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ABSTRACT ECG is a non-invasive tool used to detect cardiac arrhythmias. Many arrhythmias classifi-
cation solutions with various ECG features have been reported in literature. In this work, a new method
combined with a novel morphological feature is proposed for accurate recognition and classification of
arrhythmias. First, the events of the ECG signals are detected. Then, parametric features of ECGmorphology,
i.e., amplitude, interval and duration, are extracted from selected ECG regions. Next, a novel feature for
analyzing QRS complex morphology changes as visual patterns as well as a new clustering-based feature
extraction algorithm is proposed. Finally, the feature vectors are applied to three well-known classifiers
(neural network, SVM, and KNN) for automatic diagnosis. The proposed method was assessed with all
fifteen types of heartbeats as recommended by the Association for Advancement of Medical Instrumentation
from the MIT-BIH arrhythmia database and achieved the best overall accuracy of 97.70% based on KNN,
using the combined parametric and visual pattern features of ECG Morphology. The accuracies for the
six main types – normal (N), left bundled branch blocks (L), right bundled branch blocks (R), premature
ventricular contractions (V), atrial premature beats (A) and paced beats (P) are 97.79%, 99.50%, 99.59%,
97.69%, 89.70%, and 99.92%, respectively. Comparisons with peer works prove a marginal progress in
automatic heart arrhythmia classification performance.

INDEX TERMS Classification, ECG morphology, feature extraction.

I. INTRODUCTION
Cardiovascular disease (CVD) has become one of the lead-
ing causes of non-infectious and non-transmissible disease
deaths in the world [1]. Many cardiac arrests and sudden
deaths are attributed to the cardiac arrhythmias [2]. Cardiac
arrhythmias, also called cardiac dysrhythmias, are caused
by alterations in the formation and conduction of electrical
impulses through the myocardial tissue, which may modify
the origin and physiological diffusion of the electrical stimu-
lus of the heart and can vary in severity from entirely benign
to arrhythmias with an immediate risk of life [2].

Electrocardiogram (ECG) is the most widely disseminated
and easy-to-apply method to measure the cardiac activity of
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a patient. Every heartbeat cycle consists of the successive
atrial depolarization and ventricular depolarization [3]. This
cardiac activity begins at the atrial sine node and propagates
though the rest of the heart, resulting in electrical currents
on the surface of the body and provoking variations in the
electrical potential of the skin surface. These signals can be
measured by adding surface electrodes to patient’s body and
then graphically represented in the ECG record.

The main features of a single normal cycle of the ECG,
are traditionally reflected by the amplitudes, morphologies,
durations of individual waves (P, Q, R, S, T, and U), intervals
(PP, PR, RR, ST and QT), and segments (PR and ST) [4] as
shown in Fig. 1. The QRS complex is the most significant
wave in the ECG signal. Due to some blocked regions in
the ventricles, existence of ectopic center, and heartbeats
provoked by pacemaker, the path of propagation through the
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FIGURE 1. A general structure of an ECG signal waveform.

ventricles could be changed and cause irregular waveforms
of QRS complex. Hence, medical practitioners can detect
various types of cardiac arrhythmia, such as, left bundled
branch blocks (L), right bundled branch blocks (R), prema-
ture ventricular contractions (V), atrial premature beats (A),
and paced beats (P), through the irregular changes in ECG
waveforms.

As manual heartbeat classification of long-term ECG
recordings is very time-consuming and needs a lot of practice
for junior doctors, automatic recognition and classification
system is a high-efficient way for diagnosis and could ulti-
mately improve the quality of treatment.

A. RELATED WORKS
A full ECG arrhythmia recognition and classification system
can be divided into three main parts, as follows: 1) prepro-
cessing, 2) feature extraction, and 3) heartbeat classification.

In order to remove baseline wander, electromyo-
graphic (EMG) noise, and power line interference contained
in the ECG signal, numerous methods have been proposed,
such as bandpass filters [5], wavelet transform based meth-
ods [6], [7], adaptive filters [8], empirical mode decompo-
sition [9], and independent component analysis [10]. For
example, Rakshit and Das [9] have proposed a methodology
using EMD which decomposes signals as a set of intrinsic
mode function (IMF) based on the signal complexity for
removing noise interference. Jung and Lee [7] have employed
Daubechies 4 as the wavelet basis function to remove the
noise within the ECG signal in the preprocessing stage.

Afterwards, appropriate features can be calculated from
specific parts of the preprocessed signal based on various
techniques in feature extraction stage.

In the classification stage, the feature vectors are grouped
to train some types of classifiers. Based on a comprehensive
literature survey, there is an abundance of ECG classifi-
cation algorithms having been employed up to now, such
as neural network (NN) [11], SVM [11], [12], decision
tree [13], logistic regression [14], linear discriminant [15],
neuro-fuzzy system [16], K-nearest neighbors (KNN) clas-
sification method [17], [18], etc., among which neural net-
works (NN), support vector machines (SVM), and K-Nearest
Neighbors (KNN) are extensively used algorithms in litera-
ture for this task. For example, in [18], the KNN classifier

feeding genetic algorithm features achieved a higher accuracy
of 99.30% than SVM and NN for categorizing 6318 samples
of ECG beats into nine types.

