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ABSTRACT The smartphone-based Wi-Fi fine time measurement (FTM) technique has provided a new
approach for Wi-Fi-based indoor location on mobile phones since the 2018 release of the Google Android
Pie system, which supports the IEEE 802.11-2016 protocol and can directly measure the distance between
the initiator and the responder. This paper studies in detail the properties of mobile phone Wi-Fi ranging
and positioning performance. Considering non-line-of-sight (NLOS) error identification, a real-time ranging
error compensation model based on the least-squares (LS) method and an adaptive Wi-Fi FTM positioning
algorithm (AWFP) utilizing the weighted least-squares (WLS) method are devised. To improve accuracy,
a new tightly coupled fusion positioning algorithm integratingWi-Fi FTM and built-in mobile phone sensors
based on the extended Kalman filter (EKF) is constructed. The experimental results show that the ranging
precision and Wi-Fi positioning accuracy are improved. Based on the high-precision Wi-Fi ranging and
positioning results, the final location accuracy of the proposed fusion method is 0.98 m, and the root-mean-
square error (RMSE) is 1.10 m, which are better than those of the PDR, Wi-Fi FTM and loosely coupled
PDR/Wi-Fi FTM integration based on the EKF.

INDEX TERMS Indoor positioning, Wi-Fi FTM, pedestrian dead reckoning, tightly coupled, ekf.

I. INTRODUCTION
Indoor positioning is attracting increasing attention because
of the rapid development of society and the increased demand
for location-based services (LBSs) in people’s lives [1], [2].
The Global Navigation Satellite System [3] (GNSS) can-
not work well in indoor environments because it suffers
from serious multipath propagation problems caused by com-
plex indoor topologies, electronic facilities, and many other
factors. Therefore, many types of wireless signals such as
Wi-Fi [4]–[6], Bluetooth [7], RFID [8], [9], Zigbee [10],
UWB [11], and magnetic fields [12] have been studied to
solve indoor positioning problems and model the mobil-
ity of urban crowds in modern smart-cities [13]. Differ-
ent approaches have different advantages and shortcomings.
Although geomagnetic positioning can reach high position-
ing precision with certain algorithms [14], it is difficult for
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researchers to use it effectively due to factors like electronic
facilities and magnetic field changes. There are currently
no technologies that can balance positioning accuracy and
costs [2]. Micro-Electro-Mechanical Systems (MEMSs) pro-
vide multiple and powerful sensors for indoor positioning.
Pedestrian dead reckoning (PDR) [15]–[17] is a kind of
technology that can estimate positions by using a gyroscope,
magnetometer and accelerometer. This method can temporar-
ily output relative positions, but the system error caused by
azimuth estimation, step detection and other factors accumu-
lates over time [17], which results in large errors. Therefore,
integrating PDR with other techniques is usually applied to
restrict the error accumulation.

Among these numerous indoor positioning technologies,
theWi-Fi positioning technique is a widely studiedmethod by
researchers due to its convenient application inmost buildings
and the WLAN connectivity of mobile phones. Tradition-
ally, Wi-Fi positioning has been divided into different strate-
gies based on different positioning theories, such as using
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the received signal strength indicator (RSSI) [18], time of
arrival (TOA) [19], time of difference arrival (TDOA) [20]
and channel state information (CSI) [21]. RSSI-based Wi-Fi
positioning needs a high-precision fingerprint database to
achieve high positioning accuracy, and it is easier to imple-
ment on smartphones. However, the heavy efforts required
to update and construct the database restrict its applica-
tion in large-scale buildings. Time-based methods includ-
ing the TOA and TDOA need time synchronization to get
high-precision time measurements [22], which is critical for
high ranging and positioning accuracy. However, it is difficult
to realize strict time synchronization. A CSI-based technique
can reach meter-level precision, but it requires special hard-
ware support and is also difficult to implement. Apart from
the above approaches, another time-based Wi-Fi position-
ing method using the improved time of flight [23] (TOF)
protocol is receiving increasing attention due to its high
positioning accuracy. This TOF protocol can provide precise
time measurements and is also the basis of the fine time
measurement (FTM) technique, which has been introduced
and standardized by the IEEE 802.11 working group [24].
It can compensate for the lack of time synchronization by
measuring the round-trip-time (RTT). The distance between
the initiator and responder can be calculated by multiplying
the RTT and the speed of light, which greatly reduces the
difficulty of realizing time-based Wi-Fi positioning.

