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ABSTRACT Diffusion on social networks refers to the phenomena that opinions are spread via connected
nodes. Given a set of observed cascades, the underlying diffusion process can be inferred for social network
analysis. Earlier studies for modeling the diffusion process often assume that the activation of a node depends
independently on the activations of its neighbors (or called parent nodes). Nevertheless, the activation of a
node also depends on the connectivity of its neighbors. For instance, the opinions from the neighbors of the
same closely connected social group are often similar, and thus those neighbors exhibit similar influence.
Some recent studies incorporate the structural dependency of neighbors as connected components, which
allow more accurate diffusion models to be inferred. However, the effectiveness of such component-based
models often depends on how the components are identified. Existing methods are not designed to directly
preserve the local connectivity of neighbors. In this paper, we propose to incorporate network embedding to
enhance the performance of component-based diffusion models in social networks. In particular, we embed
nodes in a social network in a latent vector space with local connectivity of the nodes preserved. Parent
component identification then becomes a clustering task in the embedding space. A united probabilistic
framework is proposed so that the parent components and the component-based diffusion models can be
inferred simultaneously using a two-level EM algorithm based on observed information cascades. For
performance evaluation, we apply the proposed model to both synthetic and real world data sets with
promising results obtained. The empirical results also show how the use of the embedding-based framework
can enhance both the component identification and the diffusion model.

INDEX TERMS Diffusion networks, independent cascade model, social networks, local connectivity
information, network embedding.

I. INTRODUCTION
Diffusion on social networks refers to the phenomena that
actions or information spreads among connected nodes,
resulting in information cascades. Given a set of observed
information cascades, the underlying diffusion process can be
inferred [1], [2] for social network analysis, such as influence
maximization [3]–[5], personalized recommendation [6], [7],
authoritative user identification [8], and et al.
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How actions or information spreads is well known to
be highly related to the interactions of connected nodes.
Various diffusion models have been proposed [1], [2], [9],
[10] in the literature. Among them, the independent cascade
(IC) model [1] and the linear threshold (LT) model [2] are two
widely used diffusion models. The IC model assumes that a
node can be influenced by any of its neighbors independently
with some chosen probability, while the LT model assumes
that whether a node will be influenced requires the social
affirmation from multiple neighbors. Here we focus on the
IC model and its extensions for more accurate modeling of
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diffusion processes. Since the basic IC model was first pro-
posed, there have been different variants of the IC model to
uncover temporal dynamics [11], take continuous time [12],
consider topic-aware [13] and role-aware [14], [15] diffusion,
incorporate node embeddings [16] and et al.

The long-standing framework associates the probability
of adopting a behavior with the number of network neigh-
bors who have already adopted the behavior [17], [18].
Nevertheless, in social networks, the network neighbors
could exhibit different forms of influence depending on their
connectivity. For example, neighbors of the same social group
are closely connected and communicate through their con-
nectivity, thus those neighbors often have similar opinions
and exhibit similar influence. In particular, Ugander et al.
observed that the user engagement behavior in Facebook was
affected by the connected components of Facebook users in
the contact neighborhood instead of the individual users [19].
In addition, Zhang et al. proposed a related notion called
social influence locality for modeling retweeting behaviors
[20]. The structure of neighbors has been regarded as the
resources they hold, which is termed social capital in [21].
Related perspectives have also been explored formobile com-
munication network and social network analysis [22], [23].
Based on that, Bao et al. [24] first proposed a component-
based diffusion model for social networks, which assumes
that the influence of the neighbors is not exerted individu-
ally but by connected components of the neighbors (called
parent components in [24]). However, the effectiveness of
component-based models often depends on how the compo-
nents of the neighbors are identified. In [24], the components
in the contact neighborhood are assumed to form differ-
ent communities and are detected with community detec-
tion algorithms by optimizing quantities such as modularity
[25]. As those quantities not designed to directly preserve
local connectivity information among neighbor nodes, not all
nodes in the detected components are closely connected.

In this paper, we propose a component-based diffusion
model with local connectivity information of neighbors pre-
served. Recently, network embedding approaches have been
proposed to encode individual nodes as low-dimensional
embedding vectors that summarize the rich network prop-
erties [26]–[28], such as network structure [29]–[31], node
content [32], [33], heterogeneous information networks [34],
[35], temporal networks [27], [36], dynamics on the network
[28] and et al. The learnt node embeddings can be used
as feature inputs for downstream machine learning tasks
such as node classification, node clustering and community
detection. Among them, LINE [37], DeepWalk [29] and
Node2vec [30] are commonly adopted to preserve the neigh-
borhood structure of nodes via optimizing local connectivity
information. The resulting node embeddings make the con-
nected nodes near in the embedding space. In the context
of component-based diffusion model, given the learnt node
embeddings, parent component detection can then become a
clustering task in the embedding space and probabilistic clus-
tering algorithms such as Gaussian Mixture Models (GMM)

can be naturally adopted. This further hints that the com-
ponent detection and diffusion network inference problems
both can readily be integrated under a unified probabilistic
framework. We here formulate the component identification
and diffusion network inference problems based on an overall
likelihood function so that both can be solved at the same time
in a disciplined manner. The corresponding learning algo-
rithm is derived and the effectiveness of our proposed model
is evaluated using both synthetic and real data sets. The results
show the use of the embedding-based framework can enhance
both component identification and diffusion prediction, and
our model can be applied to support dependency analysis of
different online news media.

The contributions of this paper are summarized as follows.
1) We model the local connectivity information of

neighbors using network embedding to enhance both
component identification and diffusion network infer-
ence. In particular, we propose a component-based
diffusion model with embedding-based parent compo-
nents, and formulate the component identification and
diffusion network inference problems based on an over-
all likelihood function. To the best of our knowledge,
this is the first work to solve both problems simultane-
ously within a unified framework.

2) We make use of the expectation maximization (EM)
[38] algorithm and derive a corresponding two-level
EM algorithm for obtaining maximum likelihood (ML)
estimates of the model parameters. Both parent compo-
nents and underlying diffusion network can be inferred
simultaneously based on the observed information
cascades.

The remainder of this paper is organized as follows.
Section II gives the detailed formulation of our proposed
model, followed by the EM algorithm for learning the model.
Experimental results and related discussion can be found in
Section III. Section IV concludes the paper and provides
pointers for future work.

II. FORMULATION
In this section, we propose a novel component-based
diffusion model where the parent components are identified
with local connectivity information well preserved, with the
objective to better model the underlying information spread-
ing process. We first apply node embedding to the neigh-
borhood network of each node to obtain the parent node
representations. We then model the communities of parents
for each node based on their node representations using Gaus-
sian Mixture Models. Each mixture component tries to cap-
ture a community, and then the component-based diffusion
model is inferred accordingly. We formulate it as a maximum
likelihood estimation problem so that the components and
the diffusion model can be inferred simultaneously given
sufficient observed cascades.

