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ABSTRACT Dual femtosecond laser ranging (DFLR) is an enabling absolute distance measurement
technique which is advantageous of high measurement precision, fast update rate, and large unambiguous
range. Peak detection, which requires repeated online solution of nonlinear curve fitting, is a key module of
the DFLR system and its performance affects the accuracy and real-time of the ranging system. In addition,
for long baseline measurements based on satellite-borne platforms, the DFLR system has requirements
in high integration, low cost, and small size. This paper presents a peak detection implementation on a
field-programmable gate array (FPGA) that employs a Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
to handle nonlinear curve fitting. FPGA is used to explore the possibilities of parallel architecture for the
acceleration of peak detection, and realize the miniaturization of the system. The detailed architecture design
of the peak detection module using BFGS method (PD-BFGS) and two hardware structures are proposed.
Then, the PD-BFGS module is applied to a DFLR system and evaluated with experiments on the absolute
distance measurement. The experimental results indicate that the PD-BFGS based on FPGA effectively
reduces the peak detection error by 42.81%, compared with the peak detection module using Caruana’s
method. For the DFLR system, the ranging error is reduced by 63.63% and the real-time updating of the
ranging results is guaranteed.

INDEX TERMS BFGS-QN method, femtosecond laser ranging, field-programmable gate array (FPGA),
nonlinear curve fitting, peak detection.

I. INTRODUCTION
Femtosecond laser pulses greatly improve the precision and
speed of time-of-flight (TOF) absolute distance measure-
ment [1], enabling a number of potential applications such
as aerospace engineering, large-scale industrial manufactur-
ing and remote sensing [2]. The capability of femtosecond
laser ranging can be further advanced by an asynchronous
optical sampling (ASOPS) implementation [3]–[6], which
uses a pair of femtosecond lasers, signal laser and local
oscillator (LO) laser, with an offset repetition frequency
and achieves sub-micrometer precision and kHz update
rate [7], [8].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

In the dual femtosecond laser ranging (DFLR) system,
the TOF absolute distance is calculated based on the time
interval between the peak temporal positions of the refer-
ence pulses and the target pulses originated from the signal
laser. To accurately determine the timing of the two peaks,
a local oscillator (LO) laser with slightly different repetition
frequency has been used to probe the repetitive reference and
target pulses. Samples are acquired over many repetitions
of the signal, with one sample taken on each repetition,
ensembling an sampling oscilloscope. This process equiva-
lently temporally stretch the ultrashort laser pulses, making
them accessible to high speed photodetectors. After photo-
detection, the sampled reference and target pulses need to
be reconstructed in electronics [7]. Gaussian fitting, a non-
linear optimization problem, has been used in the pulse
reconstruction which has to be finished in the ultrashort
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time interval [7]. Currently, there are two solutions to the
Gaussian fitting implementation. One solution [9], [10]
use Caruana’s method, which has low computation com-
plexity and thus fast speed at the cost of accuracy loss.
Another solution use complex optimization methods such
as Gauss-Newton method [11] and Levenberg-Marquardt
method [12] to improve accuracy, but has high computation
workload and thus needs high-performance processor to meet
the real-time requirement. However, laser ranging systems
used on the spaceborne platforms have the cost, size, and
energy limits. These require the peak detection module own
high accuracy, high performance, low footprint, and low
power consumption at the same time. Therefore, this paper
proposes an FPGA-based peak detection hardware module
using quasi-Newton (QN) method for Gaussian reconstruc-
tion.

FPGAs are considered as a promising alternative because
of their small size, massive parallelism (compared to digi-
tizing instrument based on central processing units (CPUs)),
high reconfigurability (compared to application-specific inte-
grated circuits (ASICs)), and better energy efficiency (com-
pared to graphics processing units (GPUs)) [13]–[18].
By customized design, such as pipelining and parallel com-
puting, FPGA can achieve very high processing speed, pro-
viding enough computing power for complex optimization
algorithms.

Gauss-Newton method was implemented on FPGA for
nonlinear curve fitting in a real-time ranging system [11].
The Gauss-Newton method requires the matrix inversion,
which is typically implemented by solving linear equa-
tions. Each iteration requires solving linear equations, which
becomes a heavy computing burden as the number of iter-
ations increases. The class of QN methods is one of the
most effective multi-dimensional unconstrained optimiza-
tion methods [19]. The Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method is one of the most important methods
of the QN methods. Among all the other QN variants,
BFGS-QN method can effectively avoid the round-off error
and the division by zero [20]. BFGS-QN method reduces
the computational complexity of the matrix inversion by
constructing an approximation of the inverse Hessian matrix.
The BFGS-QN method, used to solve the Gaussian fitting
problem, has higher fitting accuracy (compared with Caru-
ana’s method) and is more convenient to be implemented
on FPGA (compared with complex optimization methods).
Therefore, the idea of using BFGS-QN method to solve
the nonlinear curve fitting problem in the peak detection is
promising.