This work mainly focuses on the feature extraction stage,
which is the key to the success in automatic cardiac arrhyth-
mia recognition and classification using the ECG signals.
Any hidden information extracted from the ECG signals used
to discriminate arrhythmia types could be considered as a fea-
ture. Several feature extraction methods have been proposed
in literature for analysis of ECG signals, and these methods
can be grouped into two main types, which are time domain
and frequency domain.

In the time domain, the simplest way to extract features
is to utilize the points of the segmented ECG curve, i.e., the
heartbeat, as features [19]. However, the main drawback of
this method is that it is not very efficient since it produces
a high dimension feature vector. In addition, it might suffer
from scale or displacement of the signal with respect to the
fiducial point R [20]. As a result, a classification accuracy
of 85% was reported in [19]. The most common feature
reported in literature is the inter-beat R wave interval, which
is the time between the successive Rwaves, namely, RR inter-
val [21]. For example, Lin and Yang [21] have confirmed
the use of a normalized RR interval improves the classi-
fication results. Other RR-based features, such as pre-RR,
post-RR, local-RR, and average-RR are also reported in [7],
[8], [20], [22]. The RR intervals can also be measured for the
construction of heart rate variability (HRV) signal, which is
a more robust method since the RR intervals are less affected
by the noise [9], [10], [23], [24]. Venkatesan et al. [25]
have reported that using of HRV parameters, such as RR
mean, RR standard deviation, RR triangular index, etc. could
classify heartbeats into normal and abnormal classes in an
abnormality detection system based on SVM classifier with
a maximum accuracy of 96.00%.

Features correlated with the variations in the morphol-
ogy of the ECG signal, such as parameters about ampli-
tudes (P wave, R wave), intervals (PP, PR, ST and QT),
durations (QRS complex, P wave, T wave), slopes, areas
and curve length of QRS complex, are also widely used in
literature. Among these morphological features, amplitudes,
intervals and durations have been clinically studied [11], [19],
[26]–[29]. Zhang et al. [29] have adopted ECG features,
including inter-beat and intra-beat intervals, amplitude, area,
and morphological distance in heartbeat classification with
an average accuracy of 86.66% and confirmed the discrimi-
nation power of RR interval, P wave morphology and QRS
complex morphology.

In frequency domain, the discrete wavelet trans-
form (DWT) is the most widely used method [30]–[33].
Some researchers have identified DWT as the best method
for extracting features from ECG signal due to its advantage
in multi-resolution analysis [30]–[33]. Various statistical
features can be extracted from coefficients of DWT, such
as, mean, standard deviation, energy and coefficient vari-
ance [33], [34]. In addition, other signal processing methods,
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such as power spectral density (PSD), and high-order spec-
tral (HOS), hexadecimal local pattern (HLP), structural
co-occurrence matrix (SCM), have also been combined for
extracting features of ECG signals [11], [32], [35]–[37]. The
independent component analysis (ICA), principle component
analysis (PCA) and genetic algorithm (GA) methods were
used for dimensionality reduction [17], [38]–[41].

For example, Chawla [39] has proposed that ICA is
more suitable for extracting features from ECG signals
than PCA, because the ICA technique can separate individ-
ual sources from a mixing signal. Kar and Okandan [35]
have shown that using average PSD of six-level decom-
posed ECG signals could improve the final classification
results. Martis et al. [37] have reported to extract bispec-
trum features using HOS technique for identification of five
types of heartbeats with an average accuracy of 93.48%.
Tuncer et al. [32] have shown that using HLP technique to
extract 512 dimensional features from each low pass filter of
a five-level of DWT composition of 1000 randomly selected
ECG signal fragments and obtained an accuracy of 95%.
Marinho et al. [11] have proposed to apply SCM as a novel
feature extraction technique in arrhythmia classification and
achieved an accuracy 90.9% with SVM.

Besides, deep learning approach has also been employed
for feature extraction of ECG signals [42]–[45]. In [42],
Yang et al. have performed a feature extraction using
DL-CCANet without any prior definition of which features
should be used and obtained a 95.20% overall accuracy.
Qian et al. [44] have constructed a 17-layer-deep convolu-
tional neural network (CNN) using a genetic algorithm for
classification of 5 ectopic heartbeat types with an accuracy
of 95.78%. However, it is well known that when using a deep
learning approach, it may not be easy to interpret the result
and the computational cost is much higher than other meth-
ods. Additionally, numerous factors, such as, the number of
hidden layers, the right number of neurons to use in the hidden
layers, activation function, optimizer, strategy for preventing
overfitting, etc., are required to be optimized in the neural
network approach.

To sum up, although many existed features have shown
their advantages in the field of arrhythmia discrimination
and are correlated with mathematical computations, few of
them are related to diagnostic standards or have physiological
meaning which allows physicians to comprehend in an intu-
itive way. Whereas, existed clinical relevant features, such
as amplitudes, durations, intra-beat and inter-beat intervals
of character waves, have their own limitations. For example,
the capacity to discriminate various types of the heartbeats
using only the RR-based features is very limited. Some of
the common arrhythmia types such as the left bundle branch
block and the right bundle branch block beats could not be
detected [23], [25]. The main drawback of simple parametric
features of ECG morphology, such as amplitude, interval and
duration, is the fact that they are not sufficient for describing
the heartbeat morphology alternations in detail and the subtle
changes in the amplitude, interval, and duration in the ECG

do not provide good discrimination [46]. Therefore, it is still
essential to further explore this field.

