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ABSTRACT Window queries are basic but important query tasks in geospatial databases. The Hilbert
curve has good clustering properties, which can be used to effectively improve the execution efficiency
of window queries. The ideal goal of a window query using Hilbert curve code is to quickly convert
the query window to the corresponding monotonic continuous Hilbert code segments. However, existing
algorithms have shortcomings in conversion calculations and Hilbert code segments properties. We propose
the state vectors that are used to describe the filling rules of a three-dimensional Hilbert curve. In addition,
we designed a direct generation algorithm for monotonically increasing Hilbert code segments (MI-HCS)
for a three-dimensional window query. The MI-HCS algorithm is characterized by the direct generation
of a monotonically increasing code segment set without the need to traverse all grid elements or the
requirement of separate sorting steps. For a given query window W (x, y, z, l,w, h) and a Hilbert curve
of size T × T × T , the maximum complexity of our MI-HCS algorithm is O

(
α1 × α2 ×

(
log2 T + 1

))
,

where α1 = median (l,w, h) and α2 = max (l,w, h). The experimental results of the MI-HCS algorithm
complexity are consistent with the specific theoretical analysis. The experimental results show that the
Hilbert code segment generation efficiency of the proposed MI-HCS algorithm is 260.5% to 423.9% higher
than that of existing algorithms.

INDEX TERMS Hilbert curve, octrees, spatial ordering code, window query.

I. INTRODUCTION
Spatial ordering can be defined as a reversible one-to-one cor-
respondence between consecutive integers or key values and
elements in a spatial entity set [1]. It has also been referred to
as a spatial ordering code because these key values can decide
the transversal order or address of the target [2]. Generally,
spatial ordering codes divide a continuous space into regular
grid elements to construct a one-dimensional curve traversing
all grid elements without omission or repetition.

A Hilbert code describes the sequence in which a
one-dimensional curve occupies the grid elements of a spatial
target. The Hilbert curve is a one-dimensional curve that
can recursively traverse the cells of a specified area [3]
and is an important method for mapping spatial targets to
one-dimensional spatial ordering codes [4]. Additionally,
it has good spatial clustering [5], [6], meaning that spatial
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objects that are adjacent or close to each other in multidimen-
sional space are mapped to the filling curve while retaining
their original proximity relationship, which can effectively
improve the access efficiency of multidimensional data in
the physical one-dimensional storage of a disk [7]. These
advantages have led to Hilbert codes being widely used in
spatial database indexes [8], [9].

Window querying is an important basic query task in spa-
tial databases [10], [11]. A Hilbert code can be used as the
spatial target index to accelerate the window query rate. The
process of performing a window query with a Hilbert code is
generally divided into the following two steps [12], [13]:

1) Given a query window W , map all grid elements cor-
responding to the query window W to Hilbert codes,
and concatenate the continuous Hilbert codes into code
segments to produce a monotonically increasing code
segment set as output;

2) The code segment set is put into the where condition
of the database query, and searching is performed with
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the help of one-dimensional indexing techniques such
as B-tree.

Hilbert code generation efficiency and Hilbert code segment
monotonicity are essential for efficient window queries.

Most existing Hilbert code generation research has focused
on the generation of Hilbert codes for a single grid ele-
ment [14], [15]. There are few studies specifically about
generating Hilbert code segments for all grid elements in
the query window. These generation algorithms can be made
roughly iterative and recursive. The strategy of the iterative
algorithm proposed in [16] and [17] is as follows. First, seg-
ment the entire Hilbert curve and calculate the smallest cell
of the Hilbert code in the query window. Next, starting from
the smallest cell of the Hilbert code, repeatedly determine
whether the next grid element on each segment is in the
query window. Finally, all Hilbert codes are combined, and
the resulting code segment is given as output. The algorithm
in [16] adopts a traversal strategy.When the size of theHilbert
curve and the query window increases, the number of grid
elements to be calculated increases exponentially, and the
efficiency decreases significantly. In [18], the concept of the
maximum block in the quadtree [19] was introduced into
the solution of the Hilbert code segment for two-dimensional
Hilbert curves. First, a recursive method is used to generate
all the maximum blocks of the quadtree in the range of the
query window W , and then the Hilbert code correspondence
to the quadtreemaximum block is calculated. Finally, all code
segments are assembled and sorted. TheHilbert code segment
generation algorithm based on the maximum block of the
quadtree has been applied to efficient image compression [20]
and fast window querying [21]. After studying the filling
order of the two-dimensional Hilbert curve [22], a code seg-
ment generation algorithm for recursive quad splitting of the
query window is proposed. The efficiency of this algorithm
is greatly improved compared with that in [18]. However,
the algorithms in [16] and [22] only discuss two-dimensional
Hilbert curves. Because the construction methods and hierar-
chical evolution laws of two- and three-dimensional Hilbert
curves are completely different, it is impossible to combine
the algorithms in [16] and [22] for direct application to the
generation of a three-dimensional Hilbert curve. In [23],
when studying the organization and management of the
Hilbert-code-based large-scale point cloud data, the Hilbert
curve was taken as a multidimensional tree; starting from the
root node, child nodes at different levels were searched under
the breadth-first policy until all child nodes corresponding
to the multidimensional windows were located, after which
the Hilbert code segment containing all child nodes was
exported. However, the algorithm does not specify the order
of searching for the child nodes, and it cannot guarantee that
the output code segment set has a monotonically increasing
nature. Therefore, it needs to sort the code segments before
performing the continuous code segment merging step, which
inevitably consumes additional O (n) time.
To realize the efficient conversion from a three-

dimensional query window to a Hilbert code segment,

this paper proposes a direct algorithm for a monotoni-
cally increasing three-dimensional Hilbert code segment
(MI-HCS) based on the study of the filling rule of
three-dimensional Hilbert curves and the topological rela-
tionship between the query window and the space grid ele-
ment. In the MI-HCS algorithm, a window query process
is considered as the combination of the query window and
the corresponding Hilbert curve. The process of the MI-HCS
algorithm can be broadly described as follows:

