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ABSTRACT Emerging mobile edge techniques and applications such as Augmented Reality (AR)/Virtual
Reality (VR), Internet of Things (IoT), and vehicle networking, result in an explosive growth of power and
computing resource consumptions. In themeantime, the volume of data generated at the edge networks is also
increasing rapidly. Under this circumstance, building energy-efficient and privacy-protected communications
is imperative for 5G and beyond wireless communication systems. The recent emerging distributed learning
methods such as federated learning (FL) perform well in improving resource efficiency while protecting
user privacy with low communication overhead. Specifically, FL enables edge devices to learn a shared
network model by aggregating local updates while keeping all the training processes on local devices. This
paper investigates distributed power allocation for edge users in decentralized wireless networks with aim
to maximize energy/spectrum efficiency while preventing privacy leakage based on a FL framework. Due
to the dynamics and complexity of wireless networks, we adopt an on-line Actor-Critic (AC) architecture
as the local training model, and FL performs cooperation for edge users by sharing the gradients and
weightages generated in the Actor network. Moreover, in order to resolve the over-fitting problem caused
by data leakages in Non-independent and identically distributed (Non-i.i.d) data environment, we propose a
federated augmentationmechanismwithWasserstein Generative Adversarial Networks (WGANs) algorithm
for data augmentation. Federated augmentation empowers each device to replenish the data buffer using
a generative model of WGANs until accomplishing an i.i.d training dataset, which significantly reduces
the communication overhead in distributed learning compared to direct data sample exchange method.
Numerical results reveal that the proposed federated learning based cooperation and augmentation (FL-CA)
algorithm possesses a good convergence property, high robustness and achieves better accuracy of power
allocation strategy than other three benchmark algorithms.

INDEX TERMS Federated learning, power allocation, wireless networks, federated cooperation, federated
augmentation.

I. INTRODUCTION
Currently, there are nearly 7 billion connected Internet of
Things (IoT) devices and 3 billion Smart-phones at the
network edge [1], where power and computing resource
consumptions from the information and communication tech-
nology sector are expected to increase significantly [2].
Moreover, over 90% of the data will be stored and processed
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locally [3], and most of the data is privacy-sensitive. Most
mobile devices such as iPhone 11 and HUAWEI MATE
30 are equipped with advanced sensors and Central Process-
ing Unit (CPU). Therefore, local data storing and processing
can be empowered by the emerging mobile edge comput-
ing (MEC) [4], [5] and/or user devices, which offloads the
burden of central controller or cloud server by pushing the
computation/storage resources to the edge users. This brings
intelligence closer to the edge users, which enablesmost tasks
to be performed locally at the edge user equipments.
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Energy/Spectrum efficiency as an important metric for 5G
and the forthcoming 6G [6] systems has been extensively
investigated in edge mobile networks [7], [8]. As the net-
work architecture is gradually evolving into an intelligent
autonomous network paradigm, where the telecom opera-
tors need to automate their networks in a plug-and-play
manner thus to reduce the amount of manual interven-
tion. Under this circumstance, optimizing power allocation
in a distributed manner is an effective way to improve
the energy/spectrum efficiency for autonomous networks.
In most traditional cloud-centric approaches, the data col-
lected by mobile devices is uploaded and processed centrally
in a cloud server/central controller, which may result in unac-
ceptable latency, communication inefficiency, and privacy
leakage. To maintain the privacy of user data, it is necessary
to adopt distributed training that shifts the computation to
the edge network where data samples can be locally trained
without sharing [9]. Moreover, distributed training is able
to stimulate the self-learning and self-configuration with
reduced signaling interactions [10].

In decentralized networks, the network states are usually
time-varying and imponderable due to the changes of user
behavior, channel status and external weather environment.
Therefore, it is ineffective to use static optimization based
algorithms to solve the dynamic power allocation problem
in an autonomous network, due to its poor adaptability and
generalization for dynamic environment [11]. This inspires us
to perform resource allocation in an adaptive and intelligent
way. Fortunately, recent emerging machine learning (ML)
algorithms have been widely used for optimizing mobile net-
work edges [12]–[14]. In particular, the state-of-the-art ML
tools such as neural networks based deep learning, Markov
decision process (MDP) based reinforcement learning and
zero-sum game based Wasserstein Generative Adversarial
Networks (WGANs) have been proven to possess strong data
processing and decision-making capabilities in the wireless
networks [15], [16]. Nevertheless, most conventional ML
algorithms at mobile edge networks still require personal data
to be shared with cloud servers [17], [18]. Recently, as data
privacy regulations have become increasingly stringent and
privacy issues are becoming severer, the concept of federated
learning (FL) has been introduced and drawn great attentions.
FL is a distributed machine learning algorithm that enables
users to collaboratively learn a shared prediction model while
keeping their datasets on their local devices [19]–[21]. In FL,
edge devices locally train their data samples by using a spe-
cific ML model, and then send the model updates such as
gradients, weightages rather than raw data to the cloud server
for information aggregation.

In large-scale and complex distributed mobile edge net-
works, numerous user devices with varying quality of ser-
vice (QoS) requirements are involved. This raises significant
challenges of communication overhead, resource scheduling,
and privacy security in the implementation of FL at scale
[22]. Moreover, due to Non-i.i.d data distributions at different
user devices, the datasets between users have a certain degree

of similarity, resulting in data leakage [23] which causes
over-fitting problem easily in the training process. This brings
great challenges in applying FL to solve resource allocation
problem in decentralized wireless networks.