The Gaussian reconstruction using BFGS-QN method is
viewed as themost complicated part and an important guaran-
tee for system accuracy and real-time. Themain contributions
of the presented work are the followings:
1) An online, real-time, and accurate peak detection

approach is proposed for the DFLR system to improve
the ranging accuracy on FPGA. A pre-processing mod-
ule is designed to segment the sampled pulse data

into noise regions and pulse regions by an adaptive
threshold, while BFGS-QNmethod is used to solve the
nonlinear curve fitting problem in the peak detection,
to ensure the measurement accuracy.

2) To achieve real-time performance, an inexact line
search method is adopted to reduce the computation
workload of the BFGS-QN method and customized
hardware structure of the BFGS-QN is designed.

3) To trade off hardware resource usage and measure-
ment range, two hardware structures of the peak detec-
tion module are proposed. One structure uses two
BFGS-QN hardware modules in parallel and has no
limitation on the measurement range. The other struc-
ture using one BFGS-QN hardware module with prop-
erly designed pipeline ensures that interlaced reference
pulses and target pulses with interval value, which is
greater than the pipeline interval, can be processed in
real-time.

The rest of this paper is organized as follows. Section II
introduces the principle of DFLR system. The BFGS-QN
method used to solve the nonlinear curve fitting problem is
introduced in Section III. Section IV presents the hardware
implementation details of the proposed PD-BFGS module on
FPGA. The experiment results are given in Section V, and
conclusions are presented in Section VI.

II. PRINCIPLE OF DUAL FEMTOSECOND LASER RANGING
SYSTEM
The DFLR system is composed of three main parts, including
two independent and free-running passive mode-locked fem-
tosecond lasers, optical cross-correlation subsystem, and data
acquisition and processing subsystem [7]. The DFLR system
is shown in Fig. 1 (a). The principle of absolute distance
measurement based on dual-comb lasers is to broaden the
ranging laser pulse signal through ASPOS and then calculate
the distance L from the target-reference TOF (tTOF ). As illus-
trated in Fig. 2, a pair of femtosecond lasers are used as the
signal laser and the LO laser, whose repetition frequency are
denoted as fr and fr −1fr , respectively. There is a repetition
frequency difference 1fr between the signal laser and the
LO laser. The signal laser is directed at the reference and
the target so that the target TOF is simply determined by
the temporal separation of the retro-reflected laser pulses
from the reference and the target. The LO is used to sam-
ple the retro-reflected signal laser pulse envelopes based on
optical cross correlation, which is realized by sum-frequency
generation in a PPKTP nonlinear crystal. Considering the
slight offset repetition frequency, the LOwalks through signal
pulses slightly in each repetition period and a full sampling
is accomplished in multiple repetition periods. The so-called
equivalent sampling process temporally stretch the reference
and target pulses by N = fr/1fr times. Therefore, the fem-
tosecond pulse timing can be read in a stretched time scale
by standard electronics. The temporally-broadened signal is
detected by avalanche photo diode (APD) and digitized by
analog-to-digital converter (ADC). The equivalent sampling
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FIGURE 1. Dual femtosecond laser ranging system. ISO (isolator); Col (collimator); LBF Col (large-beam fiber collimator); HWP (half wave plate);
QWP (quarter wave plate); PBS (polarization beam splitter); PPKTP (periodically-poled potassium titanyl phosphate); APD (avalanche photo diode);
LPF (low pass filter); ADC (analog-to-digital converter).

FIGURE 2. Principle of femtosecond laser ranging based on ASOPS.

signals are shown in Fig. 1 (b), where the first pulse is refer-
ence pulse (Ref1), the second pulse is target pulse (Tar) and
the third pulse is reference pulse in the next period (Ref2).
The local enlarged figure of Ref1 is shown in the middle of
Fig. 1 (b), which accords with the Gaussian pulse. In order to
calculate the distance between the rangefinder and the target,
we only need to measure the target-reference TOF in the
stretched time scale (t∗TOF ), as well as fr and1fr . The ranging
principle can be described by the following equations:

L =
c
2ng
· tTOF (1a)

tTOF =
1
N
· t∗TOF (1b)

t∗TOF = ttar − tref 1 (1c)

N =
fr
1fr

(1d)

1fr =
1

tref 2 − tref 1
(1e)

where c is light velocity in a vacuum, ng is the group refractive
index in air, fr is the repetition frequency of the signal laser,
tref 1, ttar , tref 2 are the timing of target pulse, reference pulse
and the next period reference pulse in the stretched time scale,
repectively.