1) Determine whether the current window size is equal
to the curve size. If they are equal, the code segments
corresponding to the current curve are added to the
code segment set; if they are not equal, the window
and the curve are divided to obtain sub-windows and
sub-curves.

2) A newwindow query process is obtained by combining
the sub-windows and sub-curves in pairs.

The whole flow of the algorithm is shown in Fig. 1 The rest
of this paper is organized as follows. In Section II, we briefly
describe the window query and the Hilbert curves filling
rule. In Section III, we present the MI-HCS algorithm with
no requirement of additional sorting steps. In Section IV,
we analyze the performance complexity of the MI-HCS algo-
rithm and compare the performance of our algorithm against
existing algorithms. Section V presents concluding remarks.

II. HILBERT SPACE ORDERING CODE
A. HILBERT CODE SEGMENT CORRESPONDING
TO THE QUERY WINDOW
The Hilbert curve first divides the n-dimensional space
rule into seamless and non-overlapping (2m)n hypercube
grid elements. It then traverses every grid element with a
one-dimensional curve without traversing any grid element
more than once. This can also be stated as a one-to-one
mapping between an n-dimensional space Rn and a one-
dimensional space R1. The three-dimensional Hilbert curve
realizes a one-to-one mapping from three-dimensional space
to one-dimensional space. The three-dimensional cube space
with side length T = 2m is nested octrees. After m iterations
of segmentation, 8m sub-grid elements are obtained, and the
length of each sub-grid element is T/2m. Them-level sub-grid
elements correspond to a curve of order m. The Hilbert code
specifies the filling order of grid elements of the Hilbert
curve. The value range of the mth order Hilbert code is
(0, 1, 2, . . . ,T × T × T − 1), as shown in Fig. 2 (a).
In three-dimensional space, the query window W (x, y, z,

l,w, h) can be regarded as a parallelepiped, of which the
starting corner point Pmin closest to the coordinate origin is
(x, y, z), and the end corner Pmax farthest from the coordinate
origin is (x + l, y+ w, z+ h). For a Hilbert curve of size
T × T × T ,the window query needs to take all Hilbert codes
in window W , and integrate all codes into a code segment
set HRange = {HR1,HR2, . . . ,HRn}. Among them, HRn is
represented by the Hilbert filling start and end codes of
the code segment, including the Hilbert codes of all grid
elements between the start and end grid elements, namely
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FIGURE 1. Flow of the MI-HCS algorithm presented in this paper.

FIGURE 2. Hilbert code and Hilbert code segment corresponding to the
query window. (a) Three-dimensional 1st and 2nd order Hilbert curves
and Hilbert codes. (b) Hilbert code segment corresponding to the query
window.

HRn = (HStarn,HEndn). Because the elements in HRange
conform to the monotonically increasing nature, each code
segment satisfies HEndn < HStarn+1. As shown in Fig. 2
(b), the query window is a blue parallelepiped. The set of
Hilbert code segments obtained are the following:HRange =
{(0, 7), (24, 25), (30, 33), (38, 39), (56, 63)}.

B. HILBERT CURVE FILLING RULE
The Hilbert code is the arrangement order of m-level grid
elements on the Hilbert curve. Therefore, mastering the
filling rule of the curve between the grid elements is the

FIGURE 3. Sequence of Hilbert primitives.

premise of analyzing the Hilbert code. The self-similarity
and self-replication characteristics of the Hilbert curve deter-
mine the order of the primitives of only 24 types in
the three-dimensional Hilbert curve, which are shown in
Fig. 3 [24], from left to right and top to bottom, respectively
ϕ1, ϕ2, . . . , ϕ24.

After performing an octet division on the cube area con-
taining the three-dimensional Hilbert curve, the eight sub-
grid elements are numbered (0, 1, 2, 3, 4, 5, 6, 7), as shown
in Fig. 4. The distinguishing criterion of primitive order is the
filling state of the Hilbert curve in eight sub-grid elements.

To facilitate the description of the 24 primitive sequences
and the calculation of the program, this paper introduces
a state matrix to record these sequences. According to the
sub-grid elements order of (0, 1, 2, 3, 4, 5, 6, 7), the number
of sub-grid elements passed by k kinds of primitive sequences
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FIGURE 4. Numbered sub-grid elements.

before filled to the current sub-grid elements are recorded as
state vector sk (k ∈ (1, 2, . . . , 24)). Then, the 24 row vectors
are combined into a matrix S, and the uth row of matrix S
corresponds to state vector su+1 and primitive sequence ϕu+1,
as shown in (1).

