
representativeness of the modeled sample.

• The possibility distribution estimation approach:
This influences directly the quality of the model and its
ability to represent the entity.

• The size and the number of samples: The sample size
mainly affects the quality of construction of the class
model.

49204 VOLUME 8, 2020



A. Charfi et al.: Possibilistic Similarity Measures for Data Science and Machine Learning Applications

TABLE 4. Similarity measures considered for evaluation.

A. DESCRIPTION OF THE EXPERIMENTAL METHODOLOGY
Our objective is to compare the measures of similarity used
within a possibilistic context. Seven similarity measures are
considered for experimentation. They are listed in Table 4
according to the three main categories (morphic, amorphic
and hybrid).

The possibility distributions of the classes, according to
one specific attribute, are being built from the four databases:
Banknote authentication, Page blocks, Pima Indians diabetes,
Statlog. These distributions are constructed using some well-
known approaches: the symmetric transformation of Dubois-
Prade [38], the asymmetric transformation of Dubois-Prade
[39], and the transformation of Klir [40], [41]. Two exper-
iments are being conducted; identified below as Scenario-
1 and Scenario-2.

1) SELECTION OF AN ATTRIBUTE FOR EACH DATABASE
For each of the four databases, a unique attribute is being
considered to model their respective classes. Considering the
influence of the attribute on the evaluation of a similarity
measure, we classify the attributes into three categories as
follows:

• Non-discriminative attributes: all the similarity mea-
sures give useless results.

• Moderately discriminative attributes: an evaluation
based on this type of attribute leads to a meaningful
comparison between similarity measures.

• Very discriminative attributes: enable the similaritymea-
sures to easily differentiate between the samples of each
class.

The selection step for the attributes has been conducted
on each database using the Information Gain method [42]
of the Weka application [43]. Information Gain method is
an entropy-based method. It measures the relevance of a
given attribute as the amount of information is gained by the
acquisition of the attribute values. It was initially suggested
for decision tree algorithms and afterwards, it had proven
its significance for feature selection in different machine
learning contexts. Other commonly used metrics, often, agree
on the selection of the most pertinent attributes. In general,
it is not straightforward to decide about the most efficient
metric for a selected data set in a given context.

TABLE 5. Attribute selection results (4 databases).

FIGURE 2. Gathering the geniuses: possibility distributions belonging to
the same class.

The attribute selection results are given in Table 5.

2) SCENARIO-1 DISCRIMINATION BETWEEN GENUINE
(SIMILAR, POSITIVE) AND IMPOSTER (DISSIMILAR,
NEGATIVE) CLASSES
In possibility theory, a similarity measure can reveal the
closeness between possibility distributions. This allows,
if close enough, to gather them into the same class. More-
over, it can also indicate the distance between possibility
distributions to differentiate between them. When comparing
two objects, a good similarity measure will give significant
values while performed on objects belonging to the same
class. On the other hand, it will produce small values while
performed on objects belonging to a different class. That has
been illustrated in Fig. 2 and Fig. 3 for separating objects
belonging to different classes (imposters) and for gathering
objects of the same class (genuine).

Experiments have been conducted, for each similaritymea-
sure S and for the four databases, according to the following
steps.
• Step 1 : Different samples of the same size and belong-
ing to the same class are extracted. Their respective
possibility distributions are then matched based on the
similarity measure S to a referent possibility distribution
of their class. This is to build the genuine distribution
(Fig. 2). Note that a good similarity measure should
detect a high degree of similarity.

• Step 2 :Different samples of the same size are extracted
from different classes. Their respective possibility dis-
tributions are then matched based on the similarity mea-
sure S to the referent distributions of all classes other
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FIGURE 3. Gathering imposters: possibility distributions belonging to
different classes.

FIGURE 4. Frequency of occurrence of similarity measures in the two
‘‘Similar’’ and ‘‘Dissimilar’’ matching categories.

than their own class. This is to build the imposter dis-
tribution (Fig. 3). Note that a good similarity measure
should detect a low degree of similarity.

A representation of the frequency of appearance of the
similarity degrees in the two respective categories ‘‘Similar’’
and ‘‘Dissimilar,’’ on a scale of increasing similarity, is given
in Figure 4.
A threshold must be considered, as shown in Fig. 4,

to determine if the result of a matching test has to be consid-
ered as a type ‘‘Similar’’ or ‘‘Dissimilar’’. True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative
(FN) rates are then performed according to the threshold
values.

In this context, we use the Receiving Operator Characteris-
tics (ROC) curve [44] for evaluating and comparing similarity
measures. This is the representation of the True Positive Rate
(TP) as a function of the false positive rate (FP) as shown
in Fig.5. Area under the ROC curve (AUC) quantifies the
efficiency of a similarity measure to differentiate between
the similarity and dissimilarity cases. AUC value is a perfor-
mance criterion. A measure is considered as much efficient
as it achieves a high ‘‘AUC’’ value.

In this evaluation, the procedure is as follows:

FIGURE 5. ROC curve representations: (A) No interest, (B) Bad, (C) Better
than B, (D) Good approach.

FIGURE 6. Assessment approach based on AUC value.

FIGURE 7. Comparison of the 7 similarity measures for Banknote
Authentication data base.

• The possibility distributions are generated using the
asymmetric Dubois and Prade method [39].

• The sample size mainly affects the quality of the class
model construction. To get a model of good quality,
we conducted the experiment for a large range of sample
sizes, going from 10 to 100 elements.

Table 6 is illustrating the number of extracted samples from
each data set for each considered sample size.