As a result, the distance L to be measured can be calculated
by:

L =
c
2ng
·
1
fr
·
ttar − tref 1
tref 2 − tref 1

(2)

Equation (2) indicates that, tref 1, ttar , and tref 2 (the peak
temporal positions of Ref1, Tar, and Ref2) influence the
precision of the ranging distance. In order to obtain more
accurate peak temporal positions, corresponding to the peak
of each Gaussian pulse, it is necessary to fit discrete sampling
points based on Gaussian fitting and reconstruct the original
Gaussian signal envelope of femtosecond laser pulse. The
form of Gaussian function is shown in (3):

y(t) = a · exp[−
(t − b)2

2c2
]+ d (3)

where a, b, c, and d constitute the parameters of the Gaussian
function, denoted as p, and b is related to the peak temporal
position.

p =


a
b
c
d

 (4)
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The Gaussian curve fitting is a nonlinear optimization
problem, which is described as follows:

min
p
EF (p) (5)

with the fitting error function,

EF (p) =

√√√√ Nsp∑
i=1

∣∣ŷ(ti, p)− yi∣∣2 (6)

whereNsp is the number of sampling points, (ti, yi) represents
the ith sampling point. To clearly distinguish between the
sampling value and the fitting value, the internal variables of
the fitting value are denoted by a hat ‘‘ˆ’’. The purpose of
the Gassian curve fitting is to find p such that ŷ(ti, p) is close
to the real values yi, and accurately reconstruct the Gaussian
envelope.

Caruana’s method was used for Gaussian curve fitting [9].
The Gaussian function considered in Caruana’s method has
no bias, assuming d = 0. It calculates the natural loga-
rithm of the data first and then fits the results to a parabola.
By doing this, the nonlinear equation is transformed into a
linear one. Then linear least squaremethod is used to obtain a,
b, and c, thus alleviating its computational complexity. In the
targeted DFLR system, the gaussian function is biased and
the parameter d 6= 0. To enable the linear transformation,
parameter d is estimated based on the sampled data. Limited
number of sampled data and noises in the data could induce
relatively large error in d , leading to inaccurate b. As a result,
the accuracy of the peak temporal positions obtained by the
Caruana’s method still has room for improvement as will
be seen in Section IV and Section V. Therefore, a more
effective fitting method should be adopted to improve the
fitting accuracy. This paper utilizes BFGS-QN method.

III. METHODOLOGY
A. BFGS-QN
The BFGS-QNmethod can solve the unconstrained nonlinear
optimization problem (5). It iteratively updates p (p ∈ Rn)
based on error EF (p) and derivatives δEF/δp from an initial
point p0 defined as

(
a0, b0, c0, d0

)T. The whole process of
the BFGS-QN method is summarized in Algorithm 1.

Step 0 estimates the initial point p0. The initial value of a0

and b0 correspond to themaximum amplitude of the sampling
points on the pulse to be fitted and its temporal position,
respectively. The initial value of c0 is estimated from the
width of sampled signal pulses. Since the bias is usually close
to 0 but not equal to 0, we set the initial value of d0 to 0 and
correct it through the iterative process. Step 1 computes the
search direction dk. Step 2 computes step size λk along the
search direction by line search methods. Then, Step 3 finds a
new pk+1 with the search direction and step size, and com-
putes the gradient. In Step 4, if the gradient and the function
value satisfy escape conditions, then the iteration process
terminates; otherwise, the process continues by updating the
approximation of the inverse Hessian matrix Bk+1 in Step

Algorithm 1 BFGS-QN
Step 0 Initialization.

Estimate initial value p0 ∈ Rn, g0 = ∇EF (p0).
Set B0 = I , ε1 = 1× 10−7, ε2 = 1× 10−5,
and k = 0.

Step 1 Compute search direction dk = −Bkgk.
Step 2 Compute step size λk by Armijo-Goldstein

line search method.
Step 2.0 Take initial point λ0 in [0,+∞).

Compare EF (pk). Given ρ ∈ (0, 12 ), n > 1.
Set a0 = 0, b0 = +∞, and t = 0.

Step 2.1 If EF (pk + λtdk) 6 EF (pk)+ ρλtgkTdk,
go to Step 2.3.

Step 2.2 If EF (pk + λtdk) > EF (pk)+ (1− ρ)λtgkTdk,
stop and output λk = λt ;
otherwise, set at+1 = λt , bt+1 = bt .
If bt+1 < +∞, go to Step 2.3;
otherwise, set λt+1 = nλt , t = t + 1,
go to Step 2.1.