The integration of different technologies, such as PDR inte-
grating geomagnetic positioning [25], and combining Wi-Fi
with geomagnetic and PDR [26] is becoming very popular.
Filtering algorithms like the Kalman filter (KF) [27]–[29],
the extended Kalman filter (EKF) [11], [26], and the particle
filter (PF) [25], [30] have been employed. Generally, com-
bining the results of different methods by utilizing filtering
algorithms, as in [28] and [29], is defined as loosely coupled
fusion. On the other hand, directly using the observation
measurements for integration, as in [8] and [11], is defined
as tightly coupled fusion. Considering nonlinear motions and
scenarios, the EKF and tightly coupled fusion methods are
more suitable for actual applications. Although the PF also
has good performance in solving nonlinear problems, the high
computational load and particle degradation problem restrict
its application on mobile terminals [14]. In our research,
the EKF algorithm was selected to combine PDR with the
improved Wi-Fi FTM positioning method. A tightly cou-
pled model was constructed based on the EKF. In the Wi-Fi
positioning module, we devised different strategies to solve
problems including the ranging error compensation and the
limitation of trilateration algorithm. Our contributions are as
follows:

1) We analysed the properties of Wi-Fi FTM ranging by
using mobile phones in different circumstances and proposed
the real-time ranging model that considers the error compen-
sation and the identified NLOS error. Less than one-meter
ranging accuracy could be obtained;

2) We devised an adaptive Wi-Fi positioning algo-
rithm based on the weighted least-squares (WLS) method.

This algorithm could dynamically adjust the ranging data
to meet the positioning conditions and the final location
accuracy was better than that of the traditionalWi-Fi trilateral
positioning method;

3) We proposed the Wi-Fi FTM and PDR tightly cou-
pled fusion positioning model based on the EKF algorithm
and validated positioning performance in a typical office
environment. The experimental results demonstrate that the
proposed method has better performance regarding its posi-
tioning accuracy and stability.

The remainder of this paper is organized as follows:
Section II is about the related works of Wi-Fi FTM;
Section III describes the PDR method, Wi-Fi FTM and the
tightly coupled fusion positioning algorithm; the experimen-
tal setup and results are stated in Section IV; Section V draws
the conclusion and future works.

II. RELATED WORKS
Time-based Wi-Fi positioning techniques using TDOA pro-
tocol [20], [22] and TOA protocol [19], [31] have been
studied by many researchers and these related works show
that this technology is very attractive, even if it is difficult
to implement on mobile phones and requires special hard-
ware support. In 2013, Banin et al. [23] studied in detail
how the Wi-Fi TOF protocol works and conducted ranging
and positioning experiments in an office environment. Then,
in 2016, the new release of the IEEE 802.11 wireless local
area network (WLAN) standard [24] allowed for measure-
ment of the distance of two Wi-Fi stations by utilizing the
Wi-Fi fine time measurement (FTM) technology, which is
based on the TOF protocol. Therefore, in order to develop
the Wi-Fi FTM protocol in a highly non-linear indoor envi-
ronment, Banin et al. [32] compared the performances of the
Kalman filter (KF) and Bayesian filter (BF) and confirmed
that the BF performed better than the KF. They combined
Wi-Fi FTM positioning with map information by using the
BF and achieved accurate experimental results. Moreover,
the ranging estimation model based on the artificial neural
network (ANN) was also presented in [33], the ANN was
trained in a supervised-learning manner and implemented by
using the Google TensorFlow framework API. Experiments
showed that Wi-Fi FTM ranging estimation using the ANN
model could outperform the maximum likelihood estimation
(MLE) [34]. Ibrahim et al. [35] introduced an open platform
for experimenting with FTM and analysed the factors and
parameters that can influence the ranging performance. They
noted that meter-level ranging accuracy can be reached after
correcting ranging errors in low-multipath environments. All
of these studies provide a solid foundation for Wi-Fi FTM
ranging positioning and make it highly researchable.

In 2018, Google Developer Days (GDD) introduced the
new Android Pie system [36], which enables mobile phones
to measure the round-trip-time (RTT) with respect to other
Wi-Fi access points by using the Wi-Fi FTM protocol. This
is a revolutionary update because developers can measure
the distances between themselves and Wi-Fi stations by
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FIGURE 1. The framework of the PDR method in this work.

multiplying the RTT and the speed of light, which means that
indoor positioning can be realized by using Wi-Fi FTM on
smartphones. Therefore, related scientific researches begin to
increase. Yue et al. [37] presented a real-time Wi-Fi ranging
model that can effectively eliminate the ranging errors caused
by clock deviations, non-line-of-sight (NLOS) and multipath
propagation. The unscented Kalman filter (UKF) was finally
utilized to fuse the robust dead reckoning and Wi-Fi FTM.
Their experimental results showed that the mean positioning
errors were within 2 m. Xu et al. [38] provided two different
strategies to update the particle set in the enhanced particle
filter and employed it to combine the PDR and Wi-Fi FTM.
The experimental results indicated that the mean positioning
accuracy was approximately 1 m, and the new position was
given within 0.5 second. In addition, the problem regarding
how to simultaneously track thousands of Wi-Fi users was
studied in [39]. The collaborative time of arrival (CTOA) pro-
tocol was designed, which relies on the periodic broadcasts
transmitted by the broadcasting stations (bSTA). A position-
ing accuracy of roughly 2 m in 95% of the cases was reached
in congested and multipath-dense environments.

Overall, the related research on Wi-Fi FTM ranging is
still in its infancy. Compared with other indoor positioning
techniques, Wi-Fi FTM ranging positioning has a promising
future and high application value due to its convenience and
high positioning accuracy.