A. PRELIMINARY
We represent a social network as a directed graphG = (V ,E)
where V is the set of nodes and E is the set of edges.
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FIGURE 1. Illustration of our proposed component-based model.

Let e = (v,w) be an edge from node v to node w, and
f (w) and b(w) be the sets of child nodes and parent nodes
of node w respectively, given as: f (w) = {u : (w, u) ∈
E} and b(w) = {v : (v,w) ∈ E}. Also, we denote by
Ds = {Ds(0),Ds(1) · · ·Ds(Ts)} the sth observed information
cascade where Ds(t) is the set of nodes activated at time step
t and Ts is the final time step for the cascade Ds.

B. PARENT COMPONENTS BASED ON LOCAL
CONNECTIVITY INFORMATION
For learning the embeddings of parent nodes, we consider
neighborhood network of each child node w and adopt the
widely used node2vec algorithm [30]. The node2vec algo-
rithm introduces biased random walks on a graph to opti-
mize the sampling strategies so that nonlinear graph structure
can be turned into linear sequences for learning embeddings
under the Skip-gram architecture [39], [40]. We assign each
parent node v ∈ b(w) with a continuous real-valued K
dimension vector vw. For each node w ∈ V , we define
NS (w) ⊂ V as a network neighborhood of node w that are
nearby in the generated sequence through the sampling strate-
gies S. Given the generated sequences by the random walks,
we seek to optimize the following objective function, which
maximizes the log-probability of observing network neigh-
borhood NS (w) of a node w conditioned on its representation,
give by f :

max
f

∑
w∈V

logP(NS (w)|f (w))

Under the Skip-gram architecture, we can approximate it
using negative sampling. We optimize the objective func-
tion using the stochastic gradient ascent over the model
parameters defining the embedding.

Based on the learnt parent node embeddings for each child
node w, parent component identification essentially becomes
a clustering task in the embedding space, and here we adopt
the Gaussian mixture model. But note that we propose to do
the ‘‘clustering’’ and the diffusion network inference together
under a unified probabilistic framework to be detailed in the
sequel. For each node w ∈ V , we assume the presence of
Nz(w) different latent components consisting of w’s parent

nodes b(w), which will make node w likely to be activated.
We denote by zw ∈ {1, . . . ,Nz(w)} the index of the latent
components, and model the set of parent components of a
child node w as a mixture of Gaussians. We use a Gaussian
distribution N (vw|µzw ,6zw ) to model each component zw,
and each component zw has a mixing proportion αzw where∑Nz(w)

zw=1 αzw = 1 and ∀αzw (αzw ≥ 0). Thus, the probability
of observing a parent node v ∈ b(w) of child node w in the
embedding space is given as

p(vw) =
Nz(w)∑
zw=1

αzw N (vw|µzw ,6zw )

And thus the likelihood of observing the parent components
for all the nodes w ∈ V is given as

L1(2) =
∑
w∈V

∑
v∈b(w)

log(
Nz(w)∑
zw=1

αzw N (vw|µzw ,6zw ))

where2 is to represent the model parameters defined above.

C. COMPONENT-BASED DIFFUSION PROCESS
Component-based diffusion models assume that nodes within
a parent component have similar influence on their common
child. We here associate each parent component zw of the
child node w with a diffusion probability p(w|zw) = τzw,w.
When a parent node in component zw is activated at time t ,
there will be a probability τzw,w that node w will be activated
due to the component zw. Note that we allow overlapping
components. Thus, p(w|v), the probability of a parent node v
to activate a child node w, becomes an expected value of the
diffusion probabilities {τzw,w} over all the latent components,
that is

p(w|v) =
Nz(w)∑
zw=1

p(zw|v)p(w|zw) =
Nz(w)∑
zw=1

p(v|zw)p(zw)
p(vw)

τzw,w

=

Nz(w)∑
zw=1

τzw,wαzw N (v|µzw ,6zw )/p(vw).

Given the proposed diffusion model, the diffusion pro-
cess of a particular cascade proceeds as follows. Let Ds =
{Ds(0),Ds(1) · · ·Ds(Ts)} be the sth observed information cas-
cadewhereDs(t) is the set of nodes activated at time step t and
Ts is the final time step for the cascadeDs. Given the initial set
of activated nodes in the sth cascade (Ds(0)), we assume that
each of them will try to activate its child nodes. Note that we
allow a parent node to be able to activate its child node not just
for the next immediate time step but also for the subsequent
time steps up to a limit. To explain that, we denote byCs(w, t)
the set of nodes which have at least one activation within the
interval between the latest activation of the child node w in
the sth cascade denoted as L(s)w (t+1) and the time step t . This
assumes that we only pay attention to recent news and that the
posts earlier than our latest post have little influence on our
future posting behaviour. b(w)∩Cs(w, t) then gives the subset
of Cs(w, t) which are parents of w. Then, the probability that
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FIGURE 2. Framework of our learning algorithm.

the child node w will be activated at time t + 1 is given as:

P(w(s, t + 1)) = 1−
∏

v∈b(w)∩Cs(w,t)

(1− p(w|v)),

and whether node w will be activated is determined
accordingly. The process proceeds until there is nomore node
being activated and then the cascade will stop.

We formulate the likelihood function under the delay
agnostic setting as in [41], which counts a successful case
for a parent node regardless of how many time steps it had
tried before its child node got activated. We denote the set
of nodes that were not activated by parent nodes as Us, and
the likelihood function of the observed cascades Ds can be
formulated as follow:

L2(2) =
S∑
s=1

logP(Ds|2,D
(s)
0 )

=

S∑
s=1

( Ts−1∑
t=0

∑
w∈Ds(t+1)

logP(w(s, t + 1))

+

∑
w∈Us

∑
v∈b(w)∩Cs(w,Ts−1)

log
(
1

−

Nz(w)∑
zw=1

τzw,wαzw N (v|µzw ,6zw )/p(vw)
))
.

To solve the component detection and diffusion network
inference problems under a probabilistic framework, we can
optimize the overall likelihood function, given as

L(2) = L1(2)+ L2(2).

D. LEARNING ALGORITHM
We first adopt the widely used network embedding algorithm
node2vec [30] to learn the embeddings of parent nodes of
each node in the network. Then, a two-level expectation
maximization (EM) algorithm is derived to obtain the ML
estimates of the model parameters based on the observed
cascades. The framework of our learning algorithm is shown
in Fig. 2.