S =



0 1 6 7 4 5 2 3
0 1 2 3 4 5 6 7
0 7 4 3 2 5 6 1
0 3 4 7 6 5 2 1
4 5 2 3 0 1 6 7
4 7 0 3 2 1 6 5
0 7 6 1 2 5 4 3
6 1 0 7 4 3 2 5
6 7 4 5 2 3 0 1
6 1 2 5 4 3 0 7
4 5 6 7 0 1 2 3
2 3 0 1 6 7 4 5
2 1 6 5 4 7 0 3
6 5 2 1 0 3 4 7
2 5 4 3 0 7 6 1
4 3 2 5 6 1 0 7
0 3 2 1 6 5 4 7
6 5 4 7 0 3 2 1
4 3 0 7 6 1 2 5
2 1 0 3 4 7 6 5
4 7 6 5 2 1 0 3
6 7 0 1 2 3 4 5
2 3 4 5 6 7 0 1
2 5 6 1 0 7 4 3



(1)

For grid elements, the filling order of the Hilbert curve
between its sub-grid elements is ϕk (k ∈ (1, 2, . . . , 24)), and
the filling order of the Hilbert curve between the grid ele-
ments after the sub-grid elements are divided again is deter-
mined by ϕk . This mapping relationship does not change with
the level [25].

Considering the example shown in Fig. 5, the filling order
of the level 2 curve is ϕ2, and the corresponding state vec-
tor is s2. The filling order of the Hilbert curve between
the sub-grid elements is ϕ3, ϕ1, ϕ2, ϕ10, ϕ3, ϕ2, ϕ5, ϕ10; the
state vectors correspond to s3, s1, s2, s10, s3, s2, s5, s10, and
there is a state vector level mapping of T (s2) →

s3, s1, s2, s10, s3, s2, s5, s10. This state vector mapping rela-
tionship does not change with the level, meaning that
regardless of the grid element level, if the state vec-
tor is s2, the state vectors of its sub-grid elements are

s3, s1, s2, s10, s3, s2, s5, s10.

E =



7 2 1 8 7 1 11 8
3 1 2 10 3 2 5 10
2 4 3 9 2 3 6 9
17 3 4 18 17 4 19 18
15 11 5 16 15 5 2 16
20 19 6 21 20 6 3 21
1 17 7 22 1 7 21 22
22 20 8 1 22 8 18 1
10 23 9 3 10 9 22 3
9 13 10 2 9 10 14 2
24 5 11 19 24 11 1 19
19 22 12 24 19 12 23 24
21 10 13 20 21 13 24 20
18 24 14 17 18 14 10 17
5 18 15 23 5 15 20 23
23 21 16 5 23 16 17 5
4 7 17 14 4 17 16 14
14 15 18 4 14 18 8 4
12 6 19 11 12 19 4 11
6 8 20 13 6 20 15 13
13 16 21 6 13 21 7 6
8 12 22 7 8 22 9 7
16 9 23 15 16 23 12 15
11 14 24 12 11 24 13 12



(2)

An evolution matrix E is introduced to record the mapping
relationship between the 24 state vectors and the next-level
state vectors, as shown in (2). To explain themeaning of row u
of state evolution matrix E, row u (u ∈ (0, 1, · · · , 23)) corre-
sponds to the mapping relationship T (su+1) in the following
manner:

T (su+1)→ sE[u][0], sE[u][1], sE[u][2], sE[u][3],

sE[u][4], sE[u][5], sE[u][6], sE[u][7], sE[u][8] (3)

C. HILBERT CODE OF CURVE STARTING GRID CELL
For a Hilbert curve of orderm and size T ×T ×T , the Hilbert
code is a series of integers that are continuously increas-
ing and have an equal difference of 1. The value range is
(0,T × T × T − 1). The state vector in the previous section
records the filling order of the Hilbert curve between the grid
elements. Because the Hilbert code is the order of m-level
grid elements in the curve, the Hilbert code of the starting
grid element can be directly calculated according to the
sub-grid element containing the sub-curve.

The element S[k−1][i] in matrix S indicates that the curve
with state vector sk (size T ×T ×T , T = 2m) passes through
S[k − 1][i] sub-grid elements before filling the ith sub-grid
elements, and there are T 3/8 m-level grid elements in each
sub-grid element. If the starting sub-grid element of the curve
isHStar , then because the Hilbert code is a series of consecu-
tively increasing, equal-difference numbers, the starting grid
cell element of the sub-curve (size T/2× T/2× T/2) in the
ith sub-grid element conforms to (4):

HStari = HStar + S[k − 1][i]× T 3/8 (4)
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FIGURE 5. State vector mapping between grid element and its 8 sub-grid
elements.

III. MONOTONICALLY INCREASING HILBERT CODE
SEGMENT DIRECT GENERATION ALGORITHM
A. QUERY WINDOW SPATIAL RELATIONSHIP
The spatial relationship between the eight sub-grid elements
obtained by octagonal division for the cubic region (side
length T ) of the order m Hilbert curve and query window
W can be regarded as a query window parallelepiped that is
parallel to the eight grid elements showing the topological
relationship of a hexahedron in three-dimensional space. The
reasoning for this conclusion and a qualitative description of
the positional relationship in three-dimensional space is given

in [26]. According to the reasoning given, the topological
relationship between the query window parallelepiped and
the grid elements parallelepiped can be divided into four
categories as follows:

1) The query window intersects all eight sub-grid ele-
ments, as shown in Fig. 6 (a).