Inspired by the common knowledge to physicians that
patients with the same disease have similar-looking ECG
shape in the relevant channels and the fact that it is physi-
cians’ routine to make diagnosis through visual analysis of
the ECG waveform in clinical practice, we propose a novel
morphological feature based on visual pattern to represent the
character of ECG heartbeats.

The contributions of this work are in the following aspects:
1) a novel ECG morphological feature, i.e., visual mor-
phological pattern of QRS complex, is proposed to capture
the fundamental intuition used by physicians; 2) a novel
computational algorithm is proposed for feature extraction
with advantage of low complexity; 3) the interpretability and
discrimination capability of the arrhythmia recognition and
classification system are improved; 4) a broad range of data
and several frequently used classifiers were involved in evalu-
ation; 5) the capability of classifying 15 heartbeat types; 6) a
high performance and reliable system for heart arrhythmia
classification with low cost and physiological meaning.

II. METHODS
The proposed arrhythmia recognition and classification sys-
tem consists of three stages: preprocessing and detection,
feature extraction, and heartbeat classification. The block
diagram of the proposed heartbeat classification algorithm is
shown in Fig. 2.

A. PREPROCESSING AND DETECTION
For preprocessing and heartbeat detection, Pan-Tompkins
algorithm [47] is used in this stage. There are five steps in the
algorithm: band-pass filtering, differentiation, squaring,mov-
ing window integration, and thresholds adjustment. A band
pass filter constructed by the low pass and high pass filters is
used to reduce noise, such as 60 Hz power line interference,
muscle noise, and baseline wander from the raw ECG signals.
And then, the signal is passed through a derivative operator
to highlight the high slopes which distinguish the QRS com-
plexes from other ECG waves. The next step is to square the
signal point by point, so that the higher values which mainly
present due to QRS complex are emphasized. The following
integrating moving window sums the area under the squared
waveform over a suitable interval and extracts the QRS onset,
QRS offset and QRS width. Finally, the threshold adjust is
applied to detect R peaks.

The detected QRS complex can be considered as a refer-
ence to detect P waves. Since the P wave duration is within
the range of 0.11 ± 0.02 seconds [48], the P wave can be
identified in a search window from QRS onset forwardly
to 0.20 seconds (72 samples). The local distance transform
method is adopted to locate the onset and offset of the P wave.
P wave peak is located as the center of average integral.

B. FEATURE EXTRACTION
The feature extraction stage is crucial for the arrhythmia
recognition and classification system. In practice, clinical
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FIGURE 2. Proposed arrhythmia recognition and classification system.

experts are concerned about changes in waveforms, through
which they can interpret various cardiac dysfunctions [28].
However, many information is not evident in the ECG signal.
Hence, the feature extraction in our study aims to extract
those diagnostic standards related characteristics of the ECG
morphology to increase the interpretability and reliability of
the diagnosis algorithm.

In this work, a total of eight features representing ampli-
tude, interval, duration and a new introduced feature, visual
pattern of the QRS complex, are extracted for classification
of 15 types of atrial and ventricular arrhythmias in [49].

1) PARAMETRIC FEATURE BASED ON THE ECG
MORPHOLOGY
Since atrial depolarization corresponds to P wave and ven-
tricular depolarization corresponds to QRS complex, seven
parametric features are calculated, as shown in Fig. 1.

The P wave morphology can reveal right or left atrial
hypertrophy or atrial arrhythmias. A normal P wave should
be upright, with a maximal amplitude less than 0.12 mV
in amplitude and a duration shorter than 0.12 seconds [48].
Hence, amplitude of P wave and P wave duration are selected
in this work. In addition, PP interval and PR interval are
also included in the feature vector. PP interval represents the
interval between the P waves due to atrial depolarization.
PR interval extends from the beginning of the P wave (the
onset of atrial depolarization) until the beginning of the QRS
complex (the onset of ventricular depolarization), reflecting
how fast the impulse travels from the atriums through the
atrioventricular valve to the ventricles. The PR interval is also
termed as PQ interval. A normal PR (PQ) interval is within a
range of 0.16 ± 0.04 seconds [48].

Besides, as important characteristics of QRS complex,
the amplitude of R wave, QRS duration, and RR interval
are also taken into account because QRS complex is the
main wave in ECG signal and represents the process of the

ventricular depolarization. The QRS complex normally lasts
0.10 ± 0.02 seconds in width and is less than 2.00 mV in
amplitude. RR interval refers to the time between the current
R peak of a heartbeat and the next R peak in this work.
A typical normal value of RR interval is within a range
of 0.60 to 1.00 seconds.

2) VISUAL MORPHOLOGY PATTERN FEATURE BASED ON A
PROPOSED ALGORITHM FOR CLUSTERING QRS COMPLEX
MORPHOLOGY
TheQRS complex, consisting of Qwave, Rwave and Swave,
is the most visually obvious graphical deflection seen on
a typical ECG signal and the most utilized. A Q wave is
any downward deflection immediately following the P wave.
An R wave follows as an upward deflection, and the S wave
is any downward deflection after the R wave. They corre-
spond to the depolarization of the right and left ventricles
of the human heart and contraction of the large ventricular
muscles. However, the patterns provoked by arrhythmias can
deeply alternate the waveform of QRS complex. It is common
knowledge to physicians that the same atrial or ventricular
arrhythmia has similar-looking ECG pattern. Some examples
of such similarity can be seen from Fig. 3. Therefore, in prac-
tice, correct interpretation of difficult ECGs requires exact
labeling of the various waves by human.