This paper investigates distributed power allocation in
decentralizedwireless networks based on a generic horizontal
FL framework. We propose a federated learning framework
based cooperation and augmentation (FL-CA) algorithm for
solving the power allocation problem in decentralized net-
works. In more detail, each edge device locally obtains the
power allocation strategy by training a local Actor-Critic
(AC) model, and then uploads the gradients and weightages
generated by the Actor network to the base station for infor-
mation aggregation periodically. Moreover, we propose to
implement information aggregation and model updating by
using Stochastic Variance Reduced Gradient (SVRG) [24]
and Distributed Approximate Newton (DAN) [25]. In par-
ticular, SVRG is a stochastic method with explicit variance
reduction, and DAN is used for distributed optimization.
Furthermore, to tackle the over-fitting problem caused by
data leakages, we employ a federated augmentation (FAu)
algorithm which uses WGANs for data augmentation. FAu
empowers individual devices to replenish the data buffer
using a generative model of WGANs until accomplishing an
i.i.d training dataset, which significantly reduces the commu-
nication overhead compared to direct data sample exchange
method.

The main contributions of this work can be summarized as
follows:

1) To facilitate the power allocation in decentralized wire-
less networks while protecting user privacy, we employ
FL scheme to transfer the control and responsi-
bility from the centralized controller to individual
user devices. The distributed control stimulates user
devices’ abilities of self-learning and self-configuring
with reduced signaling interactions.

2) We propose to incorporate the state-of-the-art WGANs
in the federated augmentation with the aim of improv-
ing the sample diversity and reducing the correlation
between data samples. This can further overcome the
over-fitting problem caused by data leakage.

3) We adopt Actor Critic algorithm at local user devices to
solve the power allocation problem. AC algorithm per-
forms well in solving problems with continuous action
space, and can provide fully on-line solutions. This
proposed solution is feasible for network environment
changing at (transmission time interval) TTI/ms level.

The rest of the paper is organized as follows. The system
model and problem formulation are presented in Section III.
In Section IV, we propose a federated learning framework and
provide a federated cooperation solution to implement the
distributed power allocation. Next, in Section V, we design
federated augmentation mechanism and introduce an on-line
power control algorithm as the local learning algorithmwhich
can provide gradients and weightages for the federated coop-
eration. In Section VI, we present the numerical results
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as well as discussions, and finally conclude the paper in
Section VII.

II. RELATED WORK
Power allocation as an effective way to improve the
energy/spectrum efficiency in edge mobile networks has
recently spurred extensive investigations from different per-
spectives with various design objectives.

Existing solutions for power allocation such as static opti-
mizing [26]–[28] and game theory [8], [29] are widely used
for deriving the global optimal power allocation strategies
based on precisely modeling the network. However, in real
uncertain and time-varying network environments, it is very
difficult to accurately model the environments, resulting in
that the optimization models can hardly be built inaccurately.
On the other hand, frequently performing power allocation
to maintain optimality in a dynamic environment apparently
incur heavy signaling overhead and high computing cost.
Fortunately, recent emerging machine learning technologies
[30], [31] such as deep reinforcement learning and WGANs
have been proven effective for addressing a wide range of
model-free problems and have strong adaptability to dynamic
and complex environments.

From the perspective of network deployment, power allo-
cation can be accomplished in either a distributed or a
centralized manner. The authors of [30], [32], [33] aim to
optimize the network performance with the assistance of a
central controller. The central controller is deployed to col-
lect global information (i.e., network states and the strate-
gies of all user devices) and help make decisions towards
the direction of improving the overall network performance.
Although centralized optimizing/learning can theoretically
achieve optimal system performance, it is usually inappli-
cable to large-scale wireless networks due to its high com-
putational complexity and signaling overhead. The authors
of [34]–[36] focus on decentralized HetNets where most of
the decisions are made locally without information sharing.
Distributed learning which offloads the computation from
the central controller to individual user devices can effec-
tively decrease the communication overhead and computation
complexity, and is thus more efficient for solving large-scale
network problems. However, due to the lack of information
interactions, distributed decision-making is hard to achieve
the global optimal solution without knowing other users’
strategies.

On the other hand, most existing work on power allocation
by using machine learning algorithms, such as reinforcement
learning, has not considered computation cost, and training
data privacy. In [30] and [31], we also exploit reinforcement
learning algorithms for solving online access control and
resource scheduling problems, where we did not consider
training data constraints.

The concept of FL was first proposed in [37] which advo-
cates an alternative that leaves the training data distributed on
the local user devices, and learns a shared model by aggregat-
ing local updates (i.e., gradients andweightages). FL has been

widely used in privacy protecting and information sharing
across different devices [13], [19], [20], which can overcome
the weakness of traditional distributed learning algorithms.
However, most of the FL applications are designed under i.i.d
data environment. Training i.i.d data in the neural network
of FL causes data leakage, which easily leads to over-fitting
problem.

Fortunately, the recent emerging machine learning algo-
rithms such as Wasserstein generative adversarial networks
(WGANs) [38] provide an effective tool for data augmenta-
tion. In this paper, we propose to incorporate the WGANs
in FL framework, which empowers individual devices to
replenish the data buffer using a generative model until ful-
filling an i.i.d training dataset, which significantly reduces
the communication overhead compared to using direct data
sample exchange method.

III. SYSTEM MODEL AND PROBLEM FORMULATION
This paper focuses on Orthogonal Frequency Division Mul-
tiple Access (OFDMA) based downlink cellular network
consisting of one BS and a set of U = {1, · · · , u, · · · ,U}
edge user equipments (UEs) (i.e., tablets, mobile phone, etc.).
Resource block (RB) or subcarrier is defined as the minimum
transmission spectrum unit in OFDMA systems with iden-
tical bandwidth w, and we define K = {1, · · · , k, · · · ,K }
as the set of the subcarriers. In order to capture the net-
work dynamics at small time granularity, we consider to
implement TTI-level’s decision-making process. We define
T = {1, · · · , t, · · · ,T } as the decision-time horizon, where
we assume that the decision interval is unit of length called
decision time intervals (DTIs).