2) The query window intersects four of the eight sub-grid
elements, as shown in Fig. 6 (b).

3) The query window intersects two of the eight sub-grid
elements, as shown in Fig. 6 (c).

4) The query window intersects one of the eight sub-grid
elements, as shown in Fig. 6 (d).

FIGURE 6. Query window spatial relationships. (a) Query window
intersecting all eight sub-grid elements. (b) Query window intersecting
four of the eight sub-grid elements. (c) Query window intersecting two of
the eight sub-grid elements. (d) Query window intersecting one of the
eight sub-grid elements.

Among the 27 total cases for the topological relationship
in space, there is one case in space type 1 (Fig. 6 (a)), six
cases in space type 2 (Fig. 6 (b)), twelve cases in space
type 3 (Fig. 6 (c)), and eight cases in space type 4 (Fig. 6 (d)).
Table 1 shows the quantitative relationship between the coor-
dinates of the start corner Pmin, the end corner Pmax of the
query window, and the side length T of the cube area for all
the 27 spatial topological relations.

B. CODE SEGMENTATION GENERATION
In the MI-HCS algorithm, the Hilbert curve (with size
T × T × T , T = 2m) of order m, whose state vector
is sk and whose starting point code is HStar , is denoted
as H (sk ,T ,HStar), and the query process located on
H (sk ,T ,HStar) with query window W (x, y, z, l,w, h) is
denoted asMIHCS (sk ,T ,HStar, x, y, z, l,w, h).

In this paper, recursive subdivision of query process
MIHCS (sk ,T ,HStar, x, y, z, l,w, h) is performed to gen-
erate a Hilbert code segment. The process is shown in
Algorithm 1:
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TABLE 1. Quantitative relationship of query window space.

In Algorithm 1, step 1 is to determine whether the current
querywindow size is equal to theHilbert curve size. If the size
of the query window is equal to the size of the Hilbert curve,

TABLE 1. (Continued.) Quantitative relationship of query window space.

then the entire Hilbert curve fills the current query window
exactly, and code segments (HStar,HStar+T 3

−1) are added
to HRange. If the size of the query window is not equal to
the size of the Hilbert curve, then the algorithm proceeds
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Algorithm 1MIHCS (sk ,T ,HStar, x, y, z, l,w, h)

1 if (l = w = h = T ) then
2 HRange.push(HStar,HStar + T 3

− 1);
3 else
4 switch sk do
5 case
6 sk (k ∈ (1, 2, · · · , 24)) do
7 sk : MIHCS − sk (T ,HStar, x, y, z, l,w, h) ;
8 end switch;
9 end if;
10 Merge(HRange);

to steps 2–8 and recursively octets the query process. The
recursive method is as follows:

First, the Hilbert curve is divided into octets to obtain eight
sub-curves. According to the number of sub-grid elements
containing the sub-curves, each sub-curve is recorded as
NextHi (i ∈ (0, 1, . . . , 7)). The content combined with II.B
and II.C shows the following:

NextHi=H
(
E[k − 1][i],T/2,HStar+S[k − 1][i]× T 3/8

)
(5)

As shown in Fig. 7, each sub-curve is NextH0 =

H (s3, 2, 0),NextH1 = H (s1, 2, 8),NextH2 = H (s2, 2, 16),
NextH3 = H (s2, 2, 24),NextH4 = H (s2, 2, 32),NextH5 =

H (s2, 2, 40),NextH6 = H (s2, 2, 48), and NextH7 =

H (s2, 2, 56).
Second, the query window W is divided into octets

to obtain eight sub-query windows. Each sub-query win-
dow is denoted as NextWi(i ∈ (0, 1, . . . , 7)) accord-
ing to the number of sub-grid elements containing the
sub-query window. There are 27 different cases of spa-
tial topological relationships between the query window
and the eight sub-grid elements. If the query window
does not intersect the ith sub-grid element, there is no
sub-query window NextHi. The sub-query window for each
spatial relationship is shown in Table 2. Taking Fig. 6 as
an example, the query window W (0, 0, 0, 3, 4, 2) inter-
sects the sub-grid elements (0,3,4,7) in the eight sub-grid
elements, and the corresponding spatial relationship is
numbered 1. The resulting sub-query windows obtained
after subdividing the query window W (0, 0, 0, 3, 4, 2) are
as follows: NextW0 = W (0, 0, 0, 2, 2, 2) , NextW3 =

W (0, 0, 0, 1, 2, 2) ,NextW4 = W (0, 0, 0, 1, 2, 2) , and
NextW7 = W (0, 0, 0, 2, 2, 2).

Finally, the sub-curves and the sub-query windows are
combined in pairs to form a new query process. Taking
Fig. 7 as an example, after subdivision, only sub-curves
NextH0,NextH3,NextH4, and NextH7 exist on the sub-query
window. Therefore, each new query process is as follows:
MIHCS(s3, 2, 0, 0, 0, 0, 2, 2, 2),MIHCS(s10, 2, 24, 0, 0,

0, 1, 2, 2),MIHCS(s3, 2, 32, 0, 0, 0, 1, 2, 2), and MIHCS
(s10, 2, 56, 0, 0, 0, 2, 2, 2). The new query process is

TABLE 2. Sub-query windows for different spatial relationships.

recursively substituted into Algorithm 1 to solve. After
obtaining the several octets mentioned above, the required
Hilbert code segment set HRange can finally be obtained.
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TABLE 2. (Continued.) Sub-query windows for different spatial
relationships.