Considering morphology of the QRS complex is a signifi-
cant discriminating feature stipulated for arrhythmia diagno-
sis in ECG-based clinical practice [20], [27], and the same
arrhythmia shares similarity in ECG shapes, a novel fea-
ture, visual morphological pattern of QRS complex (VMP-
QRS), as well as a new clustering-based feature extraction
algorithm, named as adaptive K-means clustering (AKMC)
algorithm, is proposed by authors of this work for analyzing
QRS complex changes as a virtual image.

The proposed AKMC algorithm is based on the theory
of the K-means clustering algorithm. K-means algorithm is
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FIGURE 3. Illustration of similarity of ECG pattern for similar arrhythmia with type annotations on each R peak: ‘N’, ‘V’, and ‘/’ denote normal beat,
premature ventricular contraction beat, and paced beat, respectively.

a widely used method in cluster analysis. It classifies a set
of vectors X = {x1, x2, . . . , xN } (X ⊂ RN ) into K differ-
ent clusters Ck (k = 1, . . . ,K ) according to the Euclidean
norm of RN [50]. Each cluster is characterized by a cen-
troid that is the barycenter of all the points in the cluster.
The proposed AKMC algorithm adopts the idea of K-means
algorithm to cluster QRS complex vectors with similarity in
Euclidean distance so that the medical practitioners could
understand and interpret the clustering result in an intu-
itive way. On the other hand, unlike the k-means clustering
algorithm, which determines the number of clusters in the
early stage and the number of clusters cannot change as
long as the iteration is done, the proposed AKMC algorithm
improves the K-means algorithm by allowing the number of
the centroids to be changed based on the iteration process.
In the meanwhile, only a small number of parameters are
required in the proposed AKMC algorithm. The pseudocode
of the proposed AKMC algorithm for VMP-QRS feature
extraction is given in Algorithms 1. The detailed description
of the AKMC algorithm for VMP-QRS extraction is listed as
follows.

In the first step, the QRS complex is segmented from the
ECG signal and standardized. Since the QRS duration is less
than 0.12 seconds and the sampling rate of the most utilized
MIT-BIH arrhythmia database [49] is 360 Hz, a window
of 50 samples within the range of [R peak - 20, R peak +
29] are adopted as the segment vector. In order to reduce
influence caused by the different magnitudes or variances,
all samples used in this algorithm are Z-score standardized

according to Equation (1) as below:

x (i)=

s (i)− 1
L

L∑
k=1

s (k)√
1

L−1

L∑
i=1

(
s (i)− 1

L

L∑
k=1

s (k)
)2
, i=1, 2, · · · ,L., (1)

where s(i) is the ith component of QRS complex vector s; L =
50 is the length of s. The data are represented as a collection
of vectors X = {x1, x2, . . . , xN }, where N is the number of
vectors.

Suppose that Cmax, C , and nk are the estimated total num-
ber of clusters, the actual created total number of clusters,
and the number of QRS complex vectors assigned to the
cluster δk , respectively.
In the second step, take the first QRS complex vector x1 as

the centroid of the first cluster δ1 and set C to 1.
In the third step, calculate the Euclidean distance between

each QRS complex vector xi (i ∈ {1, 2, . . . ,N }) and centroid
µj of each cluster δj (j ∈ {1, 2, . . . ,C}) according to (2):

d
(
xi, δj

)
=

(
L∑
t=1

(
xi (t)− µj (t)

)2)1/2

. (2)

Obtain the distance vector D(j) as (3):

D (j) =
{
d
(
xi, δj

)}
, j = 1, 2, . . . ,C . (3)

Find the nearest cluster δk at which d(xi, δk ) has aminimum
in D(j), namely dmin = min(D(j)) = d(xi, δk ). If dmin is less
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Algorithm 1 The AKMC Algorithm for VMP-QRS Feature Extraction.
Input:
−Raw QRS complex segment vectors S = {s1, s2, . . . , sN }, where N is the number of vectors
−Cmax, the estimated total number of clusters
−Tc, the predefined clustering threshold
Output:
−The cluster label set of the QRS complex vectors

1 Perform Z-score standardization to the segment vectors using Equation (1) and represent the data as a collection of
QRS complex vectors X ={x1,x2,. . . ,xN}, where N is the number of vectors