A. NETWORK THROUGHPUT AND SERVICE CONSTRAINTS
Define p(t)u,k as the transmit power allocated to UE u on the kth
subcarrier at time t . Let g(t)u,k be the channel gain between the
BS and UE u on the kth subcarrier. LetN0 be the spectral den-
sity of additive white Gaussian noise (AWGN). The Signal
to Interference plus Noise Ratio (SINR) which measures the
signal quality is defined as the ratio of the received sum power
of the desired signal over the sum power of the interfering
signals and the background noise. Therefore, the SINR of UE
u on the kth subcarrier at time t is given by

γ
(t)
u,k =

p(t)u,kg
(t)
u,k∑

i∈U\{u} p
(t)
i,kg

(t)
i,k + wN0

(1)

Let c(t)u be the transmission rate of UE u at time t . We use a
binary variable au,k ∈ {0, 1} to denote if the kth subcarrier is
allocated to UE u. Specifically, au,k = 1 indicates the subcar-
rier k is assigned to UE u, and au,k = 0, otherwise. Shannon
capacity formula can be used to describe the transmission
rate. Therefore, the transmission rate for UE u at time t is
given by

c(t)u =
∑
k∈K

au,kwlog2(1+ γ
(t)
u,k ) (2)
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The total transmit power consumed by the BS is given by∑
u∈U

∑
k∈K p(t)u,k , and the power constraint for the BS at time

t is represented as ∑
u∈U

∑
k∈K

p(t)u,k ≤ p̂, (3)

where p̂ is the maximum transmit power which can be man-
aged by each SBS.

Assume each UE selects subcarriers with the best SINR by
sensing the surrounding network environment. Then, we let
γ̌
(t)
u be the SINR threshold of user u at time t , and the

SINR constraint for a given user u on the kth subcarrier is
represented as

γ
(t)
u,k ≥ γ̌

(t)
u . (4)

Moreover, we also take user privacy as a constraint in this
decentralized network. We roughly define the set of user’s
privacy information as Iu. Then the constraint on privacy
protection is defined as

Iu ∩ Iv = ∅,∀u, v ∈ U , u 6= v. (5)

B. PROBLEM FORMULATION
In this decentralized wireless network, we are interested in
minimizing the sum of long-term transmit power for each user
device in a distributed manner. Note that we consider a fully
decentralized power allocation optimization at mobile edge.
Therefore, there is no central controller deployed at BS and
each user makes power allocation decision locally by observ-
ing surrounding environment without information sharing
and cooperation with other user devices. Note that a power
allocation decision at a specific device inexplicitly affects
the SINR for other devices, and thus their decisions. Obvi-
ously, minimizing the transmit power requires accurate power
allocation strategy to mitigate the interferences between user
devices, which can significantly decrease energy consump-
tion and improve spectrum efficiency in wireless networks.
Specifically, the long-term power allocation problem for UE
u (u ∈ U) at time slot t is formulated as

min
Pu

∑
t∈T

P(t)u (6)

s.t. 〈(3), (4), (5)〉 , (7)

where Pu = {P(1)u , · · · ,P(t)u , · · · ,P(T )u } is the sequential
power allocation strategies made by user u from the current
time to the termination time T . Problem (6) is non-convex and
has been proved as NP-hard [32], [39]. Furthermore, without
knowing other users’ behaviors (i.e., movements and strate-
gies), the network environment becomes uncertain and more
constrained, resulting in that the performance metrics such as
SINR and throughput cannot be calculated before perception.
This implies that the optimal power allocation strategy is
unable to be directly derived by solving Problem (6) with sim-
ple static optimization or game theory. Therefore, adopting an
efficient algorithm from a distributed algorithm to solve the
power allocation problem is indeed necessary.

IV. FEDERATED LEARNING SOLUTIONS: A DISTRIBUTED
LEARNING PERSPECTIVE
To implement the distributed power allocation, we employ
an FL framework/system (FLF) at the mobile edge. The FL
framework enables cooperation and augmentation for data
training of edge users, which is effective in solving the dis-
tributed power allocation with certain information sharing
ability, and no user privacy leakage. Fig. 1 shows the FL based
cooperation and augmentation (FL-CA) framework.

1) Cooperation: federated cooperation enables edge
devices to collaboratively maintain a shared model by
aggregating local updates while keeping all the training
data on local device without privacy leakage.

2) Augmentation: federated augmentation is used for data
augmentation which empowers each user device to
replenish the data buffer using a generative model of
WGANs until reaching an i.i.d training dataset.

Considering that the network is dynamic and complex,
we adopt fully on-line Actor-Critic (AC) networks as the
local training model, and federated cooperation for edge
users is implemented by sharing the gradients and weightages
generated from the local Actor networks. Moreover, under
the constrained network environment, user-generated data
samples are likely to become non-i.i.d across devices, which
usually degrades the efficiency of learning a shared network
model [40]. Therefore, federated augmentation is an effective
way for data augmentation and can significantly reduce the
communication overhead compared to direct data sample
exchanges.

A. FEDERATED LEARNING BASED COOPERATION
To implement the federated learning based cooperation in the
FL framework, we introduce the loss functions as the dis-
tributed optimization objective. Note that Loss functions such
as linear regression, logistic regression and support vector
machines are widely used in the federated learning models
to capture the error of the neural network model [19].

