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ABSTRACT Cloud and cloud shadow are common issues in optical satellite imagery, which greatly reduce
the usage of data archive. As for the Landsat data, great advances have been made on detecting cloud and
cloud shadow. However, few studies were performed on Landsat cloud removal for large areas. To facilitate
land cover dynamics studies with high temporal resolution, we present an automatic cloud removal algorithm
in this paper. Specifically, For Landsat Collection 1 Level-1 surface reflectance products, the algorithm first
builds a cloud mask from the Quality Assessment (QA) band, and then reconstructs cloud-contaminated
portions based on multi-temporal Landsat images with temporal similarity. To further eliminate radiation
differences between cloud-free and reconstructed regions, a Poisson blending algorithm is adopted. Besides,
the efficiency of gradient-domain compositing is accelerated by the quad-tree approach. Experiments have
been performed to process more than 50,000 Landsat 8 Operational Land Imager (OLI) images covering
China from 2013 to 2017, which yield promising results in terms of radiometric accuracy and consistency
for experimental images with cloud coverage less than 80%. The produced Landsat time series images with
cloud removal can be further used for analyzing land cover and land change dynamics in China, and the
proposed algorithm should be easily employed to produce cloud-free Landsat time series for other areas.

INDEX TERMS Cloud removal, Landsat Collection 1, Poisson blending.

I. INTRODUCTION
Remote sensing imagery has been widely used for differ-
ent applications, especially with recent advancements on
machine learning algorithms [1]–[8]. Equipped with many
advanced data analysis tools, we still face another great chal-
lenge in optical satellite image analysis: cloud. Cloud and
cloud shadow are common issues in optical satellite imagery,
which limit the power of optical images and increase the
difficulty of time series analysis. Cloud detection and removal
has always been an important issue in remote sensing image
processing. Early cloud removal techniques are mainly based
on single or small-scale images due to limited remote sensing
data sources and limited cloud detection accuracy. With the
development of remote sensing technology, especially the
free-open policy of the Landsat data, a long data record span-
ning more than four decades are presented to all researchers
over the world to monitor the Earth [9], [10]. However, cloud
and cloud shadow hinder further processing of Landsat time
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series stacks. Hence, to produce cloud free Landsat time
series data has become a research hotspot recently.

For Landsat data cloud removal study, a number of multi-
temporal-based cloud removal algorithms have been pro-
posed [14]–[17]. Gabarda and Cristóbal [14] introduced a
cloud removal method based on image fusion that involves
a 1-D pseudo-Wigner distribution transformation and a
pixel-wise cloud model. Helmer and Ruefenacht [15] utilized
regression tree to detect and predict pixel values under-
neath clouds and cloud shadows from other image data
captured at different time. Lin et al. [16] proposed a nonlinear
scheme instead of a linear one to mathematically formulate
the reconstruction problem as a Poisson blending and then
solved the equation using a global optimization process.
Since Poisson blending is sensitive to boundary conditions,
Lin et al. [17] further developed a patch-based scheme using
temporal correlation: multi-temporal images were segmented
into several patches with similar temporal variations; patches
in the reference images were then sorted using the root mean
squared error (RMSE) index to select cloning patches, and
information of selected patches was seamlessly cloned to
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corresponding cloud-contaminated patches. The multi-patch
information reconstruction was solved using an optimization
process with the optimal seam. Although the patch-based
algorithm [16], [17] can yield good cloud-free results,
the whole process is complicated, which hinders its appli-
cation to an automatic production line of large amounts
of images. Another problem is how to achieve automatic
detection of clouds and cloud shadows in Landsat images.
Due to limited accuracy of the Landsat cloud cover assess-
ment (CCA) algorithm, all cloud masks used in [14]–[17]
depend on manual correction of existing cloud masks, which
also hinders being equipped into an automatic processing
line. From December 2017, USGS began to update Landsat
product version form Pre-Collection to Collection 1 [12].
In the new version, the C version of the Function of
Mask (CFMask) algorithm [18] replaces the older CCA
algorithm to produce cloud, cloud confidence, cloud shadow,
and snow/ice pixels [13]. The new Landsat product makes it
possible to produce high-precision cloud & shadow masks
automatically.

To achieve automatic cloud patching for large amounts
of Landsat images efficiently and effectively, we propose
an automatic cloud removal algorithm based on Poisson
blending for multi-temporal Landsat data. The basic flow
of the algorithm is: first, the cloud mask image is obtained
automatically from Landsat Collection 1 Quality Assessment
(QA) band data, and then modified by image morphology
algorithm; second, thumbnails of original Landsat images are
used to efficiently calculate the similarity among images, and
further determine reference images patching order for each
image; third, cloud patches are directly replaced by pixels
according to the patch order; finally, for patch replacement
images and replacement reference mask, the Poisson blend-
ing algorithm is used to eliminate the spectral difference of
the patched area. Experiments were performed on more than
50,000 Landsat 8 images over China from 2013 to 2017.
Experimental results have demonstrated that the proposed
method can yield cloud-free Landsat image series in terms
of radiometric accuracy and consistency.