2 Set C = 1 /∗ C is the actual created total number of clusters ∗/
3 Set µ1 = x1 /∗ µj is the centroid of cluster δj, j ∈{1, 2, . . . , C} ∗/
4 Set n1 = 0 /∗ nk is the number of QRS complex vectors assigned to the cluster δk ∗/
5 Do
6 for each QRS complex vector xi, xi ∈ X , i ∈{1, 2, . . . , N}do
7 Calculate d(xi, δj), j ∈{1, 2, . . . , C} using Equation (2) and obtain D(j) as Equation (3)
8 Find the nearest cluster δk where dmin =min(D(j)) = d(xi, δk )
9 if dmin ≤ Tcthen
10 Assign xi to the nearest cluster δk
11 Update µk = (nkµk + xi)/(nk+1)as Equation (4)
12 Set nk = nk+1
13 else
14 if C < Cmax or min{d(δi, δj)} = d(δp, δq) ≥ dminthen
15 Set xi as the centroid of a new cluster
16 Update C = C + 1
17 Set nC = 1
18 else
19 Merge the two clusters δp, δq to δp according to Equation (5)
20 Set xi as the centroid of the cluster δq
21 Update nq = 1
22 end
23 end
24 end
25 Loop Until the centroids no longer change
26 return the cluster label set of the QRS complex vectors

than a predefined clustering threshold Tc, assign the vector xi
to the cluster δk , update the centroid of the cluster δk as (4):

µk = (nkµk + xi)
/
(nk + 1), (4)

and set nk = nk+1. Then go back to the third step. Otherwise,
go to the fourth step.

In the fourth step, if C is less than Cmax, go to the sixth
step. Otherwise, go to the fifth step.

In the fifth step, calculate the Euclidean distance between
any two different clusters d(δi, δj), where i, j ∈ {1, 2, . . . ,C}
and i 6= j. If d(δp, δq) has a minimum in {d(δi, δj)} where i,
j ∈{1, 2, . . . , C}, and d(δp, δq) is equal or greater than dmin,
go to the sixth step directly. Otherwise, merge the two clusters
δp, δq to δp, update the centroid of δp as (5):

µp =
(
npµp + nqµq

)/(
np + nq

)
, np = np + nq (5)

Set xi as the centroid of the cluster δq, update nq = 1 and then
go back to the third step.
In the sixth step, set xi as the centroid of a new cluster.

Update C = C+1 and set nC = 1.

In the seventh step, repeat the third step until the centroids
no longer change.
When the clustering process comes to an end, the cluster

label δi(i = 1, 2, . . . ,C) which each QRS complex vector xi
belongs to is added as the VMP-QRS feature to the feature
vector.

C. HEARTBEAT CLASSIFICATION
After the feature extraction stage, three different classifiers
are applied here for assessment of arrhythmia classification.

1) NEURAL NETWORK
A neural network is a computational system consisting of
interconnected group of nodes. In this work, the multiple
feed-forward neural network (MLP) was employed. The goal
of aMLP is to approximate some functionY. For example, for
a classifier, the output vector at iteration k can be expressed
as (6):

Y k = f (X, W k ), (6)
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where X is the input vector and Yk is the category mapped
from inputX,Wk are the network weights which are modified
as (7):

W k+1 = W k −

[
JT J + µI

]−1
JT e, (7)

where J is the Jacobian matrix with first derivatives of the
network errors e with respect to the weights and µ is a
dynamic parameter [51]. A classifier possessing one input
layer, one hidden layer with 28 hidden layer neurons were
chosen by trial and error for this task. The MLP training
session are terminated after 200 iterations.

2) RADIAL BASIS FUNCTION BASED SUPPORT VECTOR
MACHINE (RBF-SVM)
SVM [52] is a popular supervised learning method that is
widely employed in pattern recognition, object identification,
image processing and classification [53].

As a classifier, SVM converts the input vector to higher
dimension space through some nonlinear mapping and
obtains an optimal separating hyperplane, which minimizes
the empirical classification error and maximizes the geo-
metric margin. The optimal separating hyperplane can be
represented by a decision function, which is learned from the
training set to predict the class label in the subsequent tests.
In order to formulate the SVMalgorithm based on radial basis
function, suppose that a training set consists ofN samples and
couple (xi, yi) describes data element {xi, i = 1, 2,. . . , N} and
the corresponding class label yi. The decision function can be
formulated as (8), (9):

Y =
∑
i∈SVs

wiK (x, xi)+ b (8)

K ( x, xi) = exp
(
−γ ‖x − xi‖2

)
, (9)

where w is support vector coefficient, which is the product
of the Lagrange multiplier, b is the bias term, and K (x,
xi) is the kernel function (RBF function is adopted in this
work) which can solve the problem of linear indivisibility in
primitive space by mapping data to high dimension space.
SVs represents support vectors, namely, the training data
examples.

For the implementation of SVM classifier, a library of
SVM, LIBSVM [53] is used. The performance of SVM
classifier depends on choice of two parameters: error penalty
factor C and kernel function parameter γ . In this study,
grid search approach is employed to find the optimal values
of C and γ . The parameters C and γ were set as 32 and
0.01956 respectively, with which the highest cross validation
accuracy was achieved.

3) K-NEAREST NEIGHBOR
The KNN algorithm is an instance-based supervised method
which is based on feature similarity: how closely out-of-
sample features resemble the training set determines how
the given data is classified [54]. The distance between two
instances xi and xj can be measured in different forms,

for example, Euclidean Distance (ED), City Block distance,
Minkowski Distance (MID), as shown in (10), (11), and (12),
respectively:

f
(
xi, xj

)
=

( p∑
k=1

(
xi (k)− xj (k)

)2)1/2

(10)

f
(
xi, xj

)
=

1
p

p∑
k=1

∣∣xi (k)− xj (k)∣∣ (11)

f
(
xi, xj

)
=

( p∑
k=1

(
xi (k)− xj (k)

) r)1/r

(12)

where f (xi, xj) is the distance function and p is the dimen-
sion of the feature vector space. The test instance xi
belongs to the nearest the class with the major votes of its
K-nearest neighbors. In this work, Euclidean distance was
used as the measure function. The value of K was altered
from 20 to 35, and the optimal K was concluded to be
31 for which the best accuracy for the test samples was
obtained.