Assume that each participatingUE u collects a local dataset
Du = {D1, · · · ,DNu} with batch size of Nu, and Di is a
set of input-output pairs {xi, yi}. Moreover, we define Xu =
[xu,1, · · · , xu,Nu ] as the input dataset of UE u, and Yu =
[yi,u, · · · , yi,Nu ] as the output dataset. In order to capture the
relationship between the input dataset Xu and the output Yu,
we introduce the loss function f (w,Di) which is parameter-
ized by vector w with input training dataset Di ∈ Du. Then,
the local loss function Fu(w) approximated by w is given by

Fu(w) =
1
Nu

∑
Di∈Du

f (w,Di) (8)

Then, we give the learning model of global loss function
minimization problem as

min
w∈Rd

F(w) =
∑
u∈U

Nu∑
u∈U Nu

Fu(w) (9)

We make an assumption that the loss function satisfies the
following assumption.
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FIGURE 1. Federated learning framework based cooperation and augmentation.

Assumption 1: Fi(·) is η-strongly convex and σ -smooth,
∀i ∈ {1, · · · ,U}, and ∀w,w′ ∈ Rd :
1) Fi(w) is η-strongly convex, i.e., Fi(w) ≥ Fi(w′) +〈
∇Fi(w′),1w

〉
+

η
2‖1w‖,

2) Fi(w) is σ -smooth, i.e., Fi(w) ≤ Fi(w′) +〈
∇Fi(w′),1w

〉
+

σ
2 ‖1w‖,

where 〈a,b〉 denotes the inner product of vectors a and b,
∇F(·) denotes the gradient of the loss function F(·), and
1w = w− w′.

This paper considers linear regression (i.e., Temporal Dif-
ference (TD)-errors) as the loss function in the local training
model. Assume there is a set of input-output pairs {xi, yi}

Ni
i=1,

and thus the loss function is represented as Fi(w) = 1
2‖yi −

wT
· xi‖2. Note that the strong convexity and smoothness

in Assumption 1 are proved to be satisfied for the linear
regression which are widely used in [19], [21].
Theorem 1: The global loss function F(w) is a convex

combination of the local loss functions f (w).
Proof: We substitute the local function in (8) for (9), and

rephrase the objective (9) as

F(w) =
∑
u∈U

Nu∑
u∈U Nu

Fu(w)

=

∑
u∈U

Nu∑
u∈U Nu

·
1
Nu

∑
Di∈Du

f (w,Di)

=

∑
u∈U

1∑
u∈U Nu

∑
Di∈Du

f (w,Di). (10)

From (10) we can see that the global function F(w) is the
linear addition of the local loss functions f (w), and we can
draw the conclusion.

Therefore, we consider to implement the power allocation
in the FL systems which enables information sharing without
privacy leakage. Then we formulate an optimization problem
whose objective is to minimize the FL loss function, while
factoring in the wireless network parameters. This minimiza-
tion problem is optimizing transmit power allocation for each
UE, which is given by

min
w
F(w) (11)

s.t. 〈(3), (4), (5)〉 . (12)

However, F(w) cannot be directly computed without shar-
ing information of the local loss function Fu(w) which carries
edge user’s privacy information.

B. DISTRIBUTED GRADIENT-DESCENT ALGORITHM
Distributed gradient-descent algorithm is widely used in the
state-of-the-art FL systems [21], [41], [42]. According to
(11), the objective is to minimize F(w), which means to find
the optimal vector w∗ that satisfies

w∗ = argminF(w) (13)
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Note that without knowing the input training dataset,
the vector w in each local FL system carriers little infor-
mation. On this account, we consider to directly derive the
optimal vector w∗ by using the FL algorithm to solve (27).
Specifically, by using a simple gradient descent (GD) [19],
the local parameter wu of UE u at time t is updated by

w(t)
u = w(t−1)

u − αu∇Fu(w(t−1)
u ) (14)

where αu is the step size of UE u.
Note τ is the length of the DTI which is specifically the

interval between every two global aggregations, and T is the
termination steps. Then, with every τ time steps, the global
parameter w is updated by

wτ =
∑

u∈U Nuw
(t)
u∑

u∈U Nu
(15)

Specifically, after each global aggregation, all of the dis-
tributed local parameters wu∈U are replaced by the global
parameter wτ . Moreover, we define wT as the final model
parameter after T iteration epochs.
Remark 1: In the federated learning architecture, to avoid

UE privacy leakage
1) The local loss functions Fu(w), u ∈ U shown in (8)

cannot be used for sharing among multiple nodes.
2) The local parameters wu, u ∈ U and global parameter

wτ can be used for sharing among multiple nodes.
3) Gradients of the local loss functions ∇Fu(w

(t)
u ), u ∈ U

and the global loss function ∇F(wτ ) can be used for
sharing among multiple nodes.

In order to derive the final model parameter wT , we first
introduce two important algorithms which are Stochastic
Variance Reduced Gradient (SVRG) [24] and Distributed
Approximate Newton (DAN) [25]. In more detail, SVRG is a
stochastic method with explicit variance reduction, and DAN
is used for distributed optimization. In this work, we imple-
ment a Federated SVRG (F-SVRG) algorithm incorporating
the algorithms of SVRG andDAN. Themain idea of F-SVRG
is to avoid directly using the GD to estimate the gradient
∇Fu(w). If the global parameter wτ is close to the local
parameter w(t)

u , the variance of the result of ∇Fu(wτ ) −
∇Fu(w

(t)
u ) should be small as well. Therefore, in the F-SVRG,

the local parameters are updated by

w(t)
u =w

(t−1)
u − αfu(∇Fu(w

(t)
u )−∇Fu(wτ )+∇F(wτ )), (16)

where αfu is the step-size used for the gradient descent.

C. CONVERGENCE ANALYSIS
Iterations through the aforementioned steps continue until the
loss function converges, thus completing the entire training
process. Thus, convergence is very important for ML based
solutions. Indeed, FL architecture is independent of specific
machine-learning algorithms (logistic regression, DNN, etc.)
and all participants will share the final model parameters.
In detail, the training process contains the following four
steps.