Compared with previous studies, there are three major
contributions in our paper: 1) the image thumbnails and cloud
mask thumbnails are used to improve calculation speed in
calculating the similarity and determine cloud patching ref-
erence images, enabling rapid processing of large amounts
of data; 2) build a new cloud patching guidance vector
for Poisson blending, and a box filter method is proposed
for fast guidance vectors operation; and 3) to the best of
our knowledge, this is the first study to perform automatic
cloud removal for 5 years’ Landsat time series at large scale
(i.e., 527 Landsat WRS2 tiles covering China).

The rest of the paper is organized as follows: Section II
describes the study area and data; Section III gives the
proposed algorithm and also provides some illustrating
figures; Section IV presents experimental results and discus-
sions; and conclusion and future work are drawn in the final
section.

II. STUDY AREA AND DATA
A. STUDY AREA
China is situated in East Asia, and its climate has distinct
regional and seasonal characteristics due to East Asian
Monsoon and complex topography. The topography varies
greatly from Eastern to Western China, with an elevation
ranging from −156 m to 8685 m above sea level.

B. DATA
In order to support China’s land cover and land change map-
ping, we downloaded Landsat 8 OLI Collection 1 surface
reflectance data from 2013 to 2017 from the USGS Earth
Explorer. The surface reflectance data was produced based
on the LaSRC algorithm [11]. This data include 527 Landsat
WRS2 (Worldwide Reference System) path/row tiles, and in
total more than 50,000 Landsat images, approximately 30TB
in compressed packages in size.

The new Landsat Collection 1 data has three important
improvements: 1) with higher level geometric accuracy suit-
able for pixel-level time series analysis; 2) improved the
relative radiation consistency between different Landsat sen-
sors (i.e., TM, ETM+ and OLI), and improved the accu-
racy of atmospheric correction; and 3) with a new version
cloud/shadow mask based on the CFMask algorithm [18].

The CFMask algorithm populates cloud, cloud shadow,
and snow/ice pixels in the processing of Landsat Level-1 data
products, with the results represented as bit-mapped values
within the Landsat Collection 1 Level-1 Quality Assessment
(QA) Band. In short, CFMask is a multi-pass algorithm
that uses decision trees to prospectively label pixels in the
scene, and then validates or discards those labels according
to scene-wide statistics. CFMask also creates a cloud shadow
mask by iteratively estimating cloud heights and projecting
them onto the ground [18].

III. METHODS
In this section, we present the proposed method in the fol-
lowing subsections: cloud mask extraction and modification,
data resampling, calculating the similarity, determining cloud
patching reference images, cloud patch direct replacement,
and cloud patch Poisson blending. The flowchart of the pro-
posed method can be found in the Fig. 1.

A. CLOUD MASK EXTRACTION AND MODIFICATION
The cloud mask image is obtained automatically from
Landsat Collection 1 16-bit Quality Assessment (QA) band
data, a new version 8-bit cloud mask (including cloud, cloud
shadow, and high confidence cirrus) is created: the back-
ground is labeled as value 0, while the clear surface back-
ground as value 1, the cloud and High confidence cirrus as
value 2, and the cloud shadow as value 3.

Although the CFMask algorithm achieves good detection
performance, the cloud mask based on the QA band still has
two limitations for our task: 1) some labeled pixels often
appear too isolated, which ismainly caused by the fact that the
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FIGURE 1. The flowchart of the proposed method.

CFMask algorithm uses decision trees to prospectively label
pixels in the scene pixel-by-pixel, while ignoring positional
relationships of adjacent pixels. However, an over-isolated
cloud mask will reduce the quality and stability of subsequent
cloud removal, and greatly increase computational complex-
ity; and 2) the detection accuracy of CFMask at the cloud
boundary, cloud shadow and haze boundary is not very high.

To solve the two problems above, especially considering
automatic pipelines for processing a large number of data,
a simple image morphology approach is proposed to mod-
ify cloud mask, which includes the following two steps:
1) reduce isolated pixels by a window filter: cloud and cloud
shadow patches with less than 4 pixels in the cloud mask
are re-labeled as value 1 (clear surface), and clear surface
patches with less than 4 pixels are re-marked as 2 (cloud); and
2) dilate cloud and cloud shadow to extend the originalmask’s
boundary, in which the cloud boundary is dilated by a radius

of 5 pixels, while the less accurate cloud shadow boundary is
dilated by a larger 10-pixel radius.

Compared with manual correction, the proposed cloud
mask modification method is simple, robust and computa-
tionally fast, and can greatly improve the quality of the cloud
mask. The original and modified cloud mask is shown in
the Fig. 2.

B. DATA RESAMPLING
Using thumbnails instead of original size images in calcu-
lation is one of the key techniques of our algorithm. Since
the cloud patching algorithm is based on multiple images, for
each target image to be patched, some reference images need
to be selected from all the images with the same path/row
number. If the entire search process uses the original size
images, program calculations will be extremely time consum-
ing and even impossible for our task. Instead using thumb-
nails can significantly improve subsequent calculations of
image similarity and determining cloud patching reference
images. In more details, we resample the cloud mask to gen-
erate thumbnails by nearest neighbor interpolation method,
and reduce the image to a quarter of its original size.