Unlike the traversal algorithm in [16], the proposed algo-
rithm does not need to calculate the Hilbert code of all
grid elements. When the recursive termination condition is
reached, the corresponding code segment of the curve is

TABLE 2. (Continued.) Sub-query windows for different spatial
relationships.

output, and the number of calculations is reduced, which
improves the efficiency.

C. ALGORITHM RECURSIVE ORDER
The recursive splitting of the query process in the MI-HCS
algorithm is similar to the multidimensional tree search pro-
cess in [23], but because [23] does not specify the search
order when searching for tree nodes, the resulting final set of
Hilbert code segments may not be monotonically increasing,
requiring all code segments to be sorted before the continuous
code segment merging step is performed.

To make the code segment set HRange conform to the
requirement of a monotonically increasing nature, this paper
specifies the recursive order of the new query process in
Steps 3–5 of Algorithm 1. The smaller the starting point
code of the Hilbert curve in the query process, the earlier
the query process is recursively called. It can be known from
II.B and II.C that the starting point code of the sub-curve can
be calculated by (4), which is related to the state vector of
the curve, and filling the sub-grid element earlier results in a
smaller sub-curve starting code.

Taking the first octet split in Fig. 7 as an example, four new
query processes are located in the sub-grid elements (0,3,4,7).
Because the state vector of the 2-level curve in Fig. 7 is s2,
the curve first fills sub-grid element 0, followed sequentially
by sub-grid elements 3, 4, and 7. In other words, sub-curve
NextH0 has the smallest starting code, followed sequen-
tially by the starting code of sub-curve NextH3, NextH4, and
NextH7, which is the largest.

In accordance with the principle that smaller Hilbert
starting codes should begin earlier in the recursive
call of the query processes, the first query process
MIHCS(s3, 2, 0, 0, 0, 0, 2, 2, 2) in sub-grid element 0, fol-
lowed by MIHCS(s10, 2, 24, 0, 0, 0, 1, 2, 2) in sub-grid ele-
ment 3, then MIHCS(s3, 2, 32, 0, 0, 0, 1, 2, 2) in sub-grid
element 4, and finally MIHCS(s10, 2, 56, 0, 0, 0, 2, 2, 2) in
sub-grid element 7.

In summary, different state vectors specify different recur-
sive calling sequences of the query processes. Steps 3–5 in
Algorithm 1 are extended as per Algorithm 2:
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FIGURE 7. The window and the curve are divided to obtain sub-windows
and sub-curves.

In Algorithm 2, Step 3 is to calculate the spatial topol-
ogy of the current query window. The array a[ ] stores the
number of sub-grid elements that intersect with the query
window. Steps 4–8 start to call each sub-query process in
the prescribed order. Step 5 is to obtain the order th sub-grid
element number i of the Hilbert curve filled with the state
vector sk . Step 6 determines whether the sub-grid element i
intersect with the query window; that is, whether i exists in
the array a[ ]. Step 7 is a recursive call of the query process
corresponding to the ith sub-grid elements.
The above description describes the process of generat-

ing the Hilbert code segment set using the algorithm in

Algorithm 2MIHCS − sk (T ,HStar, x, y, z, l,w, h)

1 T1← T/2;
2 T2← T/2× T/2× T/2;
3 a []← GetSpatialRelationship();
4 for (order = 0; order < 8; order ++)
5 i← getsequence (order) ;
6 if (i in a []) then
7 MIHCS(E [k − 1] [i] ,T1,HStar + order × T2,

NextWi.x,NextWi.y,NextW .z,NextW .l,
NextW .w,NextW .h);

8 end if;
9 end for;

this article. Taking Fig. 7 as an example, the steps of recur-
sively generating the Hilbert code segment set are as follows:

First, MIHCS (s1, 4, 0, 0, 0, 0, 3, 4, 2) is substituted into
Algorithm 1, and a value comparison of 3 6= 4 6= 2 6=
4 is made. Following this outcome, the first octet split is
performed, resulting in four new query processes compris-
ing MIHCS(s3, 2, 0, 0, 0, 0, 2, 2, 2),MIHCS(s10, 2, 24, 0, 0,
0, 1, 2, 2),MIHCS(s3, 2, 32, 0, 0, 0, 1, 2, 2), andMIHCS(s10,
2, 56, 0, 0, 0, 2, 2, 2).

Next,MIHCS(s3, 2, 0, 0, 0, 0, 2, 2, 2) is called recursively,
and the value comparison result is 2 = 2 = 2 = 2.
Following this outcome, (0,7) is added to HRange, and
is returned recursively. MIHCS(s10, 2, 24, 0, 0, 0, 1, 2, 2) is
then called recursively and determined as 1 6= 2 = 2 = 2,
resulting in the second octet split, thereby generating four
new query processes. According to the S10 state vectors,
the corresponding order of the four new query processes is
MIHCS(s14, 1, 24, 0, 0, 0, 1, 1, 1),MIHCS(s13, 1, 25, 0, 0, 0,
1, 1, 1),MIHCS(s9, 1, 30, 0, 0, 0, 1, 1, 1), andMIHCS(s2, 1,
31, 0, 0, 0, 1, 1, 1). These four new queries are substituted
into Algorithm 1 again to get (24,24), (25,25), (30,30),
(31,31), and return recursively. Algorithm 1 is continuously
called recursively until there are no unprocessed queries.
The final complete code segment set generation process is

shown in Fig. 8, and each obtained code segment corresponds
to a leaf node in Fig. 8. Algorithm 1 finally merges consec-
utive code segments in all leaf nodes to obtain the final code
segment set HRange.