Step 2.3 Choose a new point.
Set λt+1 =

at+1+bt+1
2 , t = t + 1,

go to Step 2.1.
Step 3 Update pk+1 = pk + λkdk, gk+1 = ∇EF (pk+1).
Step 4 Termination test.

If
∣∣EF (pk+1)− EF (pk)∣∣ ≤ ε1

or
∥∥gk+1∥∥ ≤ ε2, return p.

otherwise, go to Step 5.
Step 5 Set sk = pk+1 − pk, zk = gk+1 − gk, Update

Bk+1 = Bk −
BkzkzkTBk
zkTBkzk

+
skskT

zkTsk
+ vkvkT,

vk =
√
zkTBkzk

(
sk

zkTsk
−

Bkzk
zkTBkzk

)
.

Step 6 Set k = k + 1, go to Step 1.

5. The format of Bk+1 matrix updating is equivalent to the
conventional BFGS equation.

B. LINE SEARCH
The line search methods, used to obtain step size λk along
the search direction, mainly includes exact line search
method and inexact line search method. BFGS-QN using
Armijo-Goldstein method (BFGS-AG) [21] has been pro-
posed. The Armijo-Goldstein (AG) method is a frequenctly
used inexact line search method in practice. The AG method
requires less function evaluation, thus greatly reducing the
line search time cost to meet the speed requirement of
real-time computation. The golden section (GS) method is
an exact line search method. BFGS-QN using golden section
method is called BFGS-GS in this section.

To compare the AG method with the exact line search
method, the BFGS-AGmethod and the BFGS-GSmethod are
implemented in MATLAB. The data in Table 1 are obtained
by the average of 200 independent fitting processes.When the
BFGS-QNmethod is used to solve the problem (5), the fitting
performance is mainly influenced by the escape conditions
and the number of iterations. As shown in Table 1, when the
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TABLE 1. Performance evaluation of BFGS-AG and BFGS-GS. BFGS-AG:
BFGS using AG method. BFGS-GS: BFGS using GS method. δ represents
the difference of peak temporal positions between BFGS-AG and
BFGS-GS. % represents the ratio between δ and the peak temporal
position obtained by BFGS-GS.

escape conditions are set as shown in Step 4 of Algorithm 1,
the differences between the peak temporal positions obtained
by BFGS-AG and BFGS-GS are about 8.8× 10−5 ns, which
account for about 0.0002% of the peak temporal positions
obtained by BFGS-GS. The AG method only needs about
2.7 times evaluations of objective function on average for
each line search step, whereas the GS method needs about
16.2 times. At the same time, the number of iterations is
approximately 13.6 and 17.6 corresponding to BFGS-AG and
BFGS-GS, respectively. Because the peak temporal positions
obtained by BFGS-AG and BFGS-GS are almost identical,
using the AG method in line search step does not result
in additional loss of ranging accuracy. Therefore, the AG
method is used as the line search method in this paper as
shown in Step 2 of Algorithm 1.

In addition, because the empirical value of the step size λk
is between 0 and 1, we use 2 to represent +∞ in Step 2.0 by
setting b0 = 2 and Step 2.2 by setting bt+1 < 2 in practice.

C. EVALUATION INDEX
To evalute the peak detection method, we define the peak
temporal position error of a single pulse as the peak detection
error.

Rj =
∣∣Fj − Aj∣∣ (7)

where, Rj denotes the jth peak detection error, Fj represents
the jth fitted peak temporal position, and Aj is the jth actual
peak temporal position.

Two main indices, the mean peak detection error and the
peak detection standard deviation, are used to evaluate per-
formance.

The mean peak detection error is defined as the conformity
of the fitted peak temporal positions to the actual value,
defined as

µpd =
1
Np

Np∑
j=1

Rj (8)

where, µpd denotes the mean peak detection error, Np is the
number of detected peaks.

The peak detection standard deviation represents the ran-
dom error of the peak detection module, calculated from

FIGURE 3. Comparison of the peak detection performance.

the statistical standard deviation of the peak detection errors
as

σpd =

√√√√√ 1
Np

Np∑
j=1

(Rj − µpd ) (9)

where, σpd denotes the peak detection standard deviation.

D. PERFORMANCE ANALYSIS
To evaluate the performance of the BFGS-QN method,
the other two methods are also implemented for peak detec-
tion. One is the Caruana’s method and the other is the direct
method. The direct method uses the temporal position of
the maximum sampling point in the sampled data as the
peak temporal position without fitting. The three methods are
implemented in MATLAB.