1) EM ALGORITHM
We make use of the expectation maximization (EM)
algorithm [38], and derive a two-level EM algorithm to
infer the latent parent components and the component-
based diffusion probabilities simultaneously. We maximize

the likelihood function L(2) with respect to the parameters
2 = {{αzw}, {µzw}, {6zw}, {τzw,w}}. The inferred components
will be those making the information diffusion mostly likely
to happen, as well as grouping similar parent nodes.

a: FIRST LEVEL EM
Let Iv,zw be a latent variable that takes the value of 1 when
a parent node v belongs to the latent component zw, and 0
otherwise, given the constraint

∑Nz(w)
zw=0 Iv,zw = 1. Let I =

{Iv,zw} denote the whole set of the latent variables. We then
derive the correspondingQ-function and obtainML estimates
via EM iterations consisting of an E-step and an M-step.

If we assume that I is known, the complete likelihood
function can be written as P(D, I |2) = P(D|I ,2)P(I |2),
where

P(I |2) =
∏
w

∏
v∈b(w)

Nz(w)∏
zw=0

(
αzwN (vw|µzw ,6zw )/p(vw)

)Iv,zw ,
and

P(D|I ,2) = L(2|I )

=

S∑
s=1

( Ts−1∑
t=0

∑
w∈Ds(t+1)

log p(w(s, t + 1), I )

+

∑
w∈Us

∑
v∈b(w)∩Cs(w,Ts−1)

log(1−
Nz(w)∑
zw=0

Iv,zwτzw,w)
)
.

+

∑
w∈V

∑
v∈b(w)

log(
Nz(w)∑
zw=0

Iv,zw N (vw|µzw ,6zw ))

where

p(w(s, t + 1)) = 1−
∏

v∈b(w)∩Cs(w,t)

(1−
Nz(w)∑
zw=0

Iv,zwτzw,w).

(a) E-step: As I is missing in most of the cases, we can do
the E-step by first computing the posterior probabilities of I
with the current parameter estimates τ̂zw,w, α̂zw , µ̂zw and 6̂zw ,
given as

ηv,zw = P(Iv,zw = 1|D, 2̂)

=
α̂zw N (vw|µ̂zw , 6̂zw )P(D|Iv,zw = 1, 2̂)∑Nz(w)

zw=0 α̂zw N (vw|µ̂zw , 6̂zw )P(D|Iv,zw = 1, 2̂)

where

P(D|Iv,zw = 1, 2̂)

=

∏
n:s∈S+w

∏
t∈T+w,s

EI\Iv,zw [P(w|D, Iv,zw = 1, 2̂)]

×

∏
n:s∈S−w

Iv∈b(w)∩Cs(w,Ts−1)(1− τ̂zw,w).

Here Iv∈b(w)∩Cs(w,Ts−1) is an indicator function which
equals 1 if v ∈ b(w) ∩ Cs(w,Ts − 1). We define T+w,s as the
set of time steps {t} in the sth cascade satisfying that w ∈
Ds(t+1) and b(w)∩Cs(w,Ts−1) 6= ∅. Moreover, we define
S+w = {Ds : ∃t

(
b(w) ∩ Cs(w, t) 6= ∅ ∧ w ∈ Ds(t + 1)

)
}, and

S−w = {Ds : Us 6= ∅}.
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Then, we take expectation of all possible assignments of I
which can explain the observed cascades. The corresponding
expected likelihood function, i.e., Q-function, can be defined
as

Q(2|2̂)

=

S∑
s=1

( Ts−1∑
t=0

∑
w∈Ds(t+1)

EI [log p(w(s, t + 1), I )]

+

∑
w∈Us

∑
v∈b(w)∩Cs(w,Ts−1)

Nw(w)∑
zw=0

ηv,zw log(1− τzw,w)
)

+

∑
w∈V

∑
v∈b(w)

Nz(w)∑
zw=0

ηv,zw logN (vw|µzw ,6zw )

+

∑
w∈V

∑
v∈b(w)

Nz(w)∑
zw=0

ηv,zw log(αzw N (vw|µzw ,6zw )/p(vw))

(b) M-step: For the M-step, we maximize Q(2|2̂) by
taking the derivative of Q with respect to 2 to obtain the
updating rule of the model parameters. Therefore,

µzw =
1∑

v∈b(w) ηv,zw

∑
v∈b(w)

ηv,zwvw

6zw =
1∑

v∈b(w) ηv,zw

∑
v∈b(w)

ηv,zw (vw − µzw )(vw − µzw )T

To update {αzw}, according to the Lagrange multiplier
method, maximizing Q(2|2̂) with the constraint∑Nz(w)

zw=0 αzw = 1 yields ∂
(
Q(2|2̂) − λ(

∑Nz(w)
zw=0 αzw −

1)
)
/∂αzw = 0. Thus,

αzw =

∑
v∈b(w) ηv,zw∑

v∈b(w)
∑Nz(w)

zw=1 ηv,zw
=

∑
v∈b(w) ηv,zw

|b(w)|
.

To update {τzw}, setting to zero the derivative for the first
term EI [log p(w(s, t + 1), I )] in Q(2|2̂) does not have a
simple solution. So, within this M-step, we introduce another
level of the EM algorithm.

b: SECOND LEVEL EM
Let Y (s)

v,w(t) denote a latent variable that indicates whether
the activation of a node w at time step t in the sth cascade
is due to w’s parent node v or not. We further define Ys =
{Ys(0),Ys(1) · · · Ys(Ts)} where Ys(t) := {Y

(s)
v,w(t)} represents

the set of latent variables corresponding to the activations at
time step t in the sth cascade. Then, we derive corresponding
Q-function and infer parameters {τzw} via second-level EM
iterations.
(a) E-step: First, we compute the posterior probability of

Y (s)
v,w(t), given as

γv,w,s,t = P(Y (s)
v,w(t + 1) = 1|D, {ηv,zw}, 2̂)

=

∑Nz(w)
zw=0 ηv,zw τ̂zw,w

p̂(w(s, t + 1))

where τ̂zw,w stands for the current estimate of τzw,w, and

p̂(w(s, t + 1)) = 1−
∏

v∈b(w)∩Cs(w,t)

(1−
Nz(w)∑
zw=0

ηv,zw τ̂zw,w).

Then, we take expectation of all possible assignments of Y
and the corresponding Q-function can then be defined as

Q′(2|2̂)

=

S∑
s=1

( Ts−1∑
t=0

∑
w∈Ds(t+1)

∑
v∈b(w)∩Cs(w,t)

Nz(w)∑
zw=0

ηv,zw(
γv,w,s,t log τzw,w + (1− γv,w,s,t ) log(1− τzw,w)

)
+

∑
w∈Us

∑
v∈b(w)∩Cs(w,Ts−1)

Nz(w)∑
zw=0

ηv,zw log(1− τzw,w)
)

+

∑
w∈V

∑
v∈b(w)

Nz(w)∑
zw=0

ηv,zw logN (vw|µzw ,6zw )

+

∑
w∈V

∑
v∈b(w)

Nz(w)∑
zw=0

ηv,zw log(αzw N (vw|µzw ,6zw )/p(vw)).