III. EXPERIMENTAL RESULT
In this section, we will describe the ECG database, evaluation
metrics used to evaluate our proposed system, and present our
results.

A. ECG DATA DESCRIPTION
In order to validate the effectiveness of the proposed ECG
arrhythmia recognition and classification system, realistic
ECG data from MIT-BIH arrhythmia database [49] were
adopted. TheMIT-BIH arrhythmia database includes 48 ECG
recordings at a sampling frequency of 360 Hz with 11-bit
of resolution over a 10 mV range. There are two channels
of data, lead A, a modified limb lead II (MLII) and lead B,
a modified lead V1 (occasionally V2 or V5, and in one
instance V4). An ECG signal example with Lead MLII and
Lead V5 from the MIT-BIH arrhythmia database is shown
in Fig. 4. Since lead MLII highlights the most important
waveswithin the heartbeat, such as Pwave andQRS complex,
which correspond to the atrial depolarization and ventral
depolarization respectively, it is one of the most utilized
lead for diagnosing heart diseases and was also adopted
in our work. Recording 102 and 104 that have no lead II
information were excluded. Hence, a total of 46 records,
which lead A is lead MLII or lead B is lead MLII (record-
ing 114) were used for classification of heartbeats from
MIT-BIH arrhythmia database in this study. Each record-
ing contains an annotation.atr file where each heartbeat is
labeled with its type. These labels are used to evaluate the
accuracy of the classification. According to the ANSI/AAMI
EC57:1998/(R) 2008 standard [55], the original 15 heartbeat
types from the MIT-BIH arrhythmia data are grouped into
several superclasses: normal (N), supraventricular ectopic
beat (SVEB), ventricular ectopic beat (VEB), fusion beat (F),
and unknown beat (Q). Table 1 illustrates the corresponding
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FIGURE 4. The ECG signal example with Lead MLII and Lead V5 from the MIT-BIH arrhythmia database.

relationship between heartbeat types in theMIT-BIH arrhyth-
mia database and those in the AAMI standard. All 15 types
of heartbeat were adopted in this study. However, the heart-
beats without complete cycle were discarded due to lack
of inter-beat features. The final data size of this study is
given in Table 1. All the experiments were performed using
Matlab R2018b programming environment on a desktop PC
with Intel(R) Core i5-7500 CPU (3.30 GHz) and 32 GB
RAM configuration.

B. EVALUATION METRICS
To evaluate the performance of the proposed system, the ten-
fold cross-validation technique was used for training and
testing the classifier. And then, three standard statistical met-
rics, F1 score, precision (also referred to as positive pre-
dictivity P+), and accuracy (Acc) were derived from four
parameters: numbers of true-positives (TP), true-negatives
(TN), false-negatives (FN) and false-positives (FP) respec-
tively as (13), (14), and (15):

F1 score =
Precision × Recall
(Precision + Recall)

× 2 (13)

Precision =
TP

(TP+ FP)
(14)

Acc =
TP+ TN

(TP+ FP+ TN+ FN)
(15)

where Recall refers to the ratio of true positives to the all
observations in actual classčTrue, as defined in (16):

Recall =
TP

(TP+ FN)
(16)

C. RESULTS
The proposed clustering-based feature extraction algorithm
has been applied to extract and classify visual morphological
pattern of QRS complex. According to Section II. B. 2),
there are two parameters Tc and Cmax that should be tuned
properly to attain satisfactory results. Considering there were
15 types of heartbeats involved in this work and the ECG
waveform similarity of the same arrhythmia type, the Cmax
was set to 15. It should be noted that more clusters can be
created when conditions are met according to Algorithm 1.
On the other hand, since normal heartbeat is the main type
among all the heartbeat types, one reasonable solution to
find the proper threshold (Tc) is to reduce the number of
abnormal heartbeats clustered as normal type to a minimum.
In this study, the proper choice for Tc was concluded to
be 0.78. The results of application of the proposed AKMC
feature extraction algorithm are shown in Fig. 5, where a total
of 21 VMP-QRSs were obtained.

In the proposed arrhythmia recognition and classification
system, the extracted features, i.e., parameters and extracted
VMP-QRSs, were fed into three classifiers. In order to com-
pare the increase of discriminating power of the proposed
features, the extracted features were divided into two fea-
ture sets, namely, the classical parametric features (feature
set1) and the proposed VMP-QRS feature (feature set2).
Table 2 illustrates the accuracies obtained with different fea-
ture sets and classifiers. To better compare the classification
results in terms of various heartbeat types though different
feature sets, we visualize the classification accuracy of each
heartbeat type in form of the bar chart in Fig. 6, which
clearly shows that the proposed combined feature set1 and
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TABLE 1. The corresponding relationship between AAMI standard and heartbeat types in the MIT-BIH arrhythmia database as well as the summary of the
data size adopted in this study.

set2 yieldedmuchmore accurate classification accuracy com-
pared to the classical feature set1 in this arrhythmia classifi-
cation scenario.