With the same idea as in the above subsection, reflectance
data is also resampled to a quarter of its original size to
calculate image similarities and determine cloud patching
image order. For Landsat 8 OLI reflectance bands, only the
band 2 (blue band, 0.450–0.515µm) is used to resample,
which is significantly affected by atmosphere. In subsequent
comparisons, only the blue-band thumbnails will be used to
compare the similarities among all images.

C. CALCULATING THE SIMILARITY
In this step, image similarity is calculated for each image
pair among the n Landsat images for the same path/row.
The proposed similarity measure considers structural simi-
larity (SSIM) index [16], image acquisition time difference
and cloud cover rate in each image.

Let Ii, Ij be blue band thumbnail, and Mi, Mj be the corre-
sponding cloud mask thumbnail, where i, j ∈ n. For the clear
land surface area, mean values µi and µj, standard deviation
values σi and σj, and covariance σij are first computed. The
SSIM value of Ii and Ij is defined as follows:

SSIM(Ii, Ij) =
(2µiµj + C)(2σij + C)

(µ2
i + µ

2
j + C)(σ

2
i + σ

2
j + C)

(1)

where C is a normalizing constant (e.g., C = 2). The larger
the SSIM value, the more similar for the two corresponding
images.

The image acquisition time is recorded in the auxiliary
file of the Landsat surface reflectance product data. The
acquisition difference date Tij is defined as the number of
days between acquisition dates for the two images Ii and Ij.

The amount of cloud cover is obtained by counting the
number of cloud and cloud shadow pixels in the cloud mask
thumbnails Mi and Mj.Let Ci and Cj be the cover amount
of Mi and Mj separately, and Cij is the cover amount in

VOLUME 8, 2020 46153



C. Hu et al.: Multi-Temporal Landsat Data Automatic Cloud Removal Using Poisson Blending

FIGURE 2. Illustration of the cloud mask modification. (Left) Original image. ( Middle) CFMask’s cloud mask. (Right) Result of two step image
morphology modification.

both Mi and Mj at the same position. For the image Ii,
the smaller the value Cj and Cij, the more important the
image Ij for cloud removal among reference image sequence.

Finally, for the target image Ii and one of the reference
image Ij, the similarity calculation Sij is defined as follows:

Sij = a× SSIM(Ii, Ij)+ b×
1
Tij
+ c×

Cj + Cij
2Mij

(2)

where Mij is the common non-zero pixel number in the cloud
mask thumbnails Mi and Mj,including the non-background
area (clear land surface, cloud and cloud shadow area), and
a, b, c are constants, we empirically set all to 1 in the exper-
iments. For Ii, the larger the value Sij is, the more important
the Ij is among the reference image sequence for the cloud
removal task.

D. DETERMINING CLOUD PATCHING REFERENCE IMAGES
Once the similarity for each image pair in n images is iden-
tified, the next step is to obtain the sequence of reference
images to replace the cloud-contaminated regions in the target
image.

For each image Ii, the first reference image Ij is selected
based on:

Smax
ij = max{Sij, i 6= j, j ∈ n} (3)

After obtaining the first reference image, scan all the cloud
and cloud shadow areas in the Ii, and fill them with the Ij
image if the corresponding geographic locations are clear
land areas in the Ij; fill the left cloud and cloud shadow
areas with the second similar reference image; repeat the
above process until all the cloud area in the cloud mask Mi is
patched; record the number of reference images used, patch-
ing order. The cloud patch reference lookup table records
the number of reference images, file names, and patching
sequences required for each Landsat image, and saves them
as external text files.

Experiments found that due to the complexity of cloud
detection results, some highlighted land surfaces were
mis-labeled as clouds in the cloud mask of all images. In fact,

there are very little images that can fill all the cloud areas in
the cloud mask, and more are processed until the fill areas
are no longer reduced. In most cases, the number of reference
images required to repair an image does not exceed five.

E. CLOUD PATCH DIRECT REPLACEMENT
For each Landsat image of the same path and row number,
the marked cloud and cloud shadow areas in the cloud mask
are directly replaced by the clear land surface pixels from
different reference images according to the patching order
determined by the cloud patch reference lookup table. In this
process, a replacement reference mask image is created to
mark the source reference image of each replacement pixel.
In the replacement mask image, the value i indicates that the
patched pixel is from the i-th reference image, i ∈ [1,m], and
m is the number of reference images. It is convenient to trace
the patched area of each image and the patch source of each
pixel.

Fig. 3(b) is an example of a replacement reference mask,
where different gray levels within the patched area are from
different reference images. Fig. 3(c) is an example of a
cloud patch direct replacement. It can be seen that the direct
replacement result has obvious visual radiation difference at
different reference image boundaries within the repaired area
boundary, so the subsequent cloud patch Poisson blending is
needed to eliminate the radiation difference.