(b) M-step: For the M-step, we maximizeQ′(2|2̂) by taking
the derivative of Q′ with respect to {τzw} to obtain the
updating rule of {τzw}. Thus, ∂Q′/∂τzw,w = 0 yields:

τzw,w =
1

Nzw,w

∑
s∈S+w

∑
t∈T+w,s

∑
v∈b(w)∩Cs(w,t)

ηv,zwγv,w,s,t

Nzw,w = N+zw,w + N
−

zw,w

N+zw,w =
∑
s∈S+w

∑
t∈T+w,s

∑
v∈b(w)∩Cs(w,t)

ηv,zw

N−zw,w =
∑
s∈S−w

∑
v∈b(w)∩Cs(w,Ts−1)

ηv,zw .

The E-step andM-step repeat until convergence. The detailed
steps are summarized in Algorithm 1.

2) COMPUTATIONAL COMPLEXITY
Implementing the learning algorithm involves two main
steps: 1) load the network data, the per-node neighbors’
embeddings and the cascades related data, and 2) carry out
the EM iterations.

For step 1), the cost for loading the network data isO(|V |+
|E|), and the cost for loading the cascades information is
O(S × T ) where T denotes the maximum length of a cascade
record. The cost for loading the per-node neighbors’ embed-
ding is O(|E|), since visiting the neighbors for each node
is equivalent to that of visiting all edges. Thus, the overall
complexity is O(|V | + |E | + S × T ).
For step 2), we calculate the cost for each EM iteration. The

E-step (lines 5-8) visits the neighbors v ∈ b(w) for each node
w ∈ V , which is equivalent to visiting all edges. By denoting
Imax to be the maximum number of components set among
all nodes, the worst case complexity becomes O(Imax × |E|).
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Algorithm 1 Inferring Diffusion Network With
Components
Input: network G = (V ,E), cascades

D = {D1, · · · ,DS}, parent node embeddings vw

for each node w ∈ V , dimension d .
Output: parent components for each node w ∈ V

{{αzw}, {µzw}, {6zw}}, component-based
diffusion probabilities {τzw,w}

1 Assign initial values to
2̂ = {{α̂zw}, {µ̂zw}, {6̂zw}, {τ̂zw,w}}

2 //first level EM:
3 while not convergence do
4 //E-step:
5 for all (w, v, zw) : w ∈ V and v ∈ b(w) do
6 ηv,zw ←

7
α̂zw N (vw|µ̂zw ,6̂zw )P(D|Iv,zw=1,2̂)∑Nz(w)

zw=0 α̂zw N (vw|µ̂zw ,6̂zw )P(D|Iv,zw=1,2̂)

8 end for
9 //M-step:
10 for all (w, zw) : w ∈ V do

11 αzw ←

∑
v∈b(w) ηv,zw

|b(w)|
12 µzw ←

1∑
v∈b(w) ηv,zw

∑
v∈b(w) ηv,zwv

w

13 6zw ←
1∑

v∈b(w) ηv,zw

∑
v∈b(w) ηv,zw

14 (vw − µzw )(vw − µzw )T

15 end for
16 for all (w, zw) : w ∈ V do
17 N+zw,w←

∑
s∈S+w

∑
t∈T+w,s

18
∑

v∈b(w)∩Cs(w,t) ηv,z
w

19 N−zw,w←
∑

s∈S−w

∑
v∈b(w)∩Cs(w,Ts−1) ηv,z

w

20 end for
21 //second level EM:
22 while not convergence do
23 //E-step:
24 for all (w, s, t) : w ∈ Ds(t + 1) do
25 p̂(w(s, t + 1))← 1−

∏
v∈b(w)∩Cs(w,t)

26 (1−
∑Nz(w)

zw=0 ηv,zw τ̂zw,w)
27 end for
28 for all (v,w, s, t) : w ∈ Ds(t + 1) and
v ∈ b(w) ∩ Cs(w, t) do

29 γv,w,s,t ←

∑Nz(w)
zw=0 ηv,zw τ̂zw,w

p̂(w(s,t+1))
30 end for
31 //M-step:
32 for all (w, zw) : w ∈ V do
33 τzw,w←

1
N+zw,w+N

−

zw,w

∑
s∈S+w

∑
t∈T+w,s

34
∑

v∈b(w)∩Cs(w,t) ηv,z
wγv,w,s,t

35 end for
36 {τ̂zw,w} ← {τzw,w}

37 end while // end of second level EM
38 2̂← 2

39 end while //end of first level EM

For M-step, the worst case complexity for lines 10 − 15 is
also O(Imax × |E|), and O(Imax × |E| × S × T ) for lines
16 − 20. And by denoting the number of iterations as k ,
the worst case complexity for the part of second-level EM
iterations becomesO(k×Imax×|E |×S×T ). Thus, the worst
case complexity for each first-level EM iteration is O(k ×
Imax × |E| × S × T )).

III. EXPERIMENT
We compare our model with the basic models as well as the
recently proposed models. We use both synthetic and real
world data sets to evaluate the model accuracy and discuss
how the use of the embedding-based framework can enhance
both the component identification and diffusion prediction,
and how our model can be applied to support dependency
analysis of different online news media.

A. EXPERIMENTAL SETTINGS
In all our experiments, the number of parent components
Nz(w) of each child node w is set as the number of com-
munities in the child node w’s neighborhood network esti-
mated by the CNM community detection algorithm [25] for
all the component-based models. Also, for all the experi-
ments, the initial values of τzw,w are within [0, 1], and the
initial values of αzw are generated within [0, 1] satisfying∑

zw αzw = 1. For learning embeddings, the nodes within two
hops are considered instead of just the immediate neighbors
for more precisely learning of the embeddings of parent
nodes, and only the embeddings of parent nodes are kept. The
widely used random-walk based network embedding method
node2vec [30] algorithm is adopted, which introduces biased
random walks to balance between BFS and DFS sampling
strategies using hyperparameters p and q. The parameters are
set as p = 0.125, q = 16 that is biased to BFS-strategy
sampling nearby nodes mostly in the same communities.

We compare our model with the basic IC model,
a component-based diffusion model and an embedding-based
IC model, given as:

1) ICM: The basic IC model. We extends the original IC
model by considering the influence of all the parent
nodes activated after the child node’s latest activation
instead of only those just activated at the previous time
step. The main reason of using this modified IC model
is to make sure that the comparison is only based on
whether the components structure is adopted or not.

2) Comp: The component-based model proposed in [24].
The components of each child node are directly
detected by the CNM community detection algorithm
[25]. Parent nodes within two hops are considered
to enhance the detection accuracy. We did not model
redundancy inComp for fair comparison about whether
a particular way of identifying components is use-
ful. Also, the parent nodes belonging to the same
component have the same component-based diffusion
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probability instead of independent values as in IC
model.

3) IC_Emb: The embedding-based ICmodel in [16]. A set
of sender embedding and receiver embedding is learnt
for each node. And the diffusion probabilities are mod-
eled as a function of sender embeddings and receiver
embeddings, instead of independent values. However,
neither local connectivity information nor the notion of
parent components is considered.