To further research on the performance of the proposed
method with KNN classifier, we summarize the statistical
information, i.e., F1 score and precision, in Table 3.

IV. DISCUSSION
This paper provides an arrhythmia recognition and classifi-
cation method using combined parametric and a novel visual
pattern feature of ECG morphology. Generally, the effec-
tiveness of the proposed method and the novel morpholog-
ical feature is justified by the experimental results shown
in Section III. The performance of our proposed method
from different perspectives are discussed in details as
following.

A. A STUDY ON THE VISUAL MORPHOLOGICAL PATTERN
OF QRS COMPLEX
As can be seen in Fig. 4, all the QRS complex morphology
vectors representing 15 types of heartbeat were automatically
classified into 21 patterns based on shape similarity. This

result reveals the fact that in most cases, the same heartbeat
type exhibits a similar morphology, but it is not always the
case. It also demonstrates that the actual created number of
visual morphological patterns of QRS complex using our
proposed feature extraction AKMC algorithm could adapt
to the input QRS complex vectors. Among all the patterns,
pattern (a) contained the largest number of the vectors, with
the waveform of centroid similar to the normal beats. Some
patterns are similar, for example, pattern (j) and (l). However,
they are still distinguishable through distance comparison.
Pattern (d), (e), (g), (m), (n), (o), (q), (r), (t) and (u) indi-
cate a large difference in QRS complex morphology, which
reflects different atrial or ventral conduction defects. Some
abnormal QRS morphologies with very limited number of
heartbeats were shown in the rest patterns. For example,
two clearly different QRS complex morphologies appeared
in pattern (f) and (h). According to the annotation file from
MIT-BIT arrhythmia database, these two QRS complex mor-
phologies correspond to premature ventricular contraction
(V) beats. Though the extracted VMP-QRS feature, these
different QRS complex morphologies could be easily distin-
guished from each other in shape and visualized as medical
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FIGURE 5. Extracted visual morphological patterns of QRS complex for heartbeats from the MIT-BIH arrhythmia database. Gray line represents the
centroid of each pattern; while lines in other colors represent original QRS complex segments assigned to the corresponding patterns.

predictors of certain types of arrhythmias for a medium
or long term ECG diagnosis. This fact implies that our
proposed method is able to extract the hidden information

from the ECG signal. In addition, it can substantially
ease the burden of manually inspection of the long-term
ECG records.
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TABLE 2. A summary of the accuracy achieved using combinations of feature sets and different classifiers (NN, SVM, and KNN) in the assessment.

Therefore, the proposed VMP-QRS feature along with the
AKMC algorithm is further verified to be suitable as a new
methodology to extract QRS complex morphology informa-
tion which can be used in arrhythmia recognition and classifi-
cation while allowing the doctors to comprehend intuitively.
What’s more, the proposed AKMC algorithm has minimal
number of parameters, i.e. two parameters, to be adjusted,
which implies that the proposed methods are possible to be
conveniently and universally applied in the clinic or mobile
devices.

B. PERFORMANCE OF THE PROPOSED ARRHYTHMIA
RECOGINITION AND CLASSIFICATION SYSTEM
It can be seen from Table 2 that all classifiers achieved a
notably better overall accuracy utilizing the combined fea-
ture set1 and the proposed feature VMP-QRS than that of
solely feature set1 based method, with an increase of 11.43%,
9.30%, and 11.47% for NN, SVM, and KNN, respec-
tively. The best result with respect to overall accuracy was
97.70% achieved using KNN and combination of features
set1 and set2, followed by NN (96.11%) and SVM (94.23%).

Hence, the effectiveness of our proposed method is generally
validated.

Besides, Fig. 6 indicates that the advantage in accuracy
using the proposed features does continue uniformly for all
types, especially for six main types of heartbeats, i.e. N, L, R,
A, V and P, which compose around 98.41% of all instances.
The increases in classification accuracy utilizing KNN and
combination of feature set1 and set 2 for the type of N, L, R,
A, V, and P were 11.15%, 20.82%, 4.56%, 30.02%, 5.35%,
and 4.03%, respectively.

From evaluation in terms of the statistical indicators,
as shown in Table 3, the F1 score and precision have obvi-
ous improvements for most of the heartbeat types in this
study. One explanation for this is that different electrical
activity during ventricular depolarization can be reflected on
QRS complex morphology changes. It is an essential step
for medical practitioners to infer various types of cardiac
dysfunctions through a fine visual analysis of the irregu-
lar changes in ECG waveforms. These fundamental intu-
itions used by physicians are employed in our proposed
new feature, i.e. VMP-QRS, and consequently contribute
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TABLE 3. A summary of statistical indicators using combinations of feature sets and KNN classifier in the assessment. The metrics are: F1 score (F1 ) and
precision (P+).

FIGURE 6. Comparison of accuracy achieved using combinations of feature sets and different classifiers (NN, SVM, and KNN) in terms of heartbeat type
and overall accuracy.

to the accurate arrhythmia discrimination in the experi-
ment. Although parametric features (feature set1) are good
at spotting major disease differences, these features can-
not explicitly model the morphological changes in details.
In this study, abnormal heartbeats with parametric features
in normal range can be easily distinguished from normal
heartbeats using the proposed visual morphological pat-
tern feature. As a result, the proposed method obtained
a remarkable performance improvement for most heart-
beat types, for example, type N, with a F1 score increase
of 10.06% and a precision increase of 15.75%. Hence, the
reliability and accuracy of the proposed method is further
verified.