F. CLOUD PATCH POISSON BLENDING
Poisson blending is a concept of image editing presented
by Pérez et al. [19], and widely used for seamless editing
for high resolution aerial photography. In our cloud removal
algorithm, the slightly different point is that the Poisson
blending only needs to process pixel values of the repaired
area and the boundary areas of different reference images in
the repaired area. We first briefly summarize the principle of
Poisson blending, as shown in the Fig. 4.

Let S be the image definition domain, and � be a closed
subset of S with boundary ∂�. Let f ∗ be a known scalar
function defined over S minus the interior of � and let f be
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FIGURE 3. Cloud removal result. R:Band4, G:Band3, B:Band2. (a) Target image, and
(b) replacement reference mask. Different colors in the mask region associated
with different reference images. (c) Result of patch replacement, (d) result after
Poisson blending.

an unknown scalar function defined over the interior of �.
Finally, let V be a vector field defined over�. By introducing
a constraint in the form of a guidance field V , the Poisson
blending was proposed as follows [19].

min
∫∫

�

|∇f − V |2 with f |∂� = f ∗
∣∣
∂�

(4)

whose solution is the unique solution of the following Poisson
equation with Dirichlet boundary conditions:

1f |∂� = divV , with f |∂� = f ∗
∣∣
∂�

(5)

where ∇· = [ ∂·
∂x ,

∂·
∂y ] is the gradient operator, and divV =

∂u
∂x +

∂v
∂y is a divergence of V = (u, v). When the guidance

field V is conservative, i.e., it is the gradient of some func-
tion g, an alternative way to understand what Poisson blend-
ing does is to define the correction function f̃ on � such that
f ∗ = g+ f̃ . The Poisson blending then becomes the following
Laplace equation with boundary conditions:

1f̃
∣∣∣
�
= 0 over �, f̃

∣∣
∂� = (f ∗ − g) |∂� (6)

Therefore, inside �, the additive correction f̃ is a mem-
brane interpolant of the mismatch (f ∗ − g) between the
source and the destination along the boundary ∂�. This par-
ticular instance of guided interpolation is used for seamless
cloning [19].

As we can see that, the guidance vector field V is greatly
important in the Poisson blending process. To have a bet-
ter modeling capability, we define a new process calcula-
tion of guidance vector field V , which is different from the
method in [16]. Considering there are two different types of
pixel boundaries (i.e., patch area boundary ∂� and boundary
between different reference images inside �), the guidance
vector field V is separately calculated as follows: the value of
V on ∂� and � without different reference images’ bound-
aries is obtained using a common Laplacian convolution filter
with four or eight connected neighbors of pixel. For the four
neighborhood, the V value calculation formula is:

V (x, y) = g(x + 1, y)+ g(x, y+ 1)

+g(x − 1, y)+ g(x, y− 1)− 4× g(x, y) (7)

While for the eight neighborhood, the formula is:

V (x, y) = g(x + 1, y)+ g(x, y+ 1)+ g(x − 1, y)

+g(x, y− 1)+ g(x + 1, y+ 1)+ g(x − 1, y+ 1)

+g(x + 1, y− 1)+ g(x − 1, y− 1)− 8× g(x, y)

(8)

For boundary between different reference images inside�
(shown in the Fig. 4), the V value calculation uses only neigh-
boring pixels from the same reference image. For example,
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FIGURE 4. Illustration of the Poisson blending. The patch replacement
image is the target image S, The cloud contaminated region in the target
image S is denoted as �, and its boundary is denoted as ∂�. Let f be an
unknown image intensity function defined over �. Let f∗ be the image
intensity function defined over S minus �, and let V be a guidance vector
field defined over �. Let g be the patched area pixel value function
obtained by direct replacement, where g1 and g2 from different
reference images.

with four neighborhood, the V values at pixel c of g1 and
pixel 4 of g2 in the Fig. 4 are separately obtained by:

V (c) = g1(b)+ g1(e)− 2× g1(c) (9)

V (4) = g2(2)+ g2(5)− 2× g2(4) (10)

While with eight neighbors, the formula is corresponding
turned into:

V (c) = g1(a)+g1(b)+g1(d)+g1(e)+g1(f )−5× g1(c)

(11)

V (4) = g2(1)+g2(2)+g2(3)+g2(5)+g2(6)− 5× g2(4)

(12)