In the targeted DFLR system, the amplitudes and signal-
to-noise ratios (SNR) of the sampled reference pulses are
about 800mV and 47.8 dB. The sampled target pulses and the
sampled reference pulses have similar widths, about 80 ns.
The resolution and sample rate of the ADC are 14 bits and
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100 MSPS (million samples per second), resulting in approx-
imately 8 sampling points for each pulse fitting [7].

The amplitude range is approximately 50 mV to 800 mV,
corresponding to an SNR from 23.8 dB to 47.8 dB. We divide
the amplitude range with a step of 50 mV, corresponding to
16 SNRs. According to the characteristics of the sampled sig-
nal, 16 waveforms with different SNRs are constructed. Each
waveform is randomly sampled 200 times at intervals of 10 ns
with different initial sampling positions to produce 200 sets
of sampling points. Then the proposed method, the Caruana’s
method, and the direct method are used to perform the peak
detection on each set of the sampling points.

The comparison of the mean peak detection error and the
peak detection standard deviation are shown in Fig. 3. While
the SNR decreases, the average error and standard deviation
of these threemethods gradually increase. Themean error and
standard deviation of the proposed BFGS method are always
lower than the other two methods. As shown in Fig. 3 (a),
BFGS method brings up to 42.81% reduction of the mean
peak detection error compared with Caruana’s method and
97.96% reduction compared with direct method. From Fig. 3
(b), we can see that BFGS method brings up to 44.60%
reduction of peak detection standard deviation compared
with Caruana’s method and 96.83% reduction compared with
direct method. The results demonstrate that the BFGSmethod
has good solution performance which will lead to more
accurate ranging. Therefore, BFGS method is selected to
replace the Caruana’s method and the direct method in our
design.

In addition, it is worth noting that BFGS is a relatively
complex iterative algorithm. While reducing the peak detec-
tion error, BFGS increases the execution time. To complete
a Gaussian curve fitting on the CPU, the Caruana’s method
requires 0.18 ms on average, whereas the BFGS method
requires 186.14 ms on average. In order to meet the real-time
requirement of the DFLR system, we design parallel and
pipelined PD-BFGS module on FPGA. In the next, the hard-
ware architecture of the PD-BFGS module is presented.

IV. FPGA HARDWARE IMPLEMENTATION
As shown in Fig. 1, the data processing unit processes the
sampled signals in real time, detects the peak temporal posi-
tions of each pulse to extract the reference-target TOF, and
calculates the distance according to the principle of DFLR,
finally sends the distance value.

The FPGA implementation of the data processing unit
is shown in Fig. 4. The computation scheduling controller,
designed by a finite-state machine (FSM), is used to
control the execution sequence of function modules. The
phase-locked loop (PLL) module generates the stable clock
frequency for other modules. The implementation contains
five function modules, including pre-processing (PRE) mod-
ule, peak detection (PD) module, repetition frequency mea-
surement (RFM) module, distance calculation (DC) module,
and universal asynchronous receiver/transmitter (UART)
communication interface module.

FIGURE 4. Hardware architecture of the data processing unit for DFLR
system.

In the targeted DFLR system, most of the sampled data
are noise data, and pulse data account for a small proportion.
Before peak detection, the PRE module pre-processes the
sampled data. The sampled data are segmented into noise
regions and pulse regions by an adaptive threshold. A pulse
region contains all sampled data of a single pulse higher than
the threshold. The data in pulse regions are stored in random
access memory (RAM) and used for peak detection. The PD
module reads the data in RAM and outputs the peak temporal
positions of each pulse. The RFMmodule updates the current
laser repetition frequency (fr ), which is an important parame-
ter in the distance calculation. The DC module calculates the
distance results according to (2). The results are sent to the
computer through the UART module.

The PRE module contains two blocks. One block dynam-
ically updates the adaptive threshold. The adaptive threshold
is updated every 16384 sampled data [22] and calculated
as multiplying ξ by the average amplitude of the sampled
data. In the case of setting a fixed threshold, if the threshold
is set low, noise data will be segmented into pulse regions;
if the threshold is set high, most of the effective data in a
single pulse will be lost. Both situations will negatively affect
the fitting results. The proposed adaptive threshold approach
can avoid the above two phenomena by adjusting the thresh-
old according to the noise level, thereby ensuring measure-
ment accuracy. In the experiment, ξ is set to 1.75 based on
experimental experience. The other block segments the pulse
regions by comparing the threshold with the sampled points.
If more than four consecutive sampled data are higher than the
threshold, a pulse region is determined, and all consecutive
sampled data in this pulse region are stored in RAM. The
above two blocks work in parallel. The adaptive threshold
is calculated on hardware in pipeline, and the comparison
operation needs one clock cycle latency.