III. THEORIES AND METHODS
A. PEDESTRIAN DEAD RECKONING
Pedestrian dead reckoning (PDR) is a relative positioning
method that mainly includes three parts: heading angles esti-
mation, step detection and step length estimation. The general
process of PDR is illustrated in Fig.1. If the initial position is
known, the updated position can be calculated by using (1):Nk+1Ek+1

lk+1

 =
 1 0 cosψk
0 1 sinψk
0 0 1

NkEk
lk

+
 σ1σ2
1l

 (1)

whereNk and Ek represent the coordinate values of the carrier
at the north and east direction at time k , respectively; lk and
ψk represent the step length and heading angle at time k ,
respectively; σ1 and σ2 are the system errors; and 1l is the

change of the step length. If X(k) represents the position at
time k , (1) can be expressed as:

Xk+1 = 8 · Xk + Gk (2)

1) HEADING ANGLES ESTIMATION
Generally, the heading angles can be measured by using a
gyroscope [40], a magnetometer, an accelerometer [41], [42],
and the fusion of different sensors [43]. Different algorithms
have different shortcomings, such as the integration problems
when using a gyroscope and the sensitivity of magnetometer
to the environment. To make full use of different types of
sensor data, the Mahony complementary filter (MCF) [44]
is adopted in our research to estimate the heading angles.
This algorithmmainly utilizes the gyroscope data to calculate
the heading angles, but the accelerometer and magnetometer
will correct the gyroscope in time so that the estimation
errors will not accumulate. The whole producer contains
two parts, which are the error compensation calculation and
the gyroscope data correction. First, the gyroscope data is
expressed as the quaternion vector to represent the current
attitude prediction. The quaternion vector is represented as:

Q =
[
q0 q1 q2 q3

]T (3)

Assuming the gyroscope error compensation is e, it can be
defined as follows:

e = ea + em (4)

where ea and em are the error correction items calculated by
using the accelerometer and magnetometer data, respectively,
and their equations are as follows:{

ea = (Cb
n · ga)× a

em = (Cb
n · bm)×m

(5)

where ga is the gravity vector in the geographic coordinate
system, where ga =

[
0 0 g

]T , and g = 9.8m/s2; bm is
the geomagnetic vector when the x-axis of device points to
the north, where bm =

[
bmx 0 bmz

]T ; a and m are the
normalized measured accelerometer and magnetometer data;
Cb
n is the rotation matrix from the geographic coordinate

system to the carrier coordinate system; and ‘‘×’’ represents
the vector cross product, respectively. After obtaining these
two error corrections, the corrected gyroscope data is defined
as:

ω = ωg + KPe+ KI

∫
e (6)

where ωg =
[
ωgx ωgy ωgz

]T and ω =
[
ωx ωy ωz

]T are the
normalized gyroscope raw data and the corrected gyroscope
data, respectively; KP and KI are the error control items,
which are 2.0 and 0.001 in our research work, respectively.
Then, the corrected gyroscope data should be substituted
into the quaternion differential equation and the first-order
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FIGURE 2. Execution process of the FSM algorithm.

Runge-Kutta method [45] is used to get the quaternion update
equation as follows:

q0 (t+T )=q0 (t)−
T
2

[
ωxq1(t)+ωyq2(t)+ωzq3(t)

]
q1 (t + T )=q1 (t)+

T
2

[
ωxq0(t)+ωzq2(t)−ωyq3(t)

]
q2 (t+T )=q2 (t)+

T
2

[
ωyq0(t)−ωzq1(t)+ ωxq3(t)

]
q3 (t+T )=q3 (t)+

T
2

[
ωzq0(t)+ωyq1(t)−ωzq2(t)

]
(7)

where qi(t) and qi(t + T ) are the quaternion values at time
t and (t + T ), respectively, and i = 1, 2, 3, · · · ; T is the
sampling time interval. The updated quaternion values should
be normalized and substituted into (8) to obtain the azimuth:

ψ = tg−1
2(q1q2 + q0q3)

1− 2(q22 + q
2
3)
, ψ ∈ (0, 2π ) (8)

Moreover, it should be pointed out that the low-pass fil-
ter [46] and the high-pass filter [47] are applied to process the
observation noise in the acceleration and gyroscope raw data,
respectively. Due to the high sampling rate of mobile phone
sensors, several heading angles will be output. Therefore,
a mean filter algorithm [48] is used to filter out the outliers,
and the mean heading angle in one second is the final heading
estimation result. In our experiments, the MCF algorithm can
provide a mean estimation accuracy of the azimuth that is
better than 10◦.

2) STEP DETECTION AND STEP-LENGTH ESTIMATION
Many step detection algorithms have been proposed by
researchers, such as the peak detection method [49] and the
zero velocity update method [50]. As shown in Fig.2, accel-
eration values regularly change when a human is walking.
The peak detection method can utilize the acceleration peaks
and valleys to detect steps. It is easier to implement than
other methods. However, the measurement errors and false

TABLE 1. Variable names and values.

FIGURE 3. Acceleration of the walking process for 38 steps.

peaks affect the recognition accuracy. Therefore, we employ
the finite-state machine (FSM) in the step detection process
because it is also easy to implement and more resistant to
interference from errors.