4) Comp_Emb: The proposed component-based model
with embedding-based parent components.

B. PERFORMANCE EVALUATION
As the ground-truth is unknown for real data, we adopt per-
plexity for evaluating the performance of various models on
predicting unseen data. Perplexity is widely used for evalua-
tion of language models [42], which calculates the average
probability for each word to be generated by the trained
model. For our case, the perplexity over the observed cascades
is defined as

Perplexity =
−
∑S

s=1 lnP(Ds)
W

.

where P(Ds) is the probability for the sth cascade to be
generated, and W is the normalization term representing the
number of activations due to the influence of the correspond-
ing nodes’ parents. The average probability is negatively cor-
related with perplexity. A lower perplexity score indicates the
inferred model to be more probable, and thus indicates better
performance. In particular, we denote the average probability
for the first model as P1, the second as P2. Also the perplexity
for the first model as PPL1, the second as PPL2. Then the
relation between the improvement of average probability and
the decrease in perplexity becomes ln P2

P1
= PPL1 − PPL2.

When the decrease in perplexity equals 0, then P2
P1

equals 1,
meaning the models give the same performance. When the
decreased perplexity scores take values of 0.05, 0.1, 0.15 and
0.5, then P2

P1
becomes 0.05, 0.1, 0.16 and 0.65, which means

there are 5%, 10%, 16% and 65% improvement of average
probability respectively. Also, we divide the cascades into
five folds and obtain the average performance using cross-
validation.

C. EXPERIMENTS ON SYNTHETIC DATA
We generate synthetic cascades based on our model and
anticipate that the inferred model with the same assumption
for cascade generation should perform the best.

1) EXPERIMENTAL SETUP
Wefirst generate two scale-free networks of 1000 nodes using
the SNAP platform [43] as real networks are most scale-
free. One network is generated with 5000 edges and the other
with 10000 edges. For each network, 100 cascades are gen-
erated based on our model, where the diffusion probabilities
are randomly assigned within [0, 1] and the embeddings are
learnt from the network structure in advance. Note that the
network with 10000 edges is denser and thus more activations

FIGURE 3. Probability density function of the clustering coefficients of
parent components for synthetic networks with 5000 and 10000 edges.

in the generated cascades, providing more data for model
training. We then investigate the connectivity of the nodes
in the parent components detected by the CNM community
detection algorithm in the basic component-based diffusion
model Comp. Each component is measured with clustering
coefficient which is defined as the network density of the
corresponding subgraph of the component. Fig 3 shows the
probability density function of the clustering coefficients of
parent components in the two networks. The high percent of
components with low clustering coefficients indicates that in
scale-free networks, which is common for real networks, not
all nodes in the detected components are closely connected,
and thus we shall investigate local connectivity information
of neighbors for better identification of components.

2) GENERATIVE ABILITY
We apply ICM, Comp, IC_Emb and Comp_Emb to the syn-
thetic networks. The performance comparison results in terms
of perplexity are shown in Fig. 4. We observe that all the
models perform better for the network with 10000 edges
when compared with that with 5000 edges due to more
training data. Also, for the network with 5000 edges, while
Comp and IC_Emb can result in a comparable perplexity
decrease of 0.74 and 0.79 in terms of ICM respectively, our
model Comp_Emb apparently gets further improvement and
achieves a perplexity decrease of 1.37 in terms of ICM and is
most similar to the groundtruth value. Similar phenomenon
can be observed for the network with 10000 edges. While
bothComp and IC_Emb result in a perplexity decrease of 0.05
in terms of ICM, our model achieves a perplexity decrease
of 0.08.

D. EXPERIMENTS ON REAL DATA
To validate if our model assumption indeed happens in online
social and information networks, we apply the proposed
model to real data sets.

1) DATA SET
Two real datasets are used for the evaluation, namely
MemeTracker [44] and Digg [45] where both the net-
work structure and the information cascades are available,
given as:
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FIGURE 4. Performance comparison on synthetic data for networks with (a) 5000 edges and (b) 10000 edges.

FIGURE 5. Probability density function of the clustering coefficients of
parent components for real networks.

MemeTracker: The posts of mass media and weblogs
from August 1 2008 to April 30 2009. Websites with news
articles and blog posts are modeled as nodes which are further
connected by directed edges (hyperlinks). Each cascade is
defined based on a set of posts reporting the same event.
We filter out the websites publishing less than 50 articles and
get 11, 457 nodes and 71, 460 cascades.

Digg: The story voting process under a directed friendship
network over one month in 2009. Users are modeled as nodes
and following relations are modeled as edges. Each cascade is
defined based on a particular frequently voted story. We filter
out the websites publishing less than 50 articles and extract
the corresponding cascades, resulting in 8, 954 nodes and
3, 553 cascades.
We also investigate the connectivity of the nodes in the

parent components detected by the CNM community detec-
tion algorithm in the basic component-based diffusion model
Comp for the two real networks. Fig 5 shows the probabil-
ity density function of the clustering coefficients of parent
components in both MemeTracker and Digg datasets. The
high percent of components with low clustering coefficients
indicates that not all nodes in the detected components are
closely connected and thus we shall investigate local con-
nectivity information of neighbors for better identification
of components instead of using global quantities such as
modularity.

2) GENERATIVE ABILITY
Figure 6 shows the experimental results. The results consis-
tently show that our model Comp_Emb outperforms the basic
IC model, the basic component-based model Comp, and the
embedding-based ICmodel IC_Emb. In particular, our model
outperforms ICM by a perplexity decrease of 0.41 and 0.40
on MemeTracker and Digg datasets respectively, and outper-
forms Comp by a decrease of 0.14 and 0.04 respectively. It
indicates that incorporating local connectivity information in
component-based models can further result in more accurate
models to be inferred. Our model achieves more apparent
improvement on MemeTracker dataset as the information
sources of news media are from a variety of types and they
form components with a wide range of influence ability.
Thus, the identification of components plays a vital role.
Also, our model outperforms IC_Emb by a decrease of 0.26
and 0.09 respectively on the two data sets. Therefore, node
connectivity information as well as components considered in
our model are important factors when learning node embed-
dings for modeling information diffusion. In addition, we test
different numbers of dimensions for the node embeddings as
shown in Fig 7 and the settings giving the best performance
are adopted.

3) QUALITATIVE EVALUATION
To illustrate howwell the neighborhood network embeddings
and the components are learnt, we visualize the neighbors’
embeddings of the websites New York Times (abbrevi-
ated as NYTimes) and Seattle Local News (abbreviated
as SEANews). Figure 8 shows (1) the learnt embeddings
projected into two-dimensional space using the t-SNE [46]
algorithm and (2) the mean of each component represented
by red triangles. For comparison, the embeddings are colored
based on the result of CNM community detection algorithm,
with one color representing one cluster. Our model can detect
three major components for NYTimes and two for SEANews,
while CNM can only detect two major components for
NYTimes. It is noted that the nodes in the two major parent
components of NYTimes and SEANews identified by the
CNM algorithm are also close in our embedding space.
However, for NYTimes, near the boundary of the two
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FIGURE 6. Performance comparison on real data for (a) MemeTracker and (b) Digg datasets.