In hardware design, the number of sampled data for a
single Gaussian curve fitting (η) is fixed. η depends on the
sample rate of ADC and the width of the sampled pulses.
In the targeted DFLR system, the sample rate of the ADC
is 100 MSPS and the width of the sampled pulses is slightly
over 80 ns, so the length of the data in a pulse region is about
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FIGURE 5. Hardware architecture of BFGS-QN solver.

8. As a result, η is set to 8. If the number of sampled data in a
pulse region is less than 8, the sampled data in the noise region
are selected to make up 8 data. If the number of sampled data
in a pulse region is more than 8, the extra effective sampled
data, whose amplitude is close to the noise, are discarded.

The PD module uses the proposed BFGS-QN method
to calculate the peak temporal positions corresponding to
the peaks of reference pulses and target pulses. In this
section, the proposed BFGS-QN method is implemented as
BFGS-QN solver. The details of the BFGS-QN solver and
the PD module are described as follows.

A. BFGS-QN SOLVER
According to algorithm 1, the BFGS-QN solver consists of
four function modules, which are objective function evalua-
tion module, line search module, gradient calculation mod-
ule and Bk matrix update module [23]. The FSM controller
are designed to control other four function modules in the
BFGS-QN solver. The hardware architecture of BFGS-QN
solver is shown in Fig. 5. The steps for computing λk , gk, and
Bk are three computationally intensive parts in the BFGS-QN
solver, as well as objective function which is frequently eval-
uated during λk and gk computation. Therefore, we mainly
describe how the four parts are designed and optimized. The
overall datapath of the BFGS-QN solver is designed with
single-precision floating-point IP cores.

1) OBJECTIVE FUNCTION EF EVALUATION
The objective function EF is evaluated repeatedly during
the BFGS-QN solving process. Therefore, we implement
the objective function evaluation as a separate block on the
hardware. The hardware architecture of objective functionEF
is shown in Fig. 6. The block is implemented in two parts:
the first part obtains the Gaussian function value according
to pk and the second part computes the fitting error EF (pk).
Fig. 6 (a) shows the design for the first part according to (3).
(t − b)2 and −2c2 are calculated in parallel. Fig. 6 (b) shows
the second part, which computes the fitting error func-
tion according to (6). A deeply pipelined vector-by-vector
multiplication (VVM) unit is implemented for the square

FIGURE 6. Hardware architecture of objective function EF evaluation.
(a) Gaussian function ŷi evaluation; (b) Fitting error EF (pk) evaluation.

FIGURE 7. Hardware architecture of λk computation [21]. (a) Comparison
part; (b) λk updating part.

summation operation. Because the number of sampling points
for each fitting operation is limited by the sampling frequency
(100 MHz), the first part is duplicated 8 times to increase
parallelism, so as to balance the computation time of each
part. The function evaluation unit contains 33 multipliers,
9 adders, 9 subtractor, 8 exponents, 8 dividers, and a square
rooter operator.

2) STEP SIZE λk COMPUTATION BY LINE SEARCH (LS)
METHOD
As shown in Fig. 7, the design of AG method includes two
parts: comparison part and λk updating part. Fig. 7 (a) shows
the comparison part in Step 2.1 and Step 2.2 in Algorithm 1.
After initialization, f (pk + λtdk) and f (pk) + ρλtgkTdk are
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FIGURE 8. Hardware architecture of gradient computation.

calculated in parallel. If sel0 is 1, 1− ρ is selected to partici-
pate in the calculation, f (pk) + (1 − ρ)λtgkTdk is calculated
in the same piece of hardware with f (pk)+ ρλtgkTdk. Fig. 7
(b) shows the λk updating part in Step 2.2 and Step 2.3.
Different update equations in Steps 2.2 and 2.3 share the same
adder and multiplier. All arithmetic operations are designed
in pipeline structures to achieve high performance.

3) GRADIENT gk COMPUTATION (GC)
The gradient of EF (pk) is calculated by the following
equation:

∇EF (pk) = (∇EF (pk1),∇EF (pk2),∇EF (pk3),∇EF (pk4))T

(10)

∇EF (pkr ) =
EF (p+kr)− EF (p

−

kr)

1p
(11)

p+kr =
(
pk1, pkr +

1p
2
, pk3, pk4

)T

(12)

p−kr =
(
pk1, pkr −

1p
2
, pk3, pk4

)T

(13)

where r = 1, 2, 3, 4. The pipelined hardware implementation
of gradient computation is shown in Fig. 8. pk is the input
vector. Each element pkr of vector pk add or subtract 1p/2
respectively, which is controlled by MUXs. p+kr and p

−

kr will
be stored in RAMs. EF (p+kr) and EF (p

−

kr) are obtained from
the objective function evaluation with concurrent operation,
and the results are streamed into a subtractor and a multiplier
in sequence. The parallel structure is designed as a tradeoff
between speed and resource.