Fig.2 shows the whole producer of the FSM algorithm.
It divides the walking process into five states S1 ∼ S5. S1
is the static state and the acceleration value is approximately
9.8 m/s2; S2 is the taking steps state, and the acceleration
gradually increases; S3 is the finding peaks state, and S4 is
the peak threshold judgement; S5 represents the falling state
and the acceleration decreases. If these five states satisfy
the threshold conditions, one step is recognized. During the
execution process, FSM also introduces the noise shielding
mechanism, which can effectively eliminate the influence
of measurement noise. Two state values Pup and Pdown are
defined and their values are updated by using the following:{

Pup = Pup + 1, ai − ai−1 > acc_diff
Pdown = Pdown + 1, ai − ai−1 < acc_diff

(9)

where ai and ai−1 are the acceleration values at time i and
i−1, respectively. If large measurement noise exists, Pup and
Pdown increase by one. The walking state will return to S1 if
Pdown is larger than the max interference value D_thr . In the
meantime,Pup andPdown are reset to zero. The variable names
and values, and the detection results for 38 steps are shown
in Table 1 and Fig.3, respectively.

49674 VOLUME 8, 2020



M. Sun et al.: Indoor Positioning Tightly Coupled Wi-Fi FTM Ranging and PDR Based on the Extended Kalman Filter for Smartphones

FIGURE 4. The producer of the Wi-Fi FTM.

Studies have shown that the step length of people walking
is related to the acceleration. Apart from the acceleration,
the step length also differs due to the heights and strides of
different people. The existing step length estimation models
include linear models [38], [51], constant models [52] and
nonlinearmodels [17], [53], but there is currently no universal
step length estimation model. Different algorithms have simi-
lar performances. In our research, theWeinberg model [54] is
employed to calculate the step length and it can be calculated
as follows:

SL = K · 4
√
amax − amin (10)

where K is the scale factor of the step length, amax and
amin are the maximum and minimum acceleration in one step
period, respectively.

B. WIFI FTM RANGING POSITIONING
USING SMARTPHONES
1) THEORETICAL RANGING MODEL BASED ON THE WIFI
FINE TIME MEASUREMENT
Wi-Fi FTM protocol enables smartphones (initiator stations,
ISTA) to simultaneously measure the distances from different
Wi-Fi APs (responder stations, RSTA) if these APs support
the IEEE 802.11-2016 protocol. As shown in Fig.4, the whole
FTM producer is as follows. First, the ISTA sends an FTM
request to the RSTA and wait for its ACK message. Second,
the RSTA receives the FTM request and sends the ACK
message back to the ISTA. Then, several FTM feedbacks
are sent to the ISTA from the RSTA and the ToD (time-of-
departure) t1(1) of the FTMpackage is recorded by the RSTA.
The ToA (time-of-arrival) t2(1) of the FTM package will also
be measured once the ISTA receives it. A similar process of
the ACK package exchange is performed and the ToD t3(1)
and ToA t4(1) are recorded. Then, one FTM exchange has
been completed and the mean round-trip time (RTT) can be

FIGURE 5. RSSI and ranging data containing NLOS error.

estimated if there are n FTM-ACK exchanges by using (11):

RTT =
1
n
·

n∑
k=1

([t4(k)− t1(k)]− [t3(k)− t2(k)]) (11)

After obtaining the mean round-trip-time, the distance
between the ISTA and RSTA can be obtained by multiplying
the RTT and the speed of light C . The theoretical ranging
model can be defined as follows:

DRTT =
C
2n
·

n∑
k=1

([t4(k)− t1(k)]− [t3(k)− t2(k)]) (12)

However, there are many factors that can affect the Wi-Fi
ranging process, such as the time delay of hardware, non-
light-of-sight (NLOS) error and multipath propagation [37].
Taking all these errors items into account, the traditional
ranging model is expressed as follows:

Dist =
C
2n
·

n∑
k=1

([t4(k)− t1(k)]− [t3(k)− t2(k)])

−Ddelay − DNLOS − Dm + ε (13)

where Ddelay,Dm and DNLOS are the ranging errors caused
by the time delay of hardware, multipath propagation and
the NLOS, respectively; ε is the random error. Even though
different factors cause different ranging errors, all these fac-
tors contribute to the total ranging errors. However, DNLOS
is special, and it always appears when the responders or
smartphones are blocked by human bodies, buildings and
other factors. This kind of error does not exist all the time and
it is difficult to eliminate. Conversely, Ddelay and Dm, which
are caused by the hardware and the environmental factors
respectively, always exist in the ranging data. Therefore, it
is necessary for us to identify the appearance of NLOS error
and compensate for other ranging errors.

2) NLOS ERROR IDENTIFICATION AND REAL-TIME
RANGING ERROR COMPENSATION BASED ON THE
LEAST SQUARES METHOD
In addition to the measured distance, the received signal
strength indicator (RSSI) of different RSTAs can also be
measured in the ranging process. As shown in Fig.5, both of
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FIGURE 6. Measured distances VS expected distances in different circumstances. (a) Outdoor, (b) Corridor, and (c) Indoor room.

them will generate large fluctuations if the device is blocked,
which means that the fluctuations of the RSSI and distance
data can reflect the appearance of NLOS errors.