By optimizing area boundary above, our algorithm gener-
ates a smooth guidance field. A smooth guidance field is very
important for keeping the land surface spectral characteristics
of the patched area, and conducive to the subsequent remote
sensing classification research. By solving the Poisson equa-
tion with the obtained guidance vector field V , the new values
are re-calculated and filled in the cloud and cloud shadow
areas of each Landsat image.
Our algorithm was implemented in C++, with GDAL

serving as the raster image reading and writing interface.
Our tests were run on a desktop PC, with Intel Core
i7-4610MCPU double 3.0-GHz CPU and 4-GBmemory, and
the operating system is the 64-bit Windows 7.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. RADIOMETRIC CONSISTENCY ASSESSMENT
Radiometric consistency, or the quality of the final Poisson
blending result quality, has already been discussed in Lin’s
papers [16], [17]. Compared with patch replacement, radio-
metric correction and boundary blending methods [21]–[23],
Poisson blending method yields a better result in terms of
radiometric consistency. Following Lin’s experimental set-
tings [16], [17], an experiment was conducted to quantify
the accuracy and to compare with the Lin’s cloud removal
approach.
The experimental procedure was performed as follows:

select a sequence of images that covers several different
landscapes; simulate clouds by partly obscuring a cloud-free
image of the sequence, and then compare the patched image
with the original cloud-free image. A simulation image
(Fig. 5) containing three simulated cloud-contaminated
regions was tested. From visual inspection, the results gen-
erated by the two approaches have a similar radiometric
consistency at the cloud boundaries. To further quantita-
tively compare the two approaches, root-mean-square error
(RMSE), peak signal-to-noise ratio (PSNR), and SSIM index,
are used to evaluate results, and the results are shown in
the Table 1. In this experiment, two reference images were
used: reference image Fig. 5 (b) has a better similarity with

FIGURE 5. Simulation data. (a) Target image (2017/08/31) containing three simulated cloud-contaminated regions:
1 urban area with yellow mark (2372 pixels), 2 cropland area with red mark (9307 pixels), and 3 water area with blue
mark (1061 pixels). (b) Reference image with similar month (2016/08/28). (c) Reference image with different month over
30 days (2015/07/09).
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TABLE 1. Reconstruction accuracy by different approaches: A, patch
replacement; B, radiometric correction with local color blending; C, Lin’s
approach [16]; and our approach. The simulation data a and the reference
images b and c (denoted by ri_b and ri_c) shown in the Fig. 5 are used.

the target image Fig. 5 (a) than reference image Fig. 5(c).
From the statistical table, it is apparent that the approaches
using reference image Fig. 5 (b) have better reconstruction
accuracy than those using reference image Fig. 5(c). From
the table, our approach generally has a similar reconstruction
accuracy compared with Lin’s approach [16]. Our Poisson
blending algorithm differs from Lin’s in the following pro-
cures: guidance vector field calculation, and Poisson equation
optimization solution. The experiment indicates that the two
implementations of Poisson blending result in similar or
comparable patching performances.

However, our approach has a great advantage in reducing
computational complexity, which will be discussed in more
details in the following section.

B. COMPUTATIONAL EFFICIENCY ANALYSIS
To solve Poisson equation with guidance vector field V, there
are mainly two solutions: the direct solution algorithm and
the optimized solution algorithm.

The direct solution algorithm relies on a simple Cholesky
decomposition [24], and uses sparse matrix in the Eigen
library to reduce storage space and achieve fast opera-
tions [25]. And the direct solution algorithm’s accuracy is
much stable. However, the main drawback of the direct solu-
tion algorithm is its poor calculating speed: computing an
n pixel composite requires solving a linear system with n
variables; solving such a large system quickly overwhelms
the main memory of a standard computer when performed
for multi-mega-pixel composites, which are very common for
remote sensing images.

The optimized solution algorithm uses an efficient
gradient-domain compositing based on quadtrees [20], [26].
This algorithm performs a gradient-domain compositing
approximately by solving an O(p) linear system, where p is
the total length of the seams between image regions in the
composite; for typical cases, p is O(

√
n). This reduction is

achieved by transforming the problem into a space where
much of the solution is smooth, and then utilizing the pat-
tern of this smoothness to adaptively subdivide the problem

FIGURE 6. Original Landsat 8 image mosaics for China, captured in
July, 2017. Image is shown according to the following rule: R: Band 4,
G: Band 3, B: Band 2.

domain using quadtrees. This approach significantly reduces
time and memory while achieving visually identical results.

For the above two algorithms, an test was performed to
assess accuracy and calculation speed. 34 images with differ-
ent cloud cover rates were used and the result was presented
in the Table 2. The results show that the direct solution
algorithm’s accuracy is just slightly higher than that of the
optimized solution algorithm, while the time consuming for
the direct solution algorithm is nearly unacceptable when the
cloud cover rate is over 30%.

TABLE 2. Poisson equation solving accuracy and calculating speed of
cloud removal results generated by the direct solution algorithm (Alg_D)
and optimized solution algorithm (Alg_O). 34 images with different cloud
cover rates are used.

To take advantage of the two methods, we proposed a
hybrid solution: we set a cloud cover rate threshold value
as 30%; when the cloud cover rate for one Landsat tile
is lower than the threshold, the direct solution algorithm
is adopted, otherwise the optimized solution is employed.
In this way, the accuracy of the results for whole China is
maximally kept while the average processing time for each
tile is confined within 5 minutes, which makes it possible to
process a total 30TB dataset in an acceptable time.