1) Edge UEs locally compute training gradients, and
update the weightages of the neural networks.

2) The server (BS) performs secure aggregation without
learning information about any edge UE.

3) The server sends back the aggregated results to edge
UEs.

4) Edge UEs update their respective model with the feed-
back weightages and gradients.

For clarity, we summarize the training process of the dis-
tributed gradient descent in Algorithm 1.

Algorithm 1 Federated SVRG (F-SVRG)
Input: Global communication interval τ ; Termination itera-

tion time steps T
Output:
1: for t = 0, 1, · · · ,T do
2: if t mod τ = 0 then
3: Communication and Compute
4: ∇F(wτ ) = 1

U

∑U
u=1 ∇Fu(w

(t)
u ) and

5: wτ = wτ (old)+ 1
U

∑
u∈U (w

(t)
u − wτ (old))

6: end if
7: for u = 1, 2, · · · ,U do
8: Initialize w(t)

u = wτ

9: for t0 = 1, 2, · · · , τ do
10: w(t+1)

u = w(t)
u − α

f
u(∇Fu(w

(t)
u ) − ∇Fu(wτ ) +

∇F(wτ ))
11: end for
12: end for
13: end for

In the following, we provide a quantitative analysis of the
convergence property of the F-SVRG algorithm and find an
upper bond of the divergence between the FL derived loss
function and the global optimal loss function F(wT )−F(w∗).
We define the following convergence condition to determine
if wT achieves the global optimal parameter w∗.
Definition 1: For an arbitrary small constant ε > 0,

the iteration result of the FL algorithm achieves the global
optimality if it satisfies

|F(wT )− F(w∗)| ≤ ε. (17)

Theorem 2: For η-strongly convex and σ -smooth func-
tions F(·), the upper bond of E[F(wT )− F(w∗)] is given by

E[F(wT )− F(w∗)] ≤ cT [F(w0)− F(w∗)], (18)

where c = 2( 1
mh )+2(h),m is the number of stochastic steps

per epoch and h is the step size.
Proof: cf. [25] for proofs

For appropriate choice of parameters m and h, the conver-
gence rate (18) translates to the need of (n+O(L/λ)) log(1/ε)
evaluations of ∇Fi for some i to satisfy (17).

V. ON-LINE LOCAL POWER CONTROL ALGORITHM WITH
FEDERATED AUGMENTATION
In this section, we seek for communication-efficient on-
device machine learning approaches under non-i.i.d private
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data. On this account, an on-line closed-loop control algo-
rithm based on the reinforcement learning is adopted. Prior
to operating federated cooperation, we implement federated
augmentation by using Wasserstein generative adversarial
networks (WGANs) [38] which empowers each device to
locally reproduce the data samples of all devices, so as to
reduce the communication overhead and guarantee that the
local solutions do not diverge from the global model.

A. FEDERATED AUGMENTATION BY WGANs
Let the expert policy distribution which represents the real
dataset distribution be denoted by 5e

= [πe1 , · · · , π
e
U ], and

the generated policy distribution imitated by the proposed
W-GANs algorithm be denoted by 5g

= [πg1 , · · · , π
g
U ].

W-GANs aim to optimize the earth-movement (EM) dis-
tance between 5e and 5g. In detail, the EM distance is
the ‘‘cost’’ of the transport plan which transforms the dis-
tributions 5g into the distribution 5e. By considering the
Kantorovich-Rubinstein duality [43], theWasserstein estima-
tion for a given UE u is given by

W (πeu , π
g
u ) = sup

‖D‖L≤1
Ex∼πeu [D(x)]− Ey∼πgu [D(y)], (19)

where the supremum is over all the 1-Lipschitz functionsD(·)
(i.e., the gradient of D(·) is not bigger than 1). Moreover,
we define Dθ (·) and Gφ(·) as a discriminator and a generator
which are respectively represented by neural networks with
parameters θ and φ. To learn the generator’s distribution πgu
over real data x ∼ πeu , we define a generated policy on
input noise variables z ∼ π zu which represents a mapping to
generated data space as Gφ(z). Moreover, Dθ (Gφ(z)) outputs
a scalar within [0, 1] which represents the probability that x
comes from the real data rather than πgu . Then, we consider
solving the problem

W (πeu , π
g
u ) = max

θ :‖Dθ‖L≤1
Ex∼πeu [Dθ (x)]− Ez∼π zu [Dθ (Gφ(z))].

(20)

In detail, parameters θ and φ are respectively updated by
m-batched gradient descend. The detailed updating process
of the two parameters are given by

∇θW (πeu , π
g
u ) = ∇θ [

1
m

m∑
i=1

[Dθ (x(i))− Dθ (Gφ(z(i)))]], (21)

and

∇φW (πeu , π
g
u ) = −∇φ[

1
m

m∑
i=1

Dθ (Gφ(z(i)))]. (22)

It is obvious that (21) and (22) respectively update the
parameters of θ and φ towards opposite directions. In par-
ticular, the objective of discriminator D is to discriminate the
generated dataset and the real one to the greatest extent, while
the generator G tends to minimize the possibility of being
discriminated by the discriminator D.
We summarize the process of W-GANs in Algorithm 1.

Algorithm 2 Federated Augmentation
Input: αg, the learning rate of generator; αd , the learning

rate of discriminator. m, the batch size; Nd , the number
of training steps of the discriminator; Ng, the number of
training steps until convergence of the generator; θ , initial
parameters of the discriminator. φ, initial parameters of
the generator.