Therefore, the standard deviations of the RSSI and ranging
data in one second are utilized to detect the NLOS errors and
the identification condition can be defined as follows:

S = Sr ∪ Sd (14)

where S is the identification result and the NLOS error is
detected when its value is 1,∪ is the union of Sd and Sr , which
are the detection results from using the standard deviations
of the measured ranging data and the RSSI data from each
responder in one second, respectively. Sd and Sr are set to 1 if
they meet the threshold conditions, which can be obtained
by training a large amount of data. In our research work,
the ranging data of one responder is abandoned if it contains
NLOS error. Therefore, it is not included in the positioning
calculations. If there is no NLOS error detected, the other
ranging errors should be compensated by using the following
compensation model.

Fig.6 shows the differences of the measured ranging data
and the expected ranges in different circumstances. It is
clear that the differences between them increase as the
device becomes further away from the responder, which
means that the ranging error varies nonlinearly with the dis-
tance. This is consistent with the experimental result in [32].
Thus, the discrete points fitting method based on the least-
squares (LS) method is adopted to fit the ranging errors and

the distance data. Once the fitting coefficients are obtained,
the error compensation and the accurate ranging data can be
calculated.We assume that the ranging error and the expected
range satisfy the following relationship:

ei = a0 + a1di + a2d2i + . . .+ amd
m
i (15)

where ai is the coefficient, ei is the ranging error and di is the
actual distance. If there are n ranging errors data, the equation
can be expressed as follows:

e1 = a0 + a1d1 + a2d21 + . . .+ amd
m
1

e2 = a0 + a1d2 + a2d22 + . . .+ amd
m
2

...

en = a0 + a1dm + a2d2m + . . .+ amd
m
m

(16)

Equation (16) can also be expressed in the following
formula:

e1
e2
...

en

 =

1 d1 · · · dm1
1 d2 · · · dm2
...

... · · ·
...

1 dm · · · dmm

 ·

a0
a1
...

am

 (17)

If (17) meets the condition: n > (m + 1), the coefficients
can be calculated by using the LS method:

A = (DTD)−1DTE (18)

where A,D and E are the fitting coefficients matrix, the error
matrix and the distance matrix in equation (17), respectively.
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FIGURE 7. Disjoint circles and radius adjustment.

After obtaining the coefficients, the error compensation item
can be computed. The real-time ranging model considering
the NLOS error identification and error compensation is
defined as follows:

Dist=DRTT−(a0+a1DRTT+. . .+ amDmRTT )+ ε, S = 1

(19)

3) ADAPTIVE WIFI FTM POSITIONING ALGORITHM BASED
ON THE WEIGHTED LEAST-SQUAREs METHOD
After getting the compensated distances, the positions can be
calculated by using the trilateral positioning algorithm [55]
if there are three or more responders detected. Due to the
measurement errors, these circles with the radiuses of the
compensated ranging data will not intersect at one point.
Furthermore, as shown in Fig.7, these circles do not intersect
at all. In this condition, the trilateral positioning algorithm
would not work well. Therefore, an adaptive Wi-Fi FTM
positioning algorithm (AWFP) based on the weighted least
squares-method (WLS) is proposed. This algorithm mainly
contains intersection detection and radius adjustment. The
intersection detection judges whether these circles intersect.
If ins = 1 represents the intersection of two circles, the basic
judging condition can be defined as follows:

ins = 1, (r1 − r2) < cd < (r1 + r2) (20)

where r1 and r2 are the radiuses, which are also the com-
pensated ranging data; and cd is the center distance, which
is the distance of two APs. If these circles do not intersect,
their radiuses should be adjusted until they intersect with one
another. The radius adjustment rule is defined as:

ri = ri +
j∑

j=1

1
ri

(21)

where j is the number of times that the radius is adjusted.
The radius adjustment process is shown in Fig.7. Every
time that the radius is adjusted, the algorithm will judge
whether the circles intersect. Once all the circles interest,

the WLS method is adopted to calculate the positions. Gen-
erally, the measured distance is smaller if the tester is closer
to one responder. Therefore, we should give greater weight
to the ranging data of the closest responder because it is
more reliable. The weight of each circle can be calculated by
using (22):

ωi = r−qi

/
n∑
i=1

r−qi (22)

where ri is the adjusted ranging data, i = 1, 2, · · · , n; and q
is a positive integer with a value of 1. Then, the real-time 2D
position is calculated by using (23):

U = (BTPB)−1BTPL (23)

where U is the Wi-Fi position estimation,

U = (x, y)B =


2x1RTT − 2x2RTT 2y1RTT − 2y2RTT
2x1RTT − 2x3RTT 2y1RTT − 2y3RTT

...

2x1RTT − 2xnRTT 2y1RTT − 2ynRTT

 ,

P =


|ω2 − ω1| 0 · · · 0

0 |ω3 − ω1| · · · 0
...

...
. . .

...

