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ABSTRACT Camera-based blind-spot detection systems improve the shortcomings of radar-based systems
for accurately detecting the position of a vehicle. However, as with many camera-based applications,
the detection performance is insufficient in a low-illumination environment such as at night. This problem
can be solved with augmented nighttime images in the training data but acquiring them and annotating the
additional images are cumbersome tasks. Therefore, we propose a framework that converts daytime images
into synthetic nighttime images using a generative adversarial network and that augments the synthetic
images for the training process of the vehicle detector. A public dataset comprising different viewpoints of
target images was used to easily obtain the images required for training the generative adversarial network.
Experiments on a real nighttime dataset demonstrate that the proposed framework improved the detection
performance considerably in comparison with using daytime images only.

INDEX TERMS Data augmentation, domain adaptation, generative adversarial networks, blind-spot

detection.

I. INTRODUCTION

Advanced Driver Assistance Systems (ADASs) using various
sensors have shown considerable success in preventing traffic
accidents. Many systems have been applied to commercial-
ized vehicles to prevent traffic accidents and save many lives.
Among them, a blind-spot detection (BSD) system locates
obstacles toward the rear of the host vehicle on the passenger
side, the so-called “‘blind-spot”, and informs the driver about
the existence of any obstacles. BSD systems are widely used
in many ADASs because they reduce the risk when change
lanes that can sometimes lead to traffic accidents. A study
analyzing the effectiveness of a BSD system found a 14%
reduction in the likelihood of lane change accidents for vehi-
cles equipped one [1].

Most commercially available BSD systems utilize active
sensors such as radars and ultrasound [2]-[4]. However,
active sensor-based systems have the following disadvan-
tages: false alarms when passing through guardrails or
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tunnels, location inaccuracy due to the low lateral accu-
racy of radar, and difficulty in detecting small obstacles;
camera-based systems have been studied to solve these short-
comings. A recent study was conducted by Ra et al. [5] in
which they introduced the side-rectilinear image to detect
objects in the blind-spot of a vehicle. As shown in Fig. 1,
a side-rectilinear image is captured by a virtual camera whose
optical axis is perpendicular to the rear fisheye camera.
A side-rectilinear image has the advantage that the side parts
of the vehicle appear as the same size in the image regardless
of the position of the vehicle. Therefore, vehicle location
in the BSD region is detected with high accuracy based on
the hand-crafted features. Although the most recent ADASs
use neural nets to detect objects, it is not always possible to
install a graphics processing unit (GPU) in a vehicle to run
the network in real-time. Thus, accurately detecting vehicles
in the BSD region based on hand-crafted features rather than
neural nets is significant.

Camera-based ADAS technology has a crucial prob-
lem in that its detection performance is severely degraded
in low-light environments (e.g., at night or in a tunnel),
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FIGURE 1. The side-rectilinear image concept introduced in [5]. (a) A top-view schematic of a situation with the host vehicle and two other
vehicles, (b) the image captured by the rear fisheye camera, and (c) the side-rectilinear image captured by the virtual camera.

a problem that also afflicts camera-based BSD systems. For
example, the manual for Volvo’s camera-based BSD system
notes possible malfunctioning in low light [6]. The per-
formance of the camera-based system using side-rectilinear
images in [5] is limited in low-illumination environments, and
thus our focus in this study was on improving its performance
under such conditions.

Most camera-based ADAS technologies utilize learning-
based perception algorithms. The performance degradation of
the perception algorithm in low-light environments is owing
to the lack of nighttime image samples in the training dataset.
Datasets used in many recent studies only contain images
taken during the daytime, and acquiring the same number
of nighttime images as can be obtained in the daytime is
a labor-intensive task. Moreover, not only image acquisi-
tion but also ground truth annotation is necessary to train
the perception algorithm in a supervised manner. To solve
this image acquisition and annotation problem, researchers
have recently attempted to use generative adversarial net-
works (GANSs) as the core of the solution. GANs are deep
learning structures that generate a synthetic image close to the
real image. The structure consists of a network for generating
the image and a network for determining the authenticity
of the image. In particular, using a conditional GAN makes
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it possible to convert an image in one domain to one in
another. Many researchers have improved the performance
in a specific domain by adding the GAN-generated synthetic
images to the training dataset [7]-[9].