Output: Generator Gφ
1: while ng ≤ Ng do
2: for nd = 1, · · · ,Nd do
3: Sample {x(i)}mi=1 ∼ πeu a batch from the expert

dataset.
4: Sample {z(i)}mi=1 ∼ π

z
u a batch from the prior noise

samples.
5: θ̇ ← ∇θ [ 1m

∑m
i=1[Dθ (x

(i))− Dθ (Gφ(z(i)))]]
6: θ ← θ + αd · RMSProp(θ, θ̇ )
7: end for
8: Sample {z(i)}mi=1 ∼ πz a batch of the prior noise

samples.
9: φ̇←−∇φ[ 1m

∑m
i=1 Dθ (Gφ(z

(i)))]
10: φ← φ − αg · RMSProp(φ, φ̇)
11: ng = ng + 1
12: end while

B. ACTOR-CRITIC ALGORITHM FOR POWER CONTROL IN
A LOCAL USER DEVICE
To assist the distributed edge UEs in making local deci-
sions, we introduce the deep reinforcement learning (DRL)
based Actor and Critic neural networks [44] as the local
decision-making algorithm which makes decisions by timely
interacting with the dynamic network environment. Specifi-
cally, the decision-making process of each UE is formulated
as a non-cooperative partially observable Markov decision
process (POMDP), where UE makes decisions individually
by observing its surrounding network information.

We consider deterministic state transition in the POMDP
M, which can bemodeled as a four-tupleM = (S,A,R, γ ),
and we respectively elaborate these parameters below.
• S(t) represents the partially observable network state
of SBSs. Let the observed information consist of the
allocated transmit power, the SINR on the assigned RBs,
and the reward of the previous training.

• A(t) represents the actions set at time t . In the POMDP,
the network states change with the actions which is
defined as the power allocation strategies.

• R(t)
: S(t)

×A(t)
× S(t+1)

→ R(t) is a family of reward
functions which guides UEs make decisions towards the
expected direction. Recall that the SINR is defined as

γ
(t)
u,k =

p(t)u,kg
(t)
u,k

N env , (23)

where N env
=

∑
i∈U\{u} p

(t)
i,kg

(t)
i,k + wN0 is the envi-

ronment noise consisting of interferences from other
UEs and the AWGN. Obviously, increasing the transmit
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power can improve the SINR and thus the throughput
of (2).
To derive the reward function, we first take the logarithm
on both sides of (23), and replace the logarithm results
of SINR, power, pass loss, and environmental noise with
0,P , G andN , respectively. Therefore, the SINR of (23)
is rewritten as

0
(t)
u,k = P (t)

u,k − G(t)
u,k −N , (24)

where the SINR is decomposed into three parts which
are respectively transmit power, path loss, and environ-
ment noise. Obviously, the path loss G(t)

u,k is determined
once the location of the base station is determined.
Moreover, the environment noise is not controllable in
this decentralized network. As shown in (6), the objec-
tive is to minimize the transmit power while satisfying
the traffic QoS requirements. Therefore, we design the
local cost function Ř for UE u at time t as

Ř(t)u = P (t)
u,k − P(0(t)

u,k ), (25)

where the penalty P(γ (t)
u,k ) is defined as

P(γ (t)
u,k ) = −|10 lg(γ

(t)
u,k − γ̌

(t)
u + 1)|, (26)

where γ (t)
u,k =


γ
(t)
u,k

γ̌
(t)
u
+ γ̌

(t)
u − 1, if γ (t)

u,k ≤ γ̌
(t)
u

γ
(t)
u,k , otherwise.

• γ (γ ∈ (0, 1)) denotes the reward discount factor in
the Markov chain. Discount factors are important in
infinite-horizonMDPs, in which they determine how the
reward is counted.

The objective of the POMDP is to find policies π (`) which
optimize reward Ř(t)u from time t to t + T , following a
strategies’ trajectory ` ∼ {s0, a0, s1, a1, · · · , sT , aT }.We for-
mulate the objective function O(πϑ ) as:

Min O(π (`)) = E`∼π (`)[Ru(`)], (27)

whereRu(`) =
∑T

k=0 γ
k Ř(t+k)u is the discounted cumulative

reward starting from time t and increasingly discounted at
subsequent steps by factor γ ∈ (0, 1].
Note that the POMDP problem has continues state and

action space as the wireless channel state and the amount
of assigned resources are continuous variables, and thus it is
infeasible to compute and save all value functions for every
particular state-action pair. With respect to continuous or
infinite state and action problems, the objective of (27) for
a given edge UE is rewritten as

O(π (`)) = E`∼π (`)[R(`)] =
∫
`∼π (`)

π (`)R(`)d`. (28)

In the following, we adopt the DRL based Actor-Critic
algorithm to optimize the (27) from both of the Actor and
Critic processes. In particular, the Actor process can respond
to the network state quickly and provide corresponding strate-
gies, and the Critic process is used to modify the parameters

of the neural networks afterwards. Therefore, the collabora-
tion of Actor and Critic is able to guide the strategies towards
the expected direction in an efficient way.

1) ACTOR PROCESS
The Actor process works with a family of parameterized
policies, which guides agents to make decisions towards the
expected directions. We use Gaussian probability distribution
to approximate the policy distributions. By using Gaussian
probability distribution, exploration (searching for more bet-
ter strategies) and exploitation (exploiting the current best
strategies) can be dynamically balanced in the action selec-
tion process. Therefore, πϑ (a|s) ∼ N (µϑ (s), σ 2

ξ (s)), where
µ(s) is the mean value and σ (s) is the standard deviation.
Obviously, µ(s) is indeed the action that has the largest prob-
ability to be chosen at state s, and σ (s) indicates the extent of
exploration over all actions at state s.