Fig. 7-10 illustrate, respectively for the 4 datasets,
the obtained AUC values according to each considered sam-
ple size, for the seven similarity measures. The results are as
follows:
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TABLE 6. Number of used samples according to each data set.

FIGURE 8. Comparison of the 7 similarity measures for Page Blocks data
base.

FIGURE 9. Comparison of the 7 similarity measures for Diabetes data
base.

FIGURE 10. Comparison of the 7 similarity measures for Statlog data
base.

• Based on the obtained AUC results, the majority of the
compared measures perform well when the size of the
sample increases. The results show that the measure

FIGURE 11. Similarity assessment of possibility distributions belonging to
the same sample while estimated with different methods.

FIGURE 12. Application of different estimation methods on a sample of
size=30 from Diabetes database.

‘‘InfoSpecificity’’ (hybrid) outperforms all the other
ones.

• The poor results obtained with Sangüesa distance and
Information divergence, especially on Page Block data
set (Fig. 8), can be explained by the fact that, with the
‘Sangüesa distance’, two contradictory possibility distri-
butions are considered as similar while the ‘Information
divergence’ measure attributes a full similarity degree
to distributions that are not similar and full dissimilarity
degree to distributions that are not completely dissimilar.

• InfoSpecificity gives high values of similarity when
compared to other similarity measures and in particular,
the one based on theManhattan distance. This is a hybrid
method so it exploits both the morphic and magnitude
aspects in measuring similarity.

VOLUME 8, 2020 49207



A. Charfi et al.: Possibilistic Similarity Measures for Data Science and Machine Learning Applications

FIGURE 13. Comparison of similarity measures based on the tests of estimation methods for Diabetes database. (a, b) Comparison of Symmetric and
Asymmetric transformations of Dubois-Prade based: (a) on average similarity degree and; (b) on standard deviation. (c, d) Comparison of Asymmetric
transformation of Dubois-Prade and Transformation of Klir based: (c) on average similarity degree and; (d) on standard deviation. (e, f) Comparison of
Symmetric transformation of Dubois-Prade and Transformation of Klir based: (e) on average similarity degree and; (f) on standard deviation.

• InfoSpecificity measure produces better results than the
other measures in the context of small sample sizes.
This result was expected. InfoSpecificity is based on the
possibility theory which is known to be a good modeling
tool in the context of information scarcity.

3) SCENARIO-2 CLOSENESS OF POSSIBILITY
DISTRIBUTIONS
Scenario-2 aims at verifying if a similarity measure can reveal
the closeness between distributions obtained from the same
samples but estimated with different methods.
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Scenario-2 consists on extracting, repeatedly, 400 differ-
ent samples of the same size from Diabetes database, and
applying different methods on them to estimate possibility
distributions. The predicted possibility distributions of each
sample are then compared. We keep the average degree and
the standard deviation of similarity obtained with each mea-
sure of similarity (Fig. 11). A good similarity measure has to
give a high degree of similarity indicating that the compared
distributions refer to the same sample. Also, a low standard
deviation indicates that a similarity measure gives almost the
same results during the evaluation process.

The three estimation methods used are listed as:

1) Symmetric transformation of Dubois-Prade [38];
2) Asymmetric transformation of Dubois-Prade [39];
3) Transformation of Klir [41].

Fig. 12 illustrates three different methods to estimate the
possibility distributions for the same sample. We note visu-
ally that these distributions seem to have a high degree of
similarity since they have roughly a similar shape (curvature).
Furthermore, they have a correspondence on the element
having the maximum value. In this figure, we vary the sample
size from 10 observations to 100 observations to visualize the
proximity between possibility distributionswith respect to the
sample size.

Fig. 13 illustrates, for the Diabetes database, the similarity
average degree and the standard deviation, according to each
considered sample size, and for the seven similaritymeasures.
The two criteria are applied to the set of similarity values,
obtained after comparing between pairs of estimation meth-
ods.

Fig. 13 shows that the best results, either on small sample
size or on big sample size, are always given by the InfoAffin-
ity and the InfoSpecificity measures. The higher similarity
values obtained with InfoAffinity and InfoSpecificity are
explained mainly by their hybridization with the Manhattan
distance, which has proven to be efficient in a possibilistic
context.

By definition, the inconsistency of two distributions that
share at least one fully possible element is equal to 1. Often,
the estimated distributions from the same sample use to share
the same largest element. That explains the high similarity
values obtained with InfoAffinity since they are based on
inconsistency.Moreover, distributions that have been inferred
from the same sample, usually, share a similar distribution
shape. In scenario-2, InfoSpecificity allows to detect a high
similarity between the compared distributions.

VI. CONCLUSION
In this paper, we have studied the similarity between possibil-
ity distributions. First, we have analysed a set of seven simi-
larity measures and their required properties. These measures
were classified into threemain categories: morphic, amorphic
and hybrid. Results show that some of the existing measures
give inconsistent results in conditions of data incompleteness
(e.g. small sample size). To circumvent that, we proposed a

new hybrid similaritymeasure called InfoSpecificity that uses
the variation of the amount of information between distribu-
tions combined with a standard metric distance. Experiments
have been conducted both on numerical examples and on
four experimental databases (UCLI). The results show the
importance of hybridizing morphic and amorphic approaches
such as in InfoSpecificity and InfoAffinity. The hybrid meth-
ods outperformed the other methods when tested against real
data. For instance, InfoSpecificity has shown its capacity
to deal with small sample sizes. The performance in such
special conditions proves that it is well suited for possibilistic
modeling contexts that are poor-data environments.
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