Typically, to improve the performance through conditional
GAN, large numbers of images in both the input and output
domains (in this case, daytime and nighttime side-rectilinear
images) are required to train the GAN. Additional image
acquisition should be eliminated if possible since our objec-
tive is to reduce the burden of acquiring and annotating
images. Therefore, we utilized publicly available datasets
with different viewpoints to train the conditional GAN.
Several front-view databases are available for public access
to develop various ADAS algorithms (e.g., vehicle detec-
tion, pedestrian detection, semantic segmentation, and so on)
[10], [11]. Furthermore, some databases, including all-day
data, have been released [12], [13]. Since the mapping
between input and output domains (i.e., the style change
between day and night images in this study) is similar (even in
images from different viewpoints), the labor-intensive tasks
of acquiring images for training the GAN can be eliminated.

In this paper, we propose an any-time-of day camera-
based BSD system with GAN-based synthetic augmenta-
tion applied to an existing BSD system. To improve the
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nighttime performance of the existing hand-crafted feature-
based BSD system, synthetic nighttime side-rectilinear
images were generated by using a conditional GAN trained
on a large and public front-view dataset. Even though train-
ing and testing images have different viewpoints (front for
training and side-rectilinear for testing), we improved the
nighttime performance of the BSD system with augmented
synthetically generated nighttime images.

In summary, the main contributions of this paper are:

o We propose a new framework with a conditional GAN
for data augmentation. The framework improves the per-
formance of the perception algorithm in ADAS without
any additional data acquisition.

« We use the publicly available front-view databases that
have a different viewpoint from the images required for
training the target perception algorithm to eliminate the
burden of acquiring data to train the GAN.

o The proposed framework drastically improves the night-
time detection performance of the existing BSD system
based on the hand-crafted features.

Il. RELATED WORK

A. CAMERA-BASED BSD

Camera-based BSD systems can be grouped into two types
depending on the position of the camera. Side-camera-
based systems detect vehicles in the blind-spot region by
using cameras installed at the bottom of the side mirrors.
Tseng et al. [14] calculated the optical flow and detected
vehicles based on clustering, while Singh et al. [15] proposed
appearance-based methods that detect vehicles by appearance
features like the car body, tire, and shadow of the vehicle.
Side-camera-based systems have the advantage that vehicles
are captured at high resolution in the image because of the
dedicated cameras for blind-spot systems. However, there is
a disadvantage in that the appearance of the detected vehicle
is distorted depending on the distance between it and the host
vehicle. Chang et al. [16] and Wu et al. [17] proposed side-
camera-based systems for detecting vehicles at night. Both
systems detect vehicles accurately via information on the
headlights. However, it is difficult to use different appearance
features in the daytime and nighttime.

Rear-camera-based systems use a rear fisheye camera,
that causes large radial distortion of the images. To solve
this, Tsuchiya et al. [18] generated a birds-eye view of
the rear fisheye camera image and detected vehicles using
Census transform. Dooley et al. [19] divided images into
three regions and applied appropriate detection methods for
each region. Ra er al. [5] simplified existing frameworks
by using side-rectilinear images. Cheng and Chen [20] and
Kim et al. [21] proposed rear-camera-based systems for use at
night that are similar to the side-camera-based systems using
the headlights of vehicles for appearance features at night.

As previously stated, many BSD systems either address
only the daytime environment or add a separate detection
algorithm for nighttime use to reduce degradation. In this
study, we add synthetic nighttime data to the framework of
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Ra et al. [5] to solve the problem of radial distortion in rear-
camera-based systems.

B. GANS FOR IMAGE-TO-IMAGE TRANSLATION

GANSs [22] have competitively trained generative and dis-
criminative models and have shown good results in many
applications [23]-[27]. Among them, one of the most stud-
ied applications is image-to-image translation. This refers
to tasks that translate the representation of an image in one
scene into another in a way similar to language translation.
GAN-based image-to-image translation methods can be
grouped into two categories: those requiring supervision with
paired images during training and those that do not.

A well-known method that falls into the first category is
pix2pix [28], which is based on a conditional GAN [29]
that utilizes paired images as the supervision to solve image-
to-image translation. This approach has shown impressive
results and has been applied to various tasks [30]-[32].
Furthermore, Wang et al. [31] proposed pix2pixHD, which
can generate high-resolution synthetic images. However,
the paired images are almost impossible to obtain. For exam-
ple, if the input is an image acquired from the front camera of
the vehicle and the output is a semantically labeled image, all
of the image samples are naturally paired. On the other hand,
in the case of daytime to nighttime translation, acquiring
diverse samples is difficult because it is challenging to set
up a camera to take images in the same place throughout the
whole day.