0 0 · · · |ωn − ω1|

 ,

L =


r22 − r

2
1 − x

22
RTT − y

22
RTT + x

12
RTT + y

12
RTT

r23 − r
2
1 − x

32
RTT − y

32
RTT + x

12
RTT + y

12
RTT

...

r2n − r
2
1 − x

n2
RTT − y

n2
RTT + x

12
RTT + y

12
RTT

 ,
n is the number of APs, and xnRTT and ynRTT are the coordinates
values of n− th responder. The producer of AWFP is shown
in algorithm 1.

C. TIGHTLY COUPLED FUSION POSITIONING MODULE
1) FUSION SYSTEM VARIABLE DEFINITIONS
Since the EKF and tightly coupled methods are suitable for
the nonlinear applications, inspired by the research in [8]
and [11], we constructed a new PDR/Wi-Fi FTM tightly cou-
pled model. Because the distances between system’s current
position and responders could be calculated and the ranging
data from responders can also be obtained, we utilize these
distances to construct the systematic observation. First, the
PDR position is utilized as the system state. Considering the
Wi-Fi positions, the system equation is defined as follows:

X(k) = F · X(k − 1)+� · U(k − 1)+W (k − 1) (24)

where X(k) is the PDR position vector at time k and consists
of 2-dimensional position (xk , yk ) and the step length lk ;
X(k − 1) is the PDR position vector at time k − 1; U(k − 1)
is Wi-Fi position vector at time k − 1, where U(k − 1) =
[xwifik−1, y

wifi
k−1, 0]

T ; F is the state transition matrix; � is the
control matrix; W is the system noise matrix, respectively.
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Algorithm 1 Adaptive Wi-Fi FTM Positioning
Algorithm
Input: compensated ranging data R, APs’ coordinates CD
Initialization: intersection result ins← [ ], isRun← true,

center distance cd ← 0, current position result ← [ ]
while (isRun) do

a. Intersection detection and radius adjustment
for each ranging data R(i), i ∈ 1, 2, . . . , length(R)

ifif i < length (R) then then
calculate the cd of the i− th and (i+ 1)− th APs

ifcd< [R(i)+R(i+1)] and cd>abs[R(i)−R(i+1)]
then

set detection result as 1, ins[i]← 1
else do

radius adjustment R(i)← R(i)+ 1
/
R(i)

end
elseif i equals to the length (R) then

calculate the cd of the i− th and the first APs
if cd< [R(i)+R(1)] and cd>abs[R(i)−R(1)] then

set detection result as 1, ins[i]← 1
else do

radius adjustment R(i)← R(i)+ 1
/
R(i)

end
end

end
end
b. position calculation using the WLS method
if length (ins) equals the length (R) then

calculate the matrixes B,P, and L
current position result ← (BTPB)−1BTPL
isRun← false

end
end
Output: current position result

FIGURE 8. Framework of the proposed fusion positioning.

F and � could be written as follows:

F =

 δ2 0 −δ2sin(ψk )
0 δ2 δ2cos(ψk )
0 0 1

 (25)

� =

 σ 2 0 0
0 σ 2 0
0 0 σ 2

 (26)

where δ2 and σ 2 are the scale factors, and both of them are
0.5 in our research, ψk is the heading angle at time k .
In terms of the system observation, assuming that the

planar distance between X(k) and the responder at time k

is d systemi,k , it can be calculated as follows:

d systemi,k =

√
(xk − xRTTi )2 + (yk − yRTTi )2 (27)

where xRTTi and yRTTi are the coordinate values of the
i− th Wi-Fi FTM responder. The planar distance between
the mobile phone and the responder can be defined as
follows:

dRTTi,k =

√
d2i,k − (h0 − zRTTi )2 = d0i,k + ξ (28)

where di,k and d0i,k are the measured ranging data and the
theoretical planar distance between the mobile phone and
the responder, respectively; ξ is the random error; h0 and
zRTTi are the heights of the carrier and the i − th responder,
respectively. After defining these two distances, the system
observation Zi(k) can be calculated by using the difference of
d systemi,k and dRTTi,k , it is expressed as follows:

Zi(k) = 1di = d systemi,k − dRTTi,k (29)

If there are n responders detected, the system observation
matrix Z(k) is expressed as follows:

Z(k) =
[
Z1(k) Z2(k) · · · Zn(k)

]T (30)

2) THEORETICAL VERIFICATION
In the previous section, we defined the system state and
observation. However, the reason why we could build a con-
nection between them should be clear. The following gives
the verification process. First, (27) is nonlinear and it should
be linearized. On the 2-dimensional plane, if there is a point
S(k) = (x ′k , y

′
k ) that is near the X(k), we can expand (27) at

S(k) by using the first-order Taylor expansion method and the
linearized equation is follows:

Zi(k) = d0i,k +
∂d systemi,k

∂S(k)

∣∣∣∣∣
X=S(k)

dX + εdX (31)

where d0i,k is the theoretical planar distance. Combining (28)
and (29), the system observation Zi(k) can be defined as
follows:

Zi(k) = d0i,k+
∂d systemi,k

∂S(k)

∣∣∣∣∣
X=S(k)

dX + εdX − d0i,k − ξ + vi(k)