D. ANALYSIS OF COMPLEXITY
The recursive termination condition of the proposed algo-
rithm is the size of the query window being equal to the
curve size. If the recursive termination condition is not met,
the proposed algorithm divides the current query window
into eight sub-query windows. The implementation method
of recursive splitting of the octree is the same as the recursive
splitting method of the proposed algorithm.
Lemma 1: In the recursive process of the MI-HCS algo-

rithm, if the size of a query window is the same as the size of
the corresponding curve, the query window is equivalent to a
child node in the octree.
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FIGURE 8. Code segment generation process.

FIGURE 9. The query process corresponds to the octree structure.

Fig. 9 shows the octree structure of the query process illus-
trated in Fig. 7. The gray-filled child nodes in Fig. 9 corre-
spond to the leaf nodes in Fig. 8. For example, the No.0 child
node of level 1 in Fig. 9 corresponds to the (0, 7) code segment
in Fig. 8. According to Lemma 1, the query window that
meets the recursive termination condition is equivalent to the
child nodes in the octree. Therefore, for a query window W ,
the time required for the algorithm to generate its correspond-
ing code segment is related to the number of octree child node
in the window. For example, the generation time required for
the query process in Fig. 7 is the sum of the time required for
the algorithm to recursively divide the query window into the
10 gray-filled child nodes in Fig. 9.

For a Hilbert curve of size T×T×T , if the size of the query
window is T×T×T , no octet split is needed, and the proposed
algorithm is only called once. If the size of the query window
is T/2 × T/2 × T/2, one octet split is performed, and the
algorithm is recursively called twice; if the querywindow size
is T/2f × T/2f × T/2f , octet splitting is performed f times
and the algorithm is recursively called f + 1 times. There-
fore, for a recursive termination condition, the size is 2e ×
2e × 2e

(
= T/2(log2 T−e) × T/2(log2 T−e) × T/2(log2 T−e)

)
,

and the proposed algorithm needs to be called log2T − e+ 1
times recursively.
Lemma 2: For the Hilbert curve of size T × T × T , the

MI-HCS algorithm recursively splits into a query window
with a size of 2e× 2e× 2e. A total of log2T − e+ 1 recursive
calls are performed.

Given a query window W (x, y, z, l,w, h), [27] analyzes
the average number of octree children in window W , which
states that if l,w, h are odd numbers, and min(l,w, h) =
2k − 1, median(l,w, h) = 2k+d2 − 1, and max(l,w, h) =
2k+d3−1, the average number b of octree children in window
W conforms to (6) as follows:

b(l,w, h) = b(2k − 1, 2k+d2 − 1, 2k+d3 − 1)

=
4
3

(
22k − 1

) (
2d2 + 2d3 + 2d2+d3

)
− 6

(
2k − 1

) (
1+ 2d2 + 2d3

)
+ 7k (6)

Additionally, the relationship between b(l + 1,w, h) and
b(l,w, h) conforms to (7) as follows:

b(l + 1,w, h)

= b(l,w, h)+ 22k+d2+d3−3λ + 8−
7
3

(
2λ+1 + 2−λ

)
− 2k

(
2d2 + 2d3

)(7
9
× 2−2λ −

7
6
× λ

)
+

2
9

(7)

where λ = blog (min (l + 1,w, h))c. Analysis of (6) and (7)
shows that the highest order term in the calculation formula
of b is 22k+d2+d3 ; that is, its complexity is:

O
(
22k+d2+d3

)
= O

(
2k+d2 × 2k+d3

)
= O (median(l,w, h)×max(l,w, h)) (8)

Lemma 3: Given a query window W (x, y, z, l,w, h),
the complexity of the average number of existing octree child
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nodes b is O (α1 × α2), where α1 = median(l,w, h) and
α2 = max(l,w, h).
Combining Lemmas 1–3, the maximum complexity of the

algorithm can be analyzed. The query window that needs to
recursively call the algorithm of this paper the most times
is one with a size of 1 × 1 × 1, requiring log2T + 1 calls.
Therefore, the longest calculation time required by the pro-
posed algorithm occurs when all the child nodes in the query
window are the smallest child nodes of 1 × 1 × 1, requir-
ing a total calculation time of O

(
α1 × α2 ×

(
log2 T + 1

))
.

Through analysis, the following conclusion is reached:
Conclusion 1: Given a query window W (x, y, z, l,w, h)

and a Hilbert curve of size T × T × T , the complexity
of the proposed algorithm is O

(
α1 × α2 ×

(
log2 T + 1

))
,

where α1 = median(l,w, h) and α2 = max(l,w, h).