4) Bk MATRIX UPDATING (BU)
The Bk matrix updating (BU) generates an approximate
sequence of inverse Hessian by iteration. The block derives an
4×4matrix, according to Step 5 of BFGS-QN algorithm. The
hardware architecture of the BU block is shown in Fig. 9. The
VVM unit is heavily used in this module, such as zkTsk. The
matrix-by-vector multiplication (MVM), which is the most
computationally intensive operation, is implemented using
multiple VVMs. For ease of illustration, multiplier symbols
are used to represent VVMs and MVMs. The intermedi-
ate results zk, Bkzk, and ((sk/zkTsk) − (Bkzk/zkTBkzk)) are
buffered in on-chip RAM units for data reuse in subsequent
computation steps. At one input of the last adder, a first-input-
first-output (FIFO) is used to buffer the result of vkvkT and

FIGURE 9. Hardware architecture of Bk Matrix Updating [23].

FIGURE 10. Two hardware structures of Peak Detection module.
(a) Structure 1; (b) Structure 2.

wait for the results of other sub-items in the update equation.
The BU block updates the Bk+1 matrix row by row.

B. TWO HARDWARE STRUCTURES OF THE PEAK
DETECTION MODULE
In the targeted DFLR system, the sampled signal is a refer-
ence pulse and target pulse interlaced signal with a certain
time interval tinterval , as shown in Fig. 2. Due to the different
distance ranges, tinterval is not fixed. If tinterval is shorter than
the time required to fit a curve, BFGS-QN solver cannot
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TABLE 2. Clock cycles of BFGS-QN solver.

guarantee to complete the peak detection of the reference
pulse (target pulse) before the arrival of the target pulse
(reference pulse). Therefore, two hardware structures of the
PD-BFGS module are proposed to ensure that interlaced
reference and target pulses can be processed in real-time.
Structure 1: Two BFGS-QN solvers process the reference

and target signal pulses in parallel. The structure is shown in
Fig. 10 (a). The first BFGS-QN solver processes the reference
signal pulse, and the second BFGS-QN solver processes the
target signal pulse, respectively. This structure can handle any
values of the time interval between two pairs of pulses and
theoretically does not have limitation on the measurement
range of the system. However, the disadvantage is that two
BFGS-QN solvers introduce large resource overhead.
Structure 2: One BFGS-QN solver is used to process the

reference and target signal pulses in a pipeline. The struc-
ture is shown in Fig. 10 (b). From Table 2, we can see that
the number of execution clock cycles of the LS block is
roughly equal to the sum of the GC and BU blocks. Therefore,
the BFGS-QN solver can be executed in a two-stage pipeline.
The data storage and control block with simple logics stores
intermediate data and controls the pipeline. When tinterval is
larger than the pipeline interval (the execution time of the LS
block), the second stage (GC+BU) processes the reference
pulse (target pulse) and the first stage (LS) processes the
target pulse (reference pulse) at the same time.

Although Structure 2 reduces hardware resources, it is
applicable only when tinterval is greater than the pipeline inter-
val. When tinterval is less than the pipeline interval, Structure
1 is used. Therefore, which structure to adopt depends on
the actual application situation and makes tradeoff between
hardware resources and measurement range.

V. EXPERIMENTAL RESULTS
To evaluate the proposed PD-BFGS module, the design
is synthesized and implemented on the Net-FPGA SUME
(xc7vx690tffg1761-3) board. The repetition frequency (fr )
of the signal laser is about 73.6 MHz, and the repetition
frequency difference 1fr is about 2 KHz [7], [8]. Therefore,
the period of the sampled reference pulse and target pulse is
500 µs, respectively.
There is a large-beam fiber collimator placed in the optical

unit of the DFLR system, so that the amplitude (and SNR)
of the system echo signal at different target distances are
approximately equal. In other words, the difference of target
distances has little effect on ranging accuracy [24]. Limited
by the experimental conditions, we place the target at a fixed
position within the measuring range of the DFLR system.

FIGURE 11. The ranging results with three peak detection modules.

The data of this distance is used as a representative for the
experiments. The reference distance is 63.294006 m, and
sampling points within 300 ms are used in the experiment.