=
∂d systemi,k

∂S(k)

∣∣∣∣∣
X=S(k)

dX + εdX − ξ + vi(k) (32)

where ζ and vi(k) are the random errors.
∂dsystemi,k
∂S(k) is the direc-

tion cosine, which is defined as follows:

∂d systemi,k

∂S(k)
=

[
−(xRTTi −x ′k )

dSi,k

−(yRTTi −y′k )
dSi,k

]
(33)

where dSi,k is the distance between the responder and S(k).
Since dX = 1X = [xk − x ′k , yk − y′k ]

T , by taking the
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third element of X(k) into account, Zi(k) can be expressed
as follows:

Zi(k)=

[
−(xRTTi − x ′k )

dSi,k

−(yRTTi − y′k )

dSi,k
0

] xk + (−x ′k )
yk + (−y′k )
lk + (−0)


+V i(k) (34)

The matrix form of (34) is as follows:

Zi(k) = H i · X(k)+M i · S(k)+ V i(k) (35)

where V i(k) is the measurement noise, S(k) is the posi-
tion vector, where S(k) = [x ′k , y

′
k , 0]

T , and M i = −H i,
respectively. If there are n responders detected, the system
observation equation can be written as follows:

Z(k) =


Z1(k)
Z2(k)
...

Zn(k)

 =

H1 · X(k)+M1 · S(k)+ V1(k)
H2 · X(k)+M2 · S(k)+ V2(k)

...

Hn · X(k)+Mn · S(k)+ Vn(k)


(36)

After this step, the relationship between the system state
and observation measurement has been established. The
matrix representation of (36) is as follows:

Z(k) = H · X(k)+M · S(k)+ V (k) (37)

where H is the measurement matrix, V (k) is the measure-
ment noisematrix, andM = −H . According to (33) and (34),
the matrix H can be expressed as follows:

H =

H1
...

Hn

 =


xRTT1 − x ′k
dS1,k

yRTT1 − y′k
dS1,k

0

...
...

...

xRTTn − x ′k
dSn,k

xRTTn − y′k
dSn,k

0

 (38)

where dSi,k is the distance between the S(k) and the coordinate
values of i − th responder, and n is the number of detected
responders that have no NLOS errors. It should be noted that
S(k) is near X(k). Therefore, S(k) can be calculated by using
X(k) to subtract small values and setting its third element to
zero. To summarize, the tightly coupled positioning system
model is defined as follows:{

X(k) = F · X(k − 1)+� · U(k − 1)+W (k − 1)
Z(k) = H · X(k)+M · S(k)+ V (k)

(39)

According to (39), the PDR/Wi-Fi FTM tightly coupled
fusion positioning based on the EKF can be divided into six
steps:

(1) System state prediction, where k = 1, 2, 3, . . .:

X(k + 1)− = F · X(k)+� · U(k)+W (k) (40)

(2) System variance matrix prediction:

P(k + 1)− = F · P(k) · FT + Qk (41)

where Qk is the variance of the system noiseW (k).

FIGURE 9. Experimental area.

(3) System observation estimation:

Z(k + 1)=H · X(k + 1)−+M · S(k + 1)+ V (k + 1) (42)

(4) Calculate the kalman gain:

K(k + 1) = P(k + 1) ·HT
· [H · P(k + 1)− ·HT

+ T k ]−1

(43)

where T k is the variance of the measurement noise V (k).
(5) System state update:

X(k+1)=X(k + 1)−+K(k+1) ·
[
Z(k+1)−H · X(k+1)−

]
(44)

(6) Variance matrix update:

P(k + 1) = (I − K(k + 1) ·H) · P(k + 1)− (45)

When the fusion positioning system runs, these six steps
will be cyclically executed. Every time the state updates, the
PDR position will be corrected in time by the fusion position.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
As shown in Fig.9, the test area is a typical office room
that contains electronic facilities and ferrous materials. Four
responders with the hardware part of Intel Dual Band
Wireless-AC8260 are placed at a height of 1.5 m. The sam-
pling rates of the Wi-Fi ranging and built-in sensors are 5HZ
and 25HZ, respectively. A Wi-Fi fingerprint database was
constructed by setting the reference points per 1 meter, which
is used to test and compare Wi-Fi fingerprint-based position-
ing. The red reference route was selected for fusion posi-
tioning. Four testers utilized a Google Pixel 3 mobile phone
to collect data, and all the data were using the MATLAB
2016a software. It should be noted that there are high-power
radars near the test rooms and they could sometimes affect
the stability of magnetic field, but this phenomenon does not
frequently occur.

B. ANALYSIS OF THE COMPENSATED RANGE DATA
Based on the range data collected in different environments
described in part B of Section III, we set the highest order
of (15) as 2 to fit these ranging errors data. As shown
in Fig.10, the fitting coefficients are a0 = −0.058, a1 =
−0.1334 and a2 = −0.0012. Then, we apply these coeffi-
cients to the ranging error compensation model and collect
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FIGURE 10. Fitting results of the ranging errors.

TABLE 2. Ranging errors comparison/(m).