FIGURE 7. Effect of embedding dimensions on model accuracy.

FIGURE 8. The neighborhood node embeddings and components learnt from our model for the website of New York Times
(abbreviated as NYTimes) and Seattle Local News (abbreviated SEANews). It shows (1) the embeddings projected into two-dimensional
space using the t-SNE [46] algorithm (2) the mean of each component represented as red triangles. For comparison, the embeddings
are colored based on the result of CNM community detection algorithm (each color represents one cluster).

components lie the mass media websites such as news.bbc.
co.uk (BBC News), foxnews.com (Fox News), and et al.
Although they are in the same color with *.blogs.nytimes.com,
the two sets of websites are relatively far away and indeed
should form another category. They are recognized as another
component by our model. In addition, the diffusion data
helps learning more meaningful components. There is a red

triangle around the websites reporting international news,
including iht.com (International Herald Tribune), ap.google.
com (Google News), and upi.com (United Press Interna-
tional). They should have different degrees of influence
as compared to other mass media on NYTimes, even
though they are near in the embedding space. This can
also be identified by our model as a separate component.
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FIGURE 9. The neighborhood node embeddings learnt from the baseline embedding-based IC model IC_Emb for the website of
New York Times (abbreviated as NYTimes) and Seattle Local News (abbreviated as SEANews). The embeddings are projected into
two-dimensional space using the t-SNE [46] algorithm, and are colored based on the result of CNM community detection
algorithm for comparison (each color represents one cluster).

Similar phenomena can be found for SEANews. On the right
corner, it shows our model can identify the entertainment
news websites such as etonline.com (Entertainment Tonight)
and community.tvguide.com (TV Guide), and the entertain-
ment news websites specifically about celebrities such as
people.com (People) and tmz.com (Thirty Mile Zone) as two
separate components.

For comparison, Figure 9 shows the neighborhood node
embeddings of NYTimes and SEANews learnt from the
baseline embedding-based IC model IC_Emb by projecting
the embeddings into two-dimensional space. The embed-
dings are also colored based on the result of CNM com-
munity detection algorithm for comparison. Apparently,
the learnt node embeddings by IC_Emb are not well clus-
tered. Nevertheless, some of the major nodes in the major
components identified by our model are also relatively
close in the embedding space learnt from IC_Emb. For
NYTimes, there are some mass media websites on the left
(e.g., online.wsj.com (Wall Street Journal), cnn.com (CNN
News), latimes.com (Los Angeles Times), foxnews.com (Fox
News), and news.bbc.co.uk (BBC News)), information tech-
nology websites beside them (e.g., bits.blogs.nytimes.com,
valleywag.com (Valleywag), computerworld.com (Com-
puterworld) and pcmag.com (PCMag)), and weblogs of
NYTimes itself on the right corner (*.blogs.nytimes.com).
For SEANews, there are some mass media websites
(e.g., cnn.com (CNN News), news.bbc.co.uk (BBC News),
and portfolio.com (Portfolio)). Also, people.com (People) and
tmz.com (Thirty Mile Zone) are still relatively closer than
other nodes, and the same for etonline.com (Entertainment
Tonight) and community.tvguide.com (TV Guide). The main
reason behind is that IC_Emb learns parent node embeddings
based on observed cascades, and parent nodes with similar
influence are close in the embedding space. As the major
nodes within each parent component identified by our model
have similar influence on its child node, the learnt embed-
dings are also close under IC_Emb. However, only parts of the
nodes are clustered under IC_Emb as the observed cascades

FIGURE 10. The major components with corresponding component-
based diffusion probabilities learnt from our model for the websites of
New York Times (abbreviated as NYTimes) and Seattle Local News
(abbreviated as SEANews).

are not sufficient. Meanwhile, our model learns node embed-
dings based on local connectivity information and directly
models closely connected nodes as components based on the
embeddings, and thus can achieve better performance.

Figure 10 lists the major components identified for
NYTimes and SEANews with associated component-based
diffusion probabilities under our model. It shows that the
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parent nodes for each component are well associated with
NYTimes and SEANews respectively. For NYTimes, Com-
ponent I is most influential and composes of websites of
international news agencies. Component II are weblogs of
NYTimes itself. They contain featured articles of different
sections of NYTimes’ own blogs, which are written by well-
known experts. Component III are webistes of well-known
mass media such as cnn.com (CNN News), news.bbc.co.uk
(BBCNews) and et al. Component IV are mainly information
technology websites such as engadget.com (Engadget) and
pcworld.com (PC World), and some related weblogs. For
SEANews, Component I and Component II are websites
about entertainment news, but Component I is specially on
entertainment news about celebrities and less influential than
Component II. Component III contains mass media websites
such as cnn.com (CNN News), news.bbc.co.uk (BBC News)
and et al.

IV. CONCLUSION
In this paper, we proposed to model local connectivity
information of neighbors to enhance both component iden-
tification and diffusion network inference in social networks.
In particular, we embedded nodes in a latent vector space
using network embedding and proposed a component-based
diffusion model with embedding-based parent components.
A united probabilistic framework was proposed so that the
parent components and the component-based diffusion mod-
els can be inferred jointly. Also, a two-level EM algorithm
was derived for model inference based on the observed infor-
mation cascades. For performance evaluation, we applied the
proposed model to both synthetic and real world data sets
with promising results obtained. We also discussed how the
use of the embedding-based framework can enhance both
component identification and the diffusion model.

This paper has some limitations. For instance, unlike some
related work where network structure is unknown [47], our
work is applied to the situations where network structure is
known. And also for simplicity, the diffusion rate is assumed
to be static and topic-independent, and the activations only
occur at discrete time steps. For future work, the above
assumptions can be further relaxed. The proposed model
can also be applied to other network analysis tasks such as
influence maximization.

REFERENCES
[1] J. Goldenberg, B. Libai, and E. Muller, ‘‘Using complex systems analysis

to advance marketing theory development: Modeling heterogeneity effects
on new product growth through stochastic cellular automata,’’ Acad. Mar-
keting Sci. Rev., vol. 9, no. 3, pp. 1–18, 2001.

[2] D. Kempe, J. Kleinberg, and E. Tardos, ‘‘Influential nodes in a diffusion
model for social networks,’’ in Proc. 32nd Int. Conf. Automata, Lang.
Program., Berlin, Germany, 2005, pp. 1127–1138.