In the following, we use network state as the input feature
vector8(s(t)). Moreover, a non-linear feature-based function
is used to approximate the µϑ (s(t)) which is given by

µϑ (s(t)) = NN(ϑT,8(s(t))), (29)

where NN(·) represents the Neural Network applied in the
non-linear approximation. Specifically, the Neural Network
outputs the results with the input feature vector 8(s(t)) and
weight parameters ϑ of the dense layer. Similarily, the vari-
ance σ is updated by

σξ (s(t)) = NN(ξT,8(s(t))). (30)

The parameters ϑ are optimized towards the direction of
improving the objective (27). We define the gradient of the
objective function with respect to the parameters ϑ and ξ as
∇ϑO(πϑ ) and ∇ξO(πξ ) which are respectively updated by

∇ϑO(πϑ ) = ∇ϑ logπϑ (a|s)R(`)+ αhH, (31)

and

∇ξO(πξ ) = ∇ξ logπξ (a|s)R(`)+ αhH, (32)

where H is the cross entropy cost used to encourage explo-
ration, and αh is the step-size.
Then, parameters of ϑ and ξ are respectively updated by

1ϑ = α
(t)
ϑ ∇ϑO(πϑ ) and 1ξ = α

(t)
ξ ∇ξO(πξ ), where α

(t)
ξ and

α
(t)
ϑ > 0 are the step-size used for the policy update and ∇

denotes the back propagation through time.

2) CRITIC PROCESS
The Critic relies exclusively on the value function approxi-
mation aiming at approximating the Bellman equation [45].
Define the approximated state-action value as Vϕ(s(t)) which
is parameterized by vector ϕ. We choose the non-linear
feature-based function to approximate Vϕ(s(t)). Thus,

Vϕ(s(t)) = NN(ϕT,8(s(t))). (33)
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Next, we update the parameter vector ϕ in the critic pro-
cess. We introduce temporal difference (TD) error as the loss
function, therefore

f (ϕ(t)) = V (s(t))− Vϕ(s(t)), (34)

where V (s(t)) = R(t+1) + γVϕ(s(t+1)). Therefore, the objec-
tive of the critic is argminϕ 1

2 f (ϕ
(t))2, and the gradient of

this quadratic error with respect to f (ϕ(t)) is derived as
|f (ϕ(t))|·∇ϕVϕ(s(t)). Thenwe use the gradient descentmethod
[46] to update the approximation towards the gradient, and
thus the parameter vector ϕ can be updated by 1ϕ =

α
(t)
c |f (ϕ(t))|∇ϕVϕ(s(t)), where α

(t)
c is the step-size used for the

gradient descent of the critic process.
As the variance of convergence in Actor-Critic algorithm

could be very large, we introduce the advantage function
A(s(t)) as the bias to decrease the variance [46]. Moreover,
we choose the widely used TD-error f (ϕ(t)) as the advantage
function A(s(t)). Then, (31) can be rewritten as

∇ϑO(πϑ ) = ∇ϑ logπϑ (a|s)A(s(t))+ αhH. (35)

Definition 2: Accordingly, the parameter w of the FL sys-
tem is defined as wT

= [ϑ, ξ ]T, which is locally updated by
the Actor-Critic algorithm, and globally updated by the FL
learning.

In summary, we elaborate the algorithm of the fully on-line
local AC with data augmentation in Algorithm 3.

VI. SIMULATION RESULTS
In this section, we evaluate the performance of our proposed
FL-CA algorithm by extensive simulations.We use theMulti-
Wall-and-Floor (MWF) model [47] as the propagation and
penetration loss model between BS and UEs in our indoor
scenario. MWF takes into account the decreasing penetra-
tion loss of walls and floors of the same category as the
number of traversed walls/floors increase, which is given by
PL(d)[dB] = L0[dB]+ 20 log10(d)+ nwLw, where L0 is the
reference loss [dB] taken at onemeter of distance between the
transmitter and the receiver, d is the distance between the BS
and UEs in meters, Lw = 6dB is the penetration loss of the
concrete wall, nw is the number of walls. Other parameters
used are listed in TABLE 1.

A. COMPARISON REFERENCES IN THE SIMULATION
Under the FL framework, we consider the following four
algorithms as the comparison algorithms.

1) Federated Learning (FL): the traditional FL helps
agents make decisions under FL system.

2) Federated Learning with Cooperation and Augmenta-
tion (FL-CA) is the algorithm proposed in this paper,
which collaboratively utilize the federated augmen-
tation and federated learning in the decision-making
process.

3) Non-Cooperation Power Allocation (Non-CPA) or
local AC algorithm: agents adopting the Non-CPA
algorithm make decisions locally without any informa-
tion sharing.

Algorithm 3On-Line Actor-Critic Algorithm in a Local User
Device With Augmentation
Input: 8(s), feature vector at state s; ϑ and ξ , initial param-

eters of Actor network for µ and σ ; ϕ, initial parameters
of Critic network; αϑ and αξ , step-size of actor network;
αc, step-size of critic network; αh, step-size of cross
entropy; t and tl , counter; T and Tl , length of the decision
trajectory and training times of Actor-Critic.

1: Initialize time step counter t ← 0.
2: Initialize all of the parameters of Actor network and

Critic network, and get initial state s.
3: while t < T do
4: Output power allocation strategies by inputting feature

vector 8(s) to Actor Network.
5: for tl = 1, 2, · · · ,Tl do
6: Data augmentation by generator Gφ(8(s(t)))
7: Compute the TD-error

f (ϕ(t)) = R(t+1) + γVϕ(s(t+1))− Vϕ(s(t)).

8: Update the Critic Network:

ϕ = ϕ − α(t)c |f (ϕ
(t))|∇ϕVϕ(s(t)).

9: Compute the gradients ϑ and ξ :

∇ϑO(πϑ ) = ∇ϑ logπϑ (a|s)A(s)+ αhH,
∇ξO(πξ ) = ∇ξ logπξ (a|s)A(s)+ αhH.