FIGURE 11. Cumulative distribution of the ranging errors.

other distance data to compare with the expected ranges.
Table 2 shows that the mean ranging error and 80% errors
of the compensated data are 0.41 m and 0.67 m respec-
tively, which are better than the uncompensated ranging data.
Fig.11 provides the cumulative distribution function (CDF) of
the ranging errors. Our ranging model has a ranging accuracy
better than 1 meter in 90% of the cases, which is better than
the uncompensated ranging data.

C. ADAPTIVE WIFI FTM POSITIONING EXPERIMENT
In this section, the performance of the proposed adap-
tive Wi-Fi FTM positioning (AWFP) algorithm is evaluated
by comparing it with the traditional Wi-Fi FTM position-
ing (TWFP) method using the trilateration algorithm and the

TABLE 3. Positioning errors comparison/(m).

FIGURE 12. (a) Cumulative distribution of the positioning errors; and
(b) Points positioning error curves.

Wi-Fi fingerprint-based location implemented based on the
K-nearest neighbours algorithm (KNN) introduced in [4].
The value of K is 3. The estimated coordinates of the 120 test
points are compared with their actual coordinate values. The
positioning errors, CDFs, and point positioning errors are
shown in Table 3 and Fig.12.

As shown in Table 3, the mean positioning accuracy
and the root-mean-square error (RMSE) of AWFP are
1.96 m and 2.93 m, respectively. Compared with the TWFP
and fingerprint-based method, the positioning accuracy is
reduced by 1.52 m and 2.0 m, and the RMSE decreases by
1.61 m and 1.53 m, respectively. Moreover, 80% test points
of AWFP have a positioning error within 2.57 m, which
decreases by 2.32 m and 2.81 m compared with the other
two methods. Fig.10(a) shows the cumulative distribution
function (CDF) of the positioning errors and it indicates that
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TABLE 4. Positioning errors of different methods/(m).

AWFP has higher confidence level in different error ranges.
Fig.12(b) illustrates that the points with large positioning
errors of AWFP are less than the other two methods. From
these error analyses, we can conclude that AWFP has better
positioning performance.

D. FUSION POSITIONING EXPERIMENT
The fusion positioning experiments were conducted in the
office rooms and four experimenters participated in the
test. The positioning errors of different methods are shown
in Table 4.

The implemented experimental results from the differ-
ent testers show that the mean positioning errors and the
root-mean-square errors of the proposed fusion positioning
method are better than those of the PDR method, Wi-Fi FTM
and loosely coupled method. The final average location error
of the proposed method is 0.98 m and the RMSE is 1.10 m.
The same conclusion can be easily found from Fig.13 and
Fig.14, which directly show the average positioning error of
the proposed method is better than the other three methods.
Though the loosely coupled fusion positioning method can

FIGURE 13. Mean positioning error comparison of different methods and
experimenters.

FIGURE 14. Root-mean-square error comparison of different methods
and experimenters.

FIGURE 15. Cumulative distributions of the point positioning errors for
different methods and experimenters.

also provide high positioning accuracy, our proposed method
reaches higher accuracy and its RMSE is also smaller than
that of the loosely couple fusion positioning method.

To better analyse the positioning performance of our pro-
posed fusion method, the CDF figures are illustrated in
Fig.15. These figures show the same conclusion that the
proposed fusion positioning method has a higher confidence
level in different error ranges than the other three methods.
Fig.16 shows that the trajectories of the proposed method
have fewer fluctuations and are closer to the reference route.
Although the loosely coupled method has a positioning accu-
racy of less than 2 m, its trajectories are unstable. This is
because there are outliers in the Wi-Fi FTM positioning
results. Since the loosely coupled method simply combines
two methods’ positioning results, the trajectory will generate
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FIGURE 16. Trajectories comparison of the different methods and
experimenters.

fluctuations due to the outliers. The CDFfigures in Fig.15 and
the stable trajectories shown in Fig.16 validate that our pro-
posed tightly coupled method has better performance than
other methods.

V. CONCLUSION
In this manuscript, we concentrated on the new Wi-Fi FTM
ranging technique and studied a fusion positioning applica-
tion integrating built-in mobile phone sensors. A real-time
ranging error compensation model considering the NLOS
error identification using the least-squares method was pro-
posed. This ranging model could achieve a mean rang-
ing accuracy of 0.68 m in 80% of the cases. Moreover,
an adaptive Wi-Fi ranging positioning algorithm (AWFP)
was devised based on high precision ranging data and the
weighted least-squares algorithm. Finally, a tightly coupled
fusion positioningmodel integrating theWi-Fi FTMand PDR
method was constructed. The experimental results showed
that our proposed method had good performance regarding
its mean positioning accuracy and stability compared with the
PDR, Wi-Fi FTM, and the loosely coupled PDR/Wi-Fi FTM
fusion positioning based on the EKF algorithm. However,
some limitations also exist in our research. The azimuth of
mobile phones was basically consistent with the walking
direction, and the complicated pedestrian walking motions
were not analysed. Moreover, the identification and elimi-
nation of NLOS errors should be studied in depth in future
works.
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