[3] D. Kempe, J. Kleinberg, and É. Tardos, ‘‘Maximizing the spread of
influence through a social network,’’ in Proc. 9th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining (KDD), New York, NY, USA, 2003,
pp. 137–146.

[4] W. Chen, Y. Wang, and S. Yang, ‘‘Efficient influence maximization in
social networks,’’ inProc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, 2009, pp. 199–208.

[5] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, ‘‘A data-based approach
to social influence maximization,’’ Proc. VLDB Endowment, vol. 5, no. 1,
pp. 73–84, Sep. 2011.

[6] X. Song, Y. Chi, K. Hino, and B. L. Tseng, ‘‘Information flow modeling
based on diffusion rate for prediction and ranking,’’ in Proc. 16th Int. Conf.
World Wide Web (WWW), New York, NY, USA, 2007, pp. 191–200.

[7] X. Song, B. L. Tseng, C.-Y. Lin, and M.-T. Sun, ‘‘Personalized recom-
mendation driven by information flow,’’ in Proc. 29th Annu. Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr. (SIGIR), New York, NY, USA, 2006,
pp. 509–516.

[8] B. Xiang, Q. Liu, E. Chen, H. Xiong, Y. Zheng, and Y. Yang, ‘‘Pagerank
with priors: An influence propagation perspective,’’ in Proc. 23rd Int. Joint
Conf. Artif. Intell., Beijing, China, 2013, pp. 2740–2746.

[9] S. Yang and H. Zha, ‘‘Mixture of mutually exciting processes for viral
diffusion,’’ in Proc. 30th Int. Conf. Mach. Learn., Atlanta, GA, USA, 2013,
pp. 1–9.

[10] M. R. Islam, S.Muthiah, B. Adhikari, B. A. Prakash, andN. Ramakrishnan,
‘‘DeepDiffuse: Predicting the ‘who’ and ‘when’ in cascades,’’ in Proc.
IEEE Int. Conf. Data Mining (ICDM), Nov. 2018, pp. 1055–1060.

[11] W. Lee, J. Kim, and H. Yu, ‘‘CT-IC: Continuously activated and time-
restricted independent cascade model for viral marketing,’’ in Proc. 12th
Int. Conf. Data Mining, Brussels, Belgium, 2012, pp. 960–965.

[12] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, ‘‘Learning influence
probabilities in social networks,’’ in Proc. 3rd ACM Int. Conf. Web Search
Data Mining (WSDM), New York, NY, USA, 2010, pp. 241–250.

[13] N. Barbieri, F. Bonchi, and G.Manco, ‘‘Topic-aware social influence prop-
agation models,’’ Knowl. Inf. Syst., vol. 37, no. 3, pp. 555–584, Dec. 2013.

[14] Y. Yang, J. Tang, C. W. K. Leung, Y. Sun, Q. Chen, J. Li, and Q. Yang,
‘‘Rain: Social role-aware information diffusion,’’ in Proc. 19th AAAI Conf.
Artif. Intell., 2015, pp. 367–373.

[15] H. Xu, J. Wei, Z. Yang, J. Ruan, and J. Wang, ‘‘Probabilistic topic and role
model for information diffusion in social network,’’ in Proc. 22nd Pacific-
Asia Conf. Knowl. Discovery Data Mining, 2018, pp. 3–15.

[16] S. Bourigault, S. Lamprier, and P. Gallinari, ‘‘Representation learning
for information diffusion through social networks: An embedded cascade
model,’’ in Proc. 9th ACM Int. Conf. Web Search Data Mining (WSDM),
San Francisco, CA, USA, 2016, pp. 573–582.

[17] M. Granovetter, ‘‘Threshold models of collective behavior,’’ Amer.
J. Sociol., vol. 83, no. 6, pp. 1420–1443, May 1978.

[18] M. O. Jackson and L. Yariv, ‘‘Diffusion of behavior and equilibrium
properties in network games,’’ Amer. Econ. Rev., vol. 97, no. 2, pp. 92–98,
Apr. 2007.

[19] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg, ‘‘Structural diver-
sity in social contagion,’’ Proc. Nat. Acad. Sci. USA, vol. 109, no. 16,
pp. 5962–5966, Apr. 2012.

[20] J. Zhang, B. Liu, J. Tang, T. Chen, and J. Li, ‘‘Social influence locality for
modeling retweeting behaviors,’’ in Proc. 23rd Int. Joint Conf. Artif. Intell.,
Beijing, China, 2013, pp. 2761–2767.

[21] R. S. Burt, Structural Holes: The Social Structure of Competition.
Cambridge, MA, USA: Harvard Univ. Press, 1992.

[22] J.-P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski,
J. Kertesz, and A.-L. Barabasi, ‘‘Structure and tie strengths in mobile
communication networks,’’ Proc. Nat. Acad. Sci. USA, vol. 104, no. 18,
pp. 7332–7336, May 2007.

[23] J. Tang, T. Lou, and J. Kleinberg, ‘‘Inferring social ties across heterogenous
networks,’’ in Proc. 5th ACM Int. Conf. Web Search Data Mining (WSDM),
New York, NY, USA, 2012, pp. 743–752.

[24] Q. Bao, W. K. Cheung, Y. Zhang, and J. Liu, ‘‘A component-based dif-
fusion model with structural diversity for social networks,’’ IEEE Trans.
Cybern., vol. 47, no. 4, pp. 1078–1089, Apr. 2017.

[25] A. Clauset, M. E. J. Newman, and C. Moore, ‘‘Finding community struc-
ture in very large networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 70, no. 6, pp. 066111–066116, Dec. 2004.

[26] P. Cui, X. Wang, J. Pei, and W. Zhu, ‘‘A survey on network embedding,’’
IEEE Trans. Knowl. Data Eng., vol. 31, no. 5, pp. 833–852, May 2019.

[27] Y. Lu, X.Wang, C. Shi, P. S. Yu, and Y. Ye, ‘‘Temporal network embedding
with micro- and macro-dynamics,’’ in Proc. 28th ACM Int. Conf. Inf.
Knowl. Manage. (CIKM), 2019, pp. 469–478.

[28] B. Shi, J. Zhong, Q. Bao, H. Qiu, and J. Liu, ‘‘EpiRep: Learning
node representations through epidemic dynamics on networks,’’ in Proc.
IEEE/WIC/ACM Int. Conf. Web Intell. (WI), 2019, pp. 486–492.

[29] B. Perozzi, R. Al-Rfou, and S. Skiena, ‘‘DeepWalk: Online learning of
social representations,’’ in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD). New York, NY, USA: ACM, 2014,
pp. 701–710.

VOLUME 8, 2020 50719



Q. Bao et al.: Joint Learning of Embedding-Based Parent Components and Information Diffusion for Social Networks

[30] A. Grover and J. Leskovec, ‘‘node2vec: Scalable feature learning for
networks,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD). New York, NY, USA: ACM, 2016, pp. 855–864.