IV. EXPERIMENT AND ANALYSIS
This section experimentally verifies the complexity of the
proposed algorithm, and then compares the proposed algo-
rithmwith the algorithms in [16] and [23] to analyze the com-
putational efficiency of the algorithm in generating Hilbert
code segments in the query window. Here we give the
experimental design principles. Two complexity verification
experiments were performed: fixed window size and fixed
curve size. When comparing and analyzing the efficiency of
the different algorithms, we first used query windows with
different sizes and volumes with a fixed curve size. Then,
we used a fixed query window size, and set different curve
sizes to perform a comparative analysis of the algorithms.
The experimental hardware environment used in this study
includes an Intel Core i7-7700K CPU (dual-core 4.2 GHz)
and 64 GB RAM. The software environment was Visual
Studio 2015, Release version, x64, C++.

A. ALGORITHM COMPLEXITY VERIFICATION
First, experiments were performed to verify the complexity
of the MI-HCS algorithm with the size of the curve. The size
of the query window W was set to 1 × 1 × 1 or 5 × 5 × 5,
where the size 1 × 1 × 1 corresponds to the case where the
algorithm needs the most recursion. During the experiment,
the size of the Hilbert curve was set to 4t × 4t × 4t (t ∈
(2, 3, . . . , 14)). The starting points of the query windows
were randomly selected within the scope of the Hilbert curve,
and the proposed algorithm was used to generate the Hilbert
code segments corresponding to the query window. Each size
curve was calculated 100,000 times, and the total generation
time required by the algorithm in this size was recorded. The
results are given in Table 3.

Fig. 10 is a visual representation of the data in Table 3.
The solid line in Fig. 10 is the generation time, and the red
underline is the fitting curve. Based on the analysis of the
data in Table 3 and Fig. 10, it can be seen that when the size
of the query window W is 1 × 1 × 1, the fitting curve in
Figure 10 (a) has a linear growth trend, indicating that the
generation time of the algorithm in this case grows linearly
with log2 T + 1. It is proved that when the query window

TABLE 3. Statistics of generation time with curve size.

TABLE 4. Statistics of corresponding generation time of corresponding
code segments of different sized windows.

size is fixed at 1 × 1 × 1, the maximum complexity of the
proposed algorithm is O

(
log2 T + 1

)
, which is consistent

with Conclusion 1. When the size of the query window is
fixed at 5×5×5, the fitted curve in Fig. 10 (b) does not fully
comply with the linear growth trend, but the overall trend is
upward. The reason for this is that the starting corners of the
query windowwere randomly selected. The octree child node
in the query window is not necessarily always 1×1×1 in size,
so the required calculation time of each child node may differ,
resulting in generation time that does not increase linearly
with log2 T + 1.

Second, experiments were performed to verify the change
in algorithm efficiency with window size. To verify the rela-
tionship between the complexity of the algorithm and the
size of the window, the size of the Hilbert curve was set to
1024 × 1024 × 1024. The maximum value of l,w, h was
set to α2 = max(l,w, h) = 30 + (r − 1) × 30, and the
median value of l,w, h was set to α1 = median(l,w, h) =
30 + (r − 1) × 20, where r ∈ (1, 2, . . . 30). The starting
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FIGURE 10. Comparison of generation time with different curve size.
(a) Time required to generate a code segment corresponding to a
1 × 1 × 1 query window. (b) Time required to generate a code segment
corresponding to a 5 × 5 × 5 query window.

points of the query windows were randomly selected within
the Hilbert curve, and the proposed algorithm was used to
generate Hilbert code segments corresponding to the query
window. Each window size was calculated 1000 times, and
the total generation time required by the algorithm for each
window size was recorded. The generation time required for
some sizes are shown in Table 4.

Fig. 11 is a visual representation of the data in Table 4.
In Fig. 11, the solid line is the generation time, and the red
underline is the fitting curve. Combining Table 4 with the
data analysis in Fig. 11 shows that the fitting curve in Fig. 11
shows a clear linear growth trend, indicating that when the
size of the Hilbert curve is fixed, the generation time of the
proposed algorithm increases linearly with the increase of
α1 × α2. It is proved that the complexity of the proposed
algorithm is O (α1 × α2) when the size of the Hilbert curve
is fixed, which is consistent with Conclusion 1.

FIGURE 11. Generation time as a function of size.

B. ALGORITHM EFFICIENCY COMPARISON
First, query windows with different sizes were set for the
comparison of efficiency with a Hilbert curve of size 1024×
1024×1024. The size of the querywindowwas set to l = w =
h = r, and the range of r was r ∈ (30, 50, · · · , 210). The
starting corners of the querywindowswere randomly selected
within the range of the Hilbert curve, and the Hilbert code
segments corresponding to the query window were generated
using the algorithm of this paper along with those in [16]
and [23]. Each window size was calculated 1000 times and
recorded. The total generation time required by the three algo-
rithms for each window size is shown in Table 5. Fig. 12 is a
comparison of the three algorithms.

TABLE 5. Statistics of query window generation time.

Subsequently, query windows with different volumes were
set for efficiency comparison with a Hilbert curve of size
1024× 1024× 1024. During the experiment, the size of the
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FIGURE 12. Comparison of generation time of query windows of different
sizes. (a) Comparison of the generation time of the three algorithms.
(b) Comparison of the generation time for the proposed algorithm and
that in [23].

query window was set as l ×w× h = V , and the value range
of V was V ∈ (1× 105, 2× 105, · · · , 10× 105). The starting
points of the query windows were randomly selected within
the range of the Hilbert curve, and the proposed algorithm
was used along with those in [16] and [23] to generate Hilbert
code segments corresponding to the query window. Each
volume window was calculated 1,000 times and recorded.
The total generation time required by the three algorithms
for each window volume is shown in Table 6. Fig. 13 is a
comparison of the three algorithms.