However, all feature sets report limited results with type e,
S, and Q, since the MIT-BIH arrhythmia database contains
only 2 instances of S, 16 instances of e, and 15 instances
of Q, which are quite insufficient for a reliable learning.
Thus, the classification methods do not have the possibility
to correctly recognize heartbeats.

C. A COMPARISON WITH RECENT APPROACHES
Moreover, in order to validate the performance improve-
ment of the proposed method for ECG arrhythmia classifi-
cation, a comparison with other relevant high-performance
works was performed. The result of comparison is presented
in Table 4.
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TABLE 4. Comparison of the classification performance of the proposed method with recent approaches.

In [56], Ye et al. achieved an accuracy of 94.00% for classi-
fying a total number of 100688 heartbeats into five categories
using DWT coefficients with PCA and ICA. In other litera-
ture, ECG morphological features, such as amplitude, area,
etc. were employed for four classes of beats and obtained
an overall accuracy of 86.66% [29]. Plawiak used the PSD
estimated based on Welch’s method and discrete Fourier
transform as ECG signal features to train a SVM-based
evolutionary-neural system and a 3-layer deep genetic ensem-
ble of classifiers (DGEC), then achieved an overall accuracy
of 91.00% [36] and 95.00% [45], respectively. Oh et al. [43]
proposed an automated diagnosis system using a combination
of CNN and long short-term memory (LSTM) for diagnosis
of N, L, R, A, and V, achieving an accuracy of 98.10% when
validated with 16499 segments from MIT-BIH arrhythmia
database. Venkatesan et al. [25] applied DWT for HRV fea-
ture extraction and classified ECG signal into normal and
abnormal classes using SVM classifier with a maximum
accuracy of 96.00%.

As Table 4 shows, it is different both in the data size and
number of heartbeat types, which are two items to note for a
fair comparison. First, the evaluation data size could affect the
validity of the methods. In our work, all the patients’ records
(excluded two records due to lack of signal from Lead II)
with a total of 104986 heartbeats from MIT-BIH arrhyth-
mia database were adopted in our assessment to ensure the

validity. Second, we desire to aid medical diagnosis by clas-
sifying all the heartbeat types categorized by ANSI/AAMI
EC57:1998/(R) 2008 standard. The evaluation of this work
was based on these two perspectives, which means it is more
realistic and reliable in real case scenario because patients
and types vary in clinical practice. The comparison results
shown in Table 4 indicate that our proposed method, tak-
ing into account the data size and the number of heartbeat
types classified, achieved a higher performance than the other
studies dealing with arrhythmia classification. The compar-
ison results verify that our proposed method can serve as
an effective and reliable tool for cardiologists in this ECG
arrhythmia diagnosis case. In addition, it has the advantages
of lower computational cost and fewer parameters to set up,
which implies that the proposed method could be an efficient
medical aid system to diagnose heart disease.

V. CONCLUSION
ECG is an important non-invasively tool widely used in
cardiovascular disease diagnosis. Abnormal heart electrical
activity can cause irregular morphology changes in ECG
signals, through which the medical practitioners can detect
various types of cardiac arrhythmia.

In this paper, we propose an effective arrhythmia recog-
nition and classification system consisting of preprocessing
and detection, feature extraction, and heartbeat classification.
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Considering the performance of arrhythmia recognition and
classification system has strong dependence on the feature
extraction, a novel discriminating feature, VMP-QRS, as well
as a new feature extraction algorithm, AKMC, is introduced
in our work. The key idea that patients with similar type of
arrhythmia have similarities in their ECG waveforms and the
fact that physicians routinely perform inference and diagnosis
with visual examination of ECG waveform morphology, are
utilized in the proposed feature, i.e., VMP-QRS, and imple-
mented into the computational AKMC algorithm for extract-
ing this feature. The performance of the proposed method is
evaluated with all 15 different heartbeat types categorized by
ANSI/AAMI EC57:1998/(R) 2008 standard from MIT-BIT
arrhythmia database and achieves the best overall accuracy
of 97.70% and the accuracies of 97.79%, 99.50%, 99.59%,
97.69%, 89.70%, and 99.92% for the six main heartbeat types
N, L, R, V, A, and P respectively, utilizing KNN classifier and
combined feature sets. Comparison of classification perfor-
mance of the proposed method with some high-performance
methods also justified a better performance in automatic
cardiac arrhythmia classification technologies.

Due to the promising results obtained, there is potential
to use our solution in telemedicine and implement designed
method in mobile devices or cloud computing with the advan-
tage of lower computational complexity, low cost and few
parameters to configure. Since the extracted VMP-QRS is
based on the physiological meaning, it allows medical prac-
titioners to better understand and use the result as a medical
predictor of certain pathologies as well.

The limitation of this study is that we mainly focus on the
visual patterns of the main wave in ECG signal, i.e., the QRS
complex. In the future, the variability of other ECG waves,
such us P waves, and T waves should be studied based on the
proposed feature extraction algorithm to further improve the
performance of the whole system.
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