[31] S. Cao,W. Lu, and Q. Xu, ‘‘Deep neural networks for learning graph repre-
sentations,’’ in Proc. 30th AAAI Conf. Artif. Intell., 2016, pp. 1145–1152.

[32] C. Tu, W. Zhang, Z. Liu, and M. Sun, ‘‘Max-margin deepwalk: Discrim-
inative learning of network representation,’’ in Proc. 25th Int. Joint Conf.
Artif. Intell., New York, NY, USA, 2016, pp. 3889–3895.

[33] D. Shen, X. Zhang, R. Henao, and L. Carin, ‘‘Improved semantic-aware
network embedding with fine-grained word alignment,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process., Brussels, Belgium, 2018,
pp. 1–10.

[34] L. Xu, X. Wei, J. Cao, and P. S. Yu, ‘‘Embedding of embedding (EOE):
Joint embedding for coupled heterogeneous networks,’’ in Proc. 10th ACM
Int. Conf. Web Search Data Mining (WSDM), Cambridge, U.K., 2017,
pp. 741–749.

[35] X. Wang, Y. Zhang, and C. Shi, ‘‘Hyperbolic heterogeneous informa-
tion network embedding,’’ in Proc. AAAI Conf. Artif. Intell., Jul. 2019,
pp. 5337–5344.

[36] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu, ‘‘Embedding temporal
network via neighborhood formation,’’ in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Jul. 2018, pp. 2857–2866.

[37] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, ‘‘LINE: Large-
scale information network embedding,’’ in Proc. 24th Int. Conf. World
Wide Web (WWW), 2015, pp. 1067–1077.

[38] J. Bilmes, ‘‘A gentle tutorial on the EM algorithm and its applica-
tion to parameter estimation for Gaussian mixture and hidden Markov
models,’’ Int. Comput. Sci. Inst., Univ. Berkeley, Berkeley, CA, USA,
Tech. Rep. TR-97-021, 1997.

[39] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ in Proc. 1st Int. Conf. Learn.
Represent., Scottsdale, AZ, USA, 2013, pp. 1–12.

[40] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst. Stateline, NV, USA: Harrah’s Lake Tahoe,
2013, pp. 3111–3119.

[41] S. Lamprier, S. Bourigault, and P. Gallinari, ‘‘Extracting diffusion channels
from real-world social data: A delay-agnostic learning of transmission
probabilities,’’ in Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal.
Mining (ASONAM), 2015, pp. 178–185.

[42] P. F. Brown, V. J. D. Pietra, R. L. Mercer, S. A. D. Pietra, and J. C. Lai,
‘‘An estimate of an upper bound for the entropy of english,’’ Comput.
Linguistics, vol. 18, no. 1, pp. 31–40, 1992.

[43] J. Leskovec. SNAP: Stanford Network Analysis Platform. Accessed:
Mar. 10, 2020. [Online]. Available: http://snap.stanford.edu/snap/
index.html

[44] J. Leskovec, L. Backstrom, and J. Kleinberg. MemeTracker: Down-
load MemeTracker Data. Accessed: Mar. 10, 2020. [Online]. Available:
http://www.memetracker.org/data.html

[45] K. Lerman and R. Ghosh, ‘‘Information contagion: An empirical study of
the spread of news onDigg and Twitter social networks,’’ inProc. 4th AAAI
Int. Conf. Weblogs Social Media, Washington, DC, USA, 2010, pp. 90–97.

[46] G. Hinton and S. Roweis, ‘‘Stochastic neighbor embedding,’’ in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2002, vol. 15, no. 4, pp. 833–840.

[47] M. G. Rodriguez, J. Leskovec, and A. Krause, ‘‘Inferring networks of
diffusion and influence,’’ in Proc. 16th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, New York, NY, USA, 2010, pp. 1019–1028.

QING BAO received the B.Sc. degree from the
Department of Computer Science and Technology,
East China Normal University, Shanghai, China,
in 2011, and the Ph.D. degree in computer science
from Hong Kong Baptist University, Hong Kong,
in 2016. She was a Postdoctoral Research Fellow
with Hong Kong Baptist University. She is cur-
rently an Associate Professor with the School of
Cyberspace, Hangzhou Dianzi University, China.
Her research interests include Graph data mining,

social network analysis and health informatics. She was a recipient of
the Best Student Paper Award in the 2013 IEEE/WIC/ACM International
Conference on Web Intelligence.

WILLIAM K. CHEUNG received the B.Sc. and
M.Phil. degrees in electronic engineering from the
Chinese University of Hong Kong and the Ph.D.
degree in computer science from the Hong Kong
University of Science and Technology, in 1999.
He is currently the Head and an Associate
Professor of the Department of Computer Sci-
ence, Hong Kong Baptist University. His current
research interests include artificial intelligence,
data mining, collaborative information filtering,

social network analysis, and healthcare informatics. He has served as the
Co-Chair and a Program Committee Member for a number of international
conferences, as well as a Guest Editor of journals on areas, including Artifi-
cial Intelligence,Web Intelligence,DataMining,Web Services, E-Commerce
Technologies, and Health Informatics. He was on the Editorial Board of the
IEEE Intelligent Informatics Bulletin, since 2002.

BENYUN SHI received the B.Sc. degree in math-
ematics from Hohai University, Nanjing, China,
in 2003, and the M.Phil. and Ph.D. degrees in
computer science fromHongKongBaptist Univer-
sity, Hong Kong, in 2008 and 2012, respectively.
He was a Full Professor with Hangzhou Dianzi
University, China, and a Research Assistant Pro-
fessor with Hong Kong Baptist University. He is
currently a Professor with the School of Computer
Science and Technology, Nanjing Tech University,

China. His research interests include in the areas of data-driven model-
ing and analytics, machine learning, complex systems/networks, multia-
gent autonomy-oriented computing, computational epidemiology, and health
informatics.

HONGJUN QIU received the B.Sc. degree in
computer science and technology from Beijing
Forestry University, Beijing, China, in 2003, and
the Ph.D. degree in computer application from
the Beijing University of Technology, Beijing,
in 2010. She is currently a Lecturer with the
School of Cyberspace, Hangzhou Dianzi Uni-
versity, China. Her research interests include
complex systems/networks, autonomy-oriented
computing, health informatics, and computational
epidemiology.

LIJIA MA received the Ph.D. degree from
Xidian University, Xi’an, China, in 2015. From
October 2015 to October 2016, he was a
Postdoctoral Researcher with Hong Kong Baptist
University, Hong Kong, and from November 2016
to December 2017, he was also a Postdoctoral
Researcher with Nanyang Technological Univer-
sity, Singapore. He is currently an Assistant Pro-
fessor with the College of Computer and Software
Engineering, Shenzhen University. His research

interests mainly include evolutionary computation, machine learning, and
complex networks.

50720 VOLUME 8, 2020