It can be seen from Figs. 12 and 13 as well as
Tables 5 and 6 that, as the query window size and volume
increase, the time required for the three algorithms to generate
Hilbert code segments will gradually increase. Comparing
querywindows of the same size or volume, both the algorithm
in [23] and the proposed algorithm take less time to complete
than the algorithm in [16]. This is because the algorithm

FIGURE 13. Comparison of the generation time of different volume query
windows. (a) Comparison of the generation time of the three algorithms.
(b) Comparison of the generation time of the proposed algorithm and
that in [23].

in [16] needs to calculate the Hilbert code by traversing
several curves, which is inefficient. Compared with the time
required for the algorithm in paper [23], the proposed algo-
rithm takes less time to calculate the same size or volume
of query window, and improves the efficiency by 284.1% to
423.9%. This is because the proposed algorithm specifies the
recursive calling order of the algorithm and directly outputs
a set of code segments that conform to the monotonically
increasing nature. However, the output code segment of the
algorithm in [23] is random and unordered, and therefore
requires an additional step for sorting. When the query win-
dow is large, the sorting step increases time consumption,
which reduces the efficiency of the algorithm in [23], making
the advantages of this algorithm more apparent.

Finally, when the size of query windows is 8×8×8, Hilbert
curves of different sizes were set for efficiency comparison.
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TABLE 6. Time statistics of query windows of different volumes.

TABLE 7. Statistics of query window generation time.

During the experiment, the size of the Hilbert curve was set
to 4t × 4t × 4t (t ∈ (2, 3, . . . , 14)). Different query window
starting points were randomly selected within the scope of
the Hilbert curve, and the proposed algorithm was used to
generate the Hilbert code segments corresponding to the
query window. Each size of curve was calculated 1,000 times.
The total generation time required by the three algorithms
under each size of window is shown in Table 7. Fig. 14 is
a comparison of the three algorithms.

From Fig. 14 and Table 7, we can see that the time
required for the three algorithms to generate Hilbert code
segments gradually increases with the size of the Hilbert
curve. Comparing Hilbert curves of the same size, the algo-
rithm in [16] requires significantly more time than the one

FIGURE 14. Comparison of generation time of Hilbert curve of different
sizes. (a) Comparison of the generation time of the three algorithms.
(b) Comparison of the generation time for the proposed algorithm and
that in [23].

described in [23] and the proposed algorithm. This is because
the algorithm in [16] calculates the Hilbert code by traversing
several curves, which is inefficient. By contrast, the pro-
posed algorithm reduces the number of calculations by out-
putting the code segment corresponding to the curve when
the window size is equal to the curve size, eliminating the
need to check all the grid elements in the window. Thus,
the proposed method requires fewer calculations than that of
the traversal method and provides improved efficiency. The
proposed algorithm also specifies the recursive calling order
of the algorithm and directly outputs a set of monotonically
increasing code segments. However, the output code segment
of the algorithm in [23] is random and unordered; therefore,
it requires an additional step for sorting. As a result, compar-
ing the time required for the proposed algorithm against the
algorithm in paper [23] under the same size Hilbert curve,
the proposed algorithm takes less time and improves the
efficiency by 260.5% to 366.6%.
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Through the experimental comparison of the different situ-
ations above, it can be concluded that the proposed algorithm
is better than the other two algorithms in generating a query
window corresponding to a Hilbert code segment.

V. CONCLUSION
This paper proposes an algorithm MI-HCS to quickly trans-
form the query window into a set of corresponding mono-
tonically increasing Hilbert code segments and elaborates on
the algorithm process in detail. Design experiments were per-
formed to verify the algorithm complexity, and the efficiency
was compared against existing algorithms. The experimental
results show that the proposed algorithm is better than the
existing algorithms in terms of efficiency of query window
Hilbert code segment generation and increasing the speed by
260.5% to 423.9%. Therefore, the MI-HCS algorithm can be
better applied to window query based on Hilbert code.

Reviewing the algorithm in this paper, we summarize the
following disadvantages and shortcomings:
• The recursive splitting process in the algorithm in this
paper can be disassembled into several independent
splitting processes. However, at present, this paper only
uses a serial method for calculation, and the calculation
efficiency has a certain impact.

• Based on the state vector, the algorithm in this paper
realizes the conversion from three-dimensional query
range toHilbert code. However, because the state vectors
of Hilbert curves in different dimensions are different,
the algorithm in this paper cannot be directly applied to
the query range transformation of higher dimensions.

• The algorithm in this paper can realize the conversion
from query range to fixed-resolution Hilbert code, but it
cannot be applied to the conversion of multi-resolution
Hilbert codes.

In view of the shortcomings in the above summary, further
work on this subject will include the following:
• Investigate how to combine parallel computing technol-
ogy to allocate each independent segmentation process
to each parallel computing thread and improve comput-
ing efficiency.

• Further study the filling properties of Hilbert curves in
higher dimensions, calculate the state vectors of Hilbert
curves in each dimension, and summarize the gen-
eral algorithms applicable to Hilbert curves in various
dimensions.

• Improve the termination condition of recursive splitting
of the algorithm in this paper, and realize the adaptive
conversion of query range to multi-resolution Hilbert
curves.
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