In addition, the calculation of V on the boundary of differ-
ent reference images inside� in Lin’s approach [16] is much
complicated: all the reference images need to be visited from
hard disk files. Instead, our algorithm uses only two images:
patch replacement image and replacement reference mask;
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FIGURE 7. Landsat 8 image mosaics after cloud removal for China,
captured in July, 2017. Image is shown according to the following
rule: R: Band 4, G: Band 3, B: Band 2.

and the calculation speed of V is greatly accelerated by fast
neighborhood window filtering operation, which is extremely

important for the rapid processing of large amounts of images
(e.g., considering the 30TB data in our case).

C. AUTOMATIC BATCH PROCESSING
For all the 50,000 files, the Landsat images with the same
path/row number are placed in the same file folder, totally
527 folders to cover China.

Theoretically, our automatic cloud removal algorithm will
process every image in one folder, and the derived result will
be a dataset in which every image’s cloud portions have been
filled by other images. Actually, some Landsat data has a very
high cloud cover even nearly 100%. For such data, it is hard
to conduct the cloud patching completely, and even it doesn’t
make any sense for the results. Hence, in the processing
pipeline, the data with a cloud cover greater than 80% is
excluded from further processing.

A cloud removal result of fully covered China region
can be found in Fig. 6 and Fig. 7. There are 527 images,
which were captured in July, 2017. July is the most lush
month for vegetation, and it is also the month with the most

FIGURE 8. Cloud removal result. R:Band4, G:Band3, B:Band2. These images captured in WRS 2 path 119 row 029,
near the northeast of China. (Left) Target image, (middle) cloud mask image, (Right) our result.
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FIGURE 9. The number of finally obtained cloudless images in the five years’ period for each tile over China.

abundant cloud. For most region of China, the number of
cloud removal images with good quality in July is lower than
in other months, especially in Southeast China. Based on our
algorithm, a fully covered China, every 16 days (Landsat
revisit cycle), one year (cloud patch area may come from a
different year), cloudless dataset can be produced. The cloud
removal process is fully automated, and only the poor quality
result filtering is manual.

To have a better view of the temporal dimension of the
produced data, we take one of the 527 areas as an example.
The test images captured in the Landsat WRS2 tile path i119,
row 029, near the northeast of China, from 2013 to 2017.
There are a total of 82 images. After automatic batch pro-
cessing, 65 images are cloud removed, and the remaining
17 images have a cloud and snow cover of greater than 80%.
Not all the 65 images have good quality. By comparing the
65 result images before and after cloud removing manually,
5 images with poor quality are found. Finally, there are
60 images can be used as cloud removal result. We selected
14 images from 60 images, shown in the Fig. 8. The selected
image were captured in different months. Although the cloud
patch area may come from a different year, the trend of
vegetation changes in a full year is fully revealed. We hope
that this result can meet the needs of China’s land cover
classification research based on multi-temporal time series
data.

FIGURE 10. Error detection on cloud shadows. (a) Image visualized
using bands 2–4 (2015/09/11). (b) Cloud mask based on CFMask with
morphology modification. (c) Cloud removal result.

As for the produced 2013-2017 dataset for China, after
filtering with 80% cloud cover and manually deleted removal
images with poor quality (as detailed in the following sub-
section), the Fig. 9 shows that for each tile, the number of
finally obtained cloudless images in five-year period. From
the figure, we can see that for different regions, there are
different numbers of available cloudless images; in general,
the southwest of China has least good images. The figure also
reflects the general cloud cover distribution over China for the
five years.

D. LIMITATIONS
The performance of the proposed cloud removal algorithm
highly relies on the quality of cloud and cloud shadow mask.
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FIGURE 11. A low quality cloud removal result due to cloud shadow. R:Band4, G:Band3, B:Band2.
Two images captured in WRS 2 path 119 row 029, near the northeast of China.

As mentioned in the last paragraph, 5 images with poor
quality are found for the 119/029 tile.We examined the results
and the results for other similar tiles, and found that the
reason for the poor quality of removal result is mainly due
to the low quality of cloud shadow marked by the CFMask
algorithm (e.g., Fig. 10, Fig. 11). Compared to the cloud
mask, the detection accuracy of cloud shadow by the CFMask
is lower. Although achieving better results, image dilation
operation adopted in the proposed algorithm cannot com-
pletely solve the issue. Hence, if the cloud and cloud shadow
mask are incorrect, the performance of the proposed cloud
removal algorithm greatly degrades.

V. CONCLUSION AND FUTURE WORK
In this paper, an automatic cloud removal algorithm for
Landsat 8 data has been proposed. The cloud-contaminated
portions of Landsat 8 Collection 1 surface reflectance image
are first masked and removed automatically, and the miss-
ing pixels are reconstructed using multi-temporal Landsat
images by estimating image similarity. By an efficient
gradient-domain compositing algorithm using quad-trees,
the Poisson blending can be computed in an efficient way.
Experimental results on a sequence of images demonstrate
that the proposed algorithm is very effective in reconstructing
the cloud- and shadow-contaminated pixels with Landsat
time series data. Based on our algorithm, a cloudless dataset
with an interval of 16 days from 2013 to 2017, fully covering
the whole China, has been automatically produced. To the
best of our knowledge, this is the first cloud removed Landsat
dataset for a large scale area (i.e., China) with five years’
period and a high temporal interval. The dataset would greatly
facilitate land cover dynamics studies with high temporal
resolution in China.