10: Update the Actor Network by gradient descent:

ϑ = ϑ − α
(t)
ϑ ∇ϑO(πϑ ),

ξ = ξ − α
(t)
ξ ∇ξO(πξ ).

11: end for
12: t ← t + 1
13: end while

4) Greedy Algorithm (GA): agents choose power alloca-
tion strategies by observing the current network states.

B. NUMERICAL RESULTS AND DISCUSSION
We first examine the convergence and the performance of
the generator and discriminator of WGANs. Fig. 2 shows the
Wasserstein estimation with training epochs. We can see that
both the two training curves converge at about 2000 epochs.
Finally, theWasserstein estimation of the generator converges
to 1 and the discriminatorD converges to 0, which means that
the adversarial dataset generated by the generator G cannot
be discriminated by the discriminator D, and D is unable to
distinguish between the generated dataset and the real dataset
correctly.

Next we examine the convergence of local AC algorithm
with different decision trajectory lengths. As aforementioned,
the DTI determines the decision trajectory length, which
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TABLE 1. Simulation parameters.

FIGURE 2. Training process of WGANs.

controls the cycle of the long-term optimization in the MDP.
As shown in Fig. 3, we respectively set the decision trajectory
length (DTL) as 10, 20, 30, and 50. Obviously, we can see
that with the increase of DTL, the discounted cumulative
reward increases, and so dose the jitter of the convergence.
This is because with the increase of the decision-time period,
the decision-depth also increases, which makes the network
states space increases exponentially, resulting in that the con-
vergence becomes more difficult. Therefore, in the following
experiments, we choose the DTL as 20 for more stable simu-
lation results.

Then, we investigate the convergence of the AC algorithm
in a local user device under different network deployments.
Fig. 4(a) and Fig. 4(b) show the discounted cumulative reward
with training steps. Specifically, we fix the DTL as 20, and
consider to investigate the convergence properties under user
intensive network scenario and user sparse network scenario.
In Fig. 4(a) and Fig. 4(b), we can see that the AC algorithm
converges in less than 100 training steps, which fully satisfies
the on-line learning requirement. Moreover, from the area
of the shadow part, we can see that the variance of the
convergence in user intensive scenario is much smaller. This
is because the network states in user intensive scenario are
more dynamic and difficult to be captured. Moreover, we can

FIGURE 3. Convergence of local AC with different decision trajectory
lengths.

FIGURE 4. Convergence of local AC algorithm under different network
deployments.

see that the discounted cumulative reward of Fig. 4(b) is
smaller than that of Fig. 4(a). This is because the amount
of power resources in user intensive environment are more
scarce, which implies that the network environment is an
important factor of the local AC algorithm’s performance.
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FIGURE 5. Evaluated TD-error with 20 decision trajectory length.

In the next experiment, we evaluate the TD-error of tra-
ditional FL and the proposed FL-CA. Note that the evalu-
ation is used to evaluate algorithm without extra training,
which can verify the generalization and robustness of an
algorithm. As defined in (34), TD-error shows the error
between the approximated state value Vϕ(s(t)) and the aver-
age state value V (s). Therefore, the more TD-error deviates
from zero, the more inaccurate the approximated strategy is.
Fig. 5 shows the box plot of the TD-error with evaluation
time steps. In Fig. 5(a), we can see that the number of bad
points of FL account for 35% of the total 20 evaluation
samples, and in Fig. 5(b), the number of bad points of FL-CA
account for 15% of the evaluation samples. This means
the power allocation strategies derived from the FL-CA are
more reliable than traditional FL algorithm. Moreover, from
Fig. 6 we can directly see that the jitter of the TD-error of
FL-CA is much smaller that of the FL. This implies that the
robustness/generalization of FL-CA is better than that of the
traditional FL.

FIGURE 6. Comparison of evaluated TD-error.

FIGURE 7. Accuracy of power allocation strategy.

In the last experiment, we compare the accuracy of
power allocation strategy of the proposed four algorithms.
As defined in (6), we aim to minimize a sum of the long-term
transmit power objective function while satisfying the QoS
requirements of user devices. Moreover, it is obvious that
minimizing the transmit power requires accurate power allo-
cation to mitigate the interferences between user devices.
Therefore, we investigate the accuracy of the power alloca-
tion strategies to achieve the minimum power requirement.
We statistically analyze the experiment results of 50 DTIs,
and Fig. 7 shows the cumulative distribution function (CDF)
of power allocation strategy accuracy. It is obvious that the
accuracy of power allocation becomes higher with the nar-
rower of the CDF graph. FromFig. 7, we can sort the accuracy
of these four algorithms from small to large as Greedy, Non-
CPA, FL, and FL-CA. Therefore, our proposed FL-CA algo-
rithm in this paper performs the best in power allocation and
can provides the most accurate power allocation strategies
when compared with other benchmark algorithms.

VII. CONCLUSION
In this paper, we have proposed a federated learning frame-
work based cooperation and augmentation (FL-CA) for solv-
ing the power allocation in decentralized networks. FL-CA
aims at minimizing the power consumption while satisfying
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the user QoS requirement and protecting user privacy. In the
FL framework, edge devices locally make decisions on power
allocation through training a local Actor-Critic (AC) model,
and then send the gradients and weightages generated by
the Actor network to BS for information aggregation at
regular intervals. Furthermore, to overcome the over-fitting
problem caused by data leakages, we adopt federated aug-
mentation (FAu) algorithm which uses WGANs for data aug-
mentation. FAu empowers each device to replenish the data
buffer using a generative model of WGANs until reaching an
i.i.d training dataset, which significantly reduces the commu-
nication overhead compared to direct data sample exchanges.
Significant performance improvements in terms of algorithm
robustness and the power allocation accuracy when compared
with other three benchmark algorithms.
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