The reference distance is obtained by a calibrated distance
ranger. The reference ranger is similar with the proposed
DFLR system in Fig. 1. The only difference between the
reference ranger and the DFLR system is that the data pro-
cessing unit of the reference ranger is based on a custom-built
digitizer with LabVIEW system. The reference ranger is
calibrated by the interferometers at NIM (National Institute
of Metrology of China). The measurement residual of the
reference ranger is less than 2 µm [24]. In the DFLR system,
FPGA is used as the data processing unit with the size much
smaller than the custom-built digitizer, so that the system can
be integrated in a small volume.

A. PERFORMANCE
The performance of the DFLR system based on the proposed
PD-BFGSmodule is evaluated first. The peak detection mod-
ule using the Caruana’s method (PD-Caruana) and the peak
detection module using the direct method (PD-direct) are also
implemented for comparison.

The ranging results with the three peak detection modules
are shown in Fig. 11. The mean value of the ranging results
with PD-direct is 63.293876 m, the error is 129.63 µm, and
the standard deviation is 27.43 µm; the mean value of the
ranging results with PD-Caruana is 63.294031 m, the error is
24.98 µm, and the standard deviation is 5.37 µm; the mean
value of the ranging results with PD-BFGS is 63.293997 m,
the error is 9.08 µm, and the standard deviation is 1.74 µm.

47784 VOLUME 8, 2020



Y. Jiang et al.: PD Based on FPGA Using QN Optimization Method for Femtosecond Laser Ranging

TABLE 3. Execution time of BFGS-QN solver.

TABLE 4. Resource comparison of Structure 1 and Structure 2 of PD-BFGS
implementation. (%): Ratio between the used resources and the total
available resources.

PD-BFGS reduces the error of the ranging results by 92.99%
compared with the PD-direct, and by 63.63% compared with
the PD-Caruana. At the same time, PD-BFGS reduces the
standard deviation of the ranging results by 93.66% com-
pared with the PD-direct, and by 67.60% compared with the
PD-Caruana. With PD-BFGS module, the ranging perfor-
mance of the DFLR system is considerably improved.

B. EXECUTION TIME
As shown in Table 3, the designed PD-BFGS module works
at 250 MHz and obtains the peak temporal position of the
detected pulse within 173.40 µs on average. When tinterval
is larger than 5.84 µs, Structure 2 is used to save hardware
resources; when tinterval is less than 5.84 µs, Structure 1 is
used to ensure peak detection of reference and target pulses
simultaneously. The peak detection is completed in real-time
and its update rate is high enough for the upper computer to
carry out data post-processing. The update rate of ranging
results is 2 KHz, equals to the repetition frequency differ-
ence 1fr just as the ranging principle indicates. The results
indicate that the data processing unit based on PD-BFGS can
achieve satisfactory performance and obtain themeasurement
distance in real-time.

In addition, each block of the designed PD-BFGS module
uses parallel and pipeline designs to accelerate the execution
time. The parallel structure can be appropriately adjusted
in exchange for a decline in hardware resource utilization.
For example, the Gaussian function ŷi evaluation part, which
is duplicated 8 times in objective function EF evaluation
block, could be duplicated 4 times and executed twice to save
hardware resources.

C. HARDWARE RESOURCE UTILIZATION
The PD-BFGS hardware implementation is customized with
the proposed optimization structures for the ranging sys-
tem. The hardware resource utilization results are reported

in Table 4, including lookup table (LUT), flip-flop (FF),
digital signal processing (DSP) blocks, and block random
access memory (BRAM) blocks. From Table 4, we can see
that Structure 2 saves nearly half of the hardware resources
compared to Structure 1.

VI. CONCLUSION
This paper has demonstrated the successful implementation
of an FPGA-based PD-BFGS module. To better fit with
the parallel architecture of FPGA, the BFGS-QN method is
used as the embedded optimization algorithm. The designed
PD-BFGS module is applied to the DFLR system to fulfill
its high requirements on accuracy and real-time. The detailed
implementation architecture of the PD-BFGS module and
two hardware structures are given. With the help of parallel
architecture of FPGA and pipeline design, the PD-BFGS
module solves quickly and provides the solutions within the
available sampling interval. The experimental results show
that the PD-BFGS module based on FPGA has good compu-
tational performance, achieves high accuracy and real-time
measurement for DFLR system. Compared with the peak
detection using the Caruana’s method, the mean error of
ranging results is reduced by 63.63%, the standard devia-
tion of ranging results is reduced by 67.60%. The design
PD-BFGS module is equally effective for other nonlinear
curve functions with more unknown parameters. It has a
broader application prospect.
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