Finally, we should stress that the success of the proposed
algorithm heavily relies on a good cloud and shadow mask

for Landsat data: if the CFMask algorithm fails to detect
cloud patches, it will be nearly impossible for our algorithm to
reconstruct the corresponding pixels. Although cloud detec-
tion results by the CFMask algorithm are satisfactory, there is
much improvement space for shadow mask. To have a better
reconstruction effect, a better shadow detection algorithm
should be further studied.

REFERENCES
[1] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton,

‘‘Advances in spectral-spatial classification of hyperspectral images,’’
Proc. IEEE, vol. 101, no. 3, pp. 652–675, Mar. 2013.

[2] L. Zhang, L. Zhang, and B. Du, ‘‘Deep learning for remote sensing data:
A technical tutorial on the state of the art,’’ IEEE Geosci. Remote Sens.
Mag., vol. 4, no. 2, pp. 22–40, Jun. 2016.

[3] L.-Z. Huo, P. Tang, Z. Zhang, and D. Tuia, ‘‘Semisupervised classifica-
tion of remote sensing images with hierarchical spatial similarity,’’ IEEE
Geosci. Remote Sens. Lett., vol. 12, no. 1, pp. 150–154, Jan. 2015.

[4] F. Luo, B. Du, L. Zhang, L. Zhang, and D. Tao, ‘‘Feature learning
using spatial-spectral hypergraph discriminant analysis for hyperspectral
image,’’ IEEE Trans. Cybern., vol. 49, no. 7, pp. 2406–2419, Jul. 2019.

[5] F. Luo, L. Zhang, X. Zhou, T. Guo, Y. Cheng, and T. Yin, ‘‘Sparse-
adaptive hypergraph discriminant analysis for hyperspectral image
classification,’’ IEEE Geosci. Remote Sens. Lett., to be published,
doi: 10.1109/LGRS.2019.2936652.

[6] Z. Wang, B. Du, and Y. Guo, ‘‘Domain adaptation with neural embed-
ding matching,’’ IEEE Trans. Neural Netw. Learn. Syst., to be published,
doi: 10.1109/TNNLS.2019.2935608.

[7] Z. Liu, J. Wang, G. Liu, and L. Zhang, ‘‘Discriminative low-rank preserv-
ing projection for dimensionality reduction,’’ Appl. Soft Comput., vol. 85,
Dec. 2019, Art. no. 105768.

[8] Z. Liu, Z. Lai, W. Ou, K. Zhang, and R. Zheng, ‘‘Structured optimal
graph based sparse feature extraction for semi-supervised learning,’’ Signal
Process., vol. 170, May 2020, Art. no. 107456.

[9] Z. Zhang, P. Tang, L. Huo, and Z. Zhou, ‘‘MODIS NDVI time series
clustering under dynamic time warping,’’ Int. J. Wavelets, Multiresolution
Inf. Process., vol. 12, no. 05, Sep. 2014, Art. no. 1461011.

[10] L.-Z. Huo, L. Boschetti, and A. Sparks, ‘‘Object-based classification of
forest disturbance types in the conterminous united states,’’ Remote Sens.,
vol. 11, no. 5, p. 477, 2019.

[11] E. Vermote, C. Justice, M. Claverie, and B. Franch, ‘‘Preliminary analysis
of the performance of the Landsat 8/OLI land surface reflectance product,’’
Remote Sens. Environ., vol. 185, pp. 46–56, Nov. 2016.

46160 VOLUME 8, 2020

http://dx.doi.org/10.1109/LGRS.2019.2936652
http://dx.doi.org/10.1109/TNNLS.2019.2935608


C. Hu et al.: Multi-Temporal Landsat Data Automatic Cloud Removal Using Poisson Blending

[12] USGS. (Oct. 2018). Landsat 8 (L8) Data Users Handbook v3.0.
[Online]. Available: https://prd-wret.s3-us-west-2.amazonaws.com/assets/
palladium/production/s3fs-public/atoms/files/LSDS-
1574_L8_Data_Users_Handbook.pdf

[13] S. Foga, P. L. Scaramuzza, S. Guo, Z. Zhu, R. D. Dilley, T. Beckmann,
G. L. Schmidt, J. L. Dwyer, M. Joseph Hughes, and B. Laue, ‘‘Cloud
detection algorithm comparison and validation for operational landsat data
products,’’ Remote Sens. Environ., vol. 194, pp. 379–390, Jun. 2017.

[14] S. Gabarda and G. Cristóbal, ‘‘Cloud covering denoising through image
fusion,’’ Image Vis. Comput., vol. 25, no. 5, pp. 523–530, May 2007.

[15] E. H. Helmer and B. Ruefenacht, ‘‘Cloud-free satellite image mosaics
with regression trees and histogrammatching,’’ Photogramm. Eng. Remote
Sens., vol. 71, no. 9, pp. 1079–1089, Sep. 2005.

[16] C.-H. Lin, P.-H. Tsai, K.-H. Lai, and J.-Y. Chen, ‘‘Cloud removal from
multitemporal satellite images using information cloning,’’ IEEE Trans.
Geosci. Remote Sens., vol. 51, no. 1, pp. 232–241, Jan. 2013.

[17] C.-H. Lin, K.-H. Lai, Z.-B. Chen, and J.-Y. Chen, ‘‘Patch-based informa-
tion reconstruction of cloud-contaminated multitemporal images,’’ IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 163–174, Jan. 2014.

[18] Z. Zhu and C. E. Woodcock, ‘‘Object-based cloud and cloud shadow
detection in Landsat imagery,’’ Remote Sens. Environ., vol. 118, pp. 83–94,
Mar. 2012, doi: 10.1016/j.rse.2011.10.028.

[19] P. Pérez, M. Gangnet, and A. Blake, ‘‘Poisson image editing,’’ in Proc.
SIGGRAPH ACM SIGGRAPH Papers, 2003, pp. 313–318.

[20] A. Agarwala, ‘‘Efficient gradient-domain compositing using quadtrees,’’
ACM Trans. Graph., vol. 26, no. 3, p. 94, Jul. 2007.

[21] Q. Jiao, W. Luo, X. Liu, and B. Zhang, ‘‘Information reconstruction in the
cloud removing area based on multi-temporal Chris images,’’ Proc. SPIE,
vol. 2007, Nov. 2007, Art. no. 679029.

[22] B. Wang, A. Ono, K. Muramatsu, and N. Fujiwara, ‘‘Automated detec-
tion and removal of clouds and their shadows from Landsat TM
images,’’ IEICE Trans. Inf. Syst., vol. E82-D, no. 2, pp. 453–460,
Feb. 1999.

[23] D.-C. Tseng, H.-T. Tseng, and C.-L. Chien, ‘‘Automatic cloud removal
from multi-temporal SPOT images,’’ Appl. Math. Comput., vol. 205, no. 2,
pp. 584–600, Nov. 2008.

[24] Rkaman. (2017). Poisson_Blend—A Simple, Readable Implementation
of Poisson Blending. [Online]. Available: https://erkaman.github.io/posts/
poisson_blending.html

[25] Eigen. A C++ Template Library for Linear Algebra. [Online]. Available:
http://eigen.tuxfamily.org/index.php?title=Main_Page

[26] mkazhdan. (2018). Adaptive Multigrid Solvers (Version 11.02):
ImageStitching. [Online]. Available: https://github.com/mkazhdan/
PoissonRecon

CHANGMIAO HU received the B.S. degree in
mathematics from North China Electric Power
University, Beijing, China, in 2006, and the Ph.D.
degree in signal and information processing from
the Institute of Remote Sensing Applications,
Chinese Academy of Sciences, Beijing, in 2012.
From 2012 to 2018, he was an Assistant
Researcher with the Institute of Remote Sensing
and Digital Earth, Chinese Academy of Sciences.
He is currently working with the Aerospace Infor-

mation Research Institute, Chinese Academy of Sciences. His research
interests include remote sensing image processing, geometric correction, and
atmospheric correction.

LIAN-ZHI HUO received the B.S. degree in
geographic information system from Huazhong
Agricultural University, Wuhan, China, in 2007,
and the Ph.D. degree in signal and information
processing from the Institute of Remote Sens-
ing Applications, Chinese Academy of Sciences,
Beijing, China, in 2012.

From 2012 to 2015, he was an Assistant
Researcher with the Institute of Remote Sensing
and Digital Earth, Chinese Academy of Sciences.

From 2015 to 2018, he was a Postdoctoral Fellow with the University
of Idaho, USA. He is currently working with the Aerospace Information
Research Institute, Chinese Academy of Sciences. His research interests
include image classification and machine learning.

Dr. Huo is reviewer for more than 15 international journals, including
the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, IEEE JOURNAL
OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS IN REMOTE SENSING, IEEE
GEOSCIENCE AND REMOTE SENSING LETTERS, and Neurocomputing.

ZHENG ZHANG received the Ph.D. degree in
signal and information processing from the Insti-
tute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences, Beijing, China, in 2016.

He is currently an Associate Professor with the
Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences. His research inter-
ests include remote sensing image processing,
time series analytics, deep learning, and artificial
intelligence.

PING TANG received the Ph.D. degree in math-
ematics from Beijing Normal University, Beijing,
China, in 1996. She spent two year as a Postdoc-
toral Researcher at the Institute of Geophysics,
Chinese Academy of Sciences, Beijing. She is
currently a Professor with the Aerospace Infor-
mation Research Institute, Chinese Academy of
Sciences. Her research interests include remote
sensing image processing and applications, pattern
classification, big data analytics.

VOLUME 8, 2020 46161

http://dx.doi.org/10.1016/j.rse.2011.10.028