To solve the difficulty of acquiring paired samples, several
methods in the second category tackle training without such
supervision. CycleGAN [34] is a representative work that
adds cycle loss to pix2pix. Even though it is easy to acquire
the training database with CycleGAN, the results are largely
affected by the distribution characteristics of the training
database and geometric changes between the input and output
domains. In other words, successful results can be obtained if
color and texture changes are the only difference between the
input and output domains. Liu et al. [35] proposed a similar
approach to CycleGAN which is robust to these shortcom-
ings, while similar studies have dealt with various tasks in an
unpaired setting [36]-[38].

The image-to-image translation problem tackled in this
study is to convert daytime images to nighttime ones.
Therefore, it is more reasonable to use unpaired image-to-
image translation methods. In addition, various daytime and
nighttime unpaired images can be acquired from several
public databases. Therefore, the second category that does
not require paired image samples is a good option to obtain
the nighttime images for data augmentation. In this work,
we adopted CycleGAN to translate daytime images to night-
time ones.

For autonomous driving, the results of in-vehicle camera
images have been mentioned in existing GAN-based image-
to-image translation researches [34], [35], [39]. The article
by Zhu et al. [34] includes the results of translation from
semantic labels to front-view images using the Cityscapes
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dataset. Moreover, the example results of day-to-night trans-
lation trained on the BDD100OK dataset [12] are presented
on the project page of CycleGAN [39]. This dataset includes
100K of diverse front-view video clips collected from various
cities and environments. Liu et al. [35] presented qualitative
results of the street scene image translation tasks (e.g., from
sunny conditions in summer to snowy conditions in winter,
from daytime to nighttime). Driving videos recorded on dif-
ferent days and in different cities were used to obtain these
results. Although the data configuration was not presented
exactly, they assumed that the training and test data were
front-view images. Moreover, the results in previous studies
were obtained using the same viewpoint images in the train-
ing and test data for image-to-image translation.

The perception algorithms used in autonomous driving are
based on various viewpoint images as well as front-view
ones [5], [40]-[42]. In previous image-to-image translation
researches, acquiring the target viewpoint images is required
to improve the performance in the other domain. For this
reason, we show that domain adaptation is possible via a

Phase 1: CycleGAN-based day to night image translation

GAN trained with heterogeneous viewpoint datasets. In this
work, side-rectilinear images are input into the generator, but
the training data for the GAN were obtained from a publicly
available front-view image dataset.

lIl. METHODOLOGY

A. OVERVIEW

In this study, we augment the synthetic nighttime images over
the entire sequence of steps in the side-rectilinear image-
based BSD system, as illustrated in Figure 2.

In the first phase, CycleGAN was trained with daytime
and nighttime images from the public front-view database.
Synthetic nighttime side-rectilinear images were generated
by using daytime side-rectilinear images with the trained
CycleGAN generator. The annotation data of the daytime
images can be used for the generated nighttime images.
In the second phase, the vehicle detector, which is robust
in low-light environments, was trained at all vehicle detec-
tion stages using both the daytime and synthetic nighttime
images.

[Saiez |
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FIGURE 2. A flowchart of the proposed data augmentation framework.
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B. CYCLEGAN-BASED DAY-TO-NIGHTTIME IMAGE
TRANSLATION

The training process for the two networks of CycleGAN is
shown in Phase 1 in Fig. 2. The aim of the training was to find
mapping function G : Xr — Yz, F : Yy — X between the
daytime (Xy) and nighttime (Yy) domains, where f denotes
the front-view images. Discriminator D and generator G are
then trained competitively. Our objective function consists of
two losses: adversarial and cycle consistency. The adversarial
loss is expressed as:

Loan (G.Dy, . Xr. Yf)
= By s oy) [108Dy; (7)]
+ E)Cf’\'[)dma()(f) [log (1 - DYf (G (.Xf)))] ’ (1)

and the cycle consistency loss is expressed as

Leye (G, F) = E’?f”}’dma(xf) [HF (G (xf)) —Xf ” 1]
+Eypanatn |G (F () =yr[1]- @

Hence, the objective function can be written as

L (G, F.Dx;, Dy;) =Lgan (G. Dy, . Xy, Yy)
+ Lan (F. Dx;. Yy, Xp)+Leye (G, F).
3

The daytime side-rectilinear images were fed to the trained
generator to generate synthetic nighttime images augmented
by the vehicle detector, as shown in Phase 2 in Fig. 2. Even
though the images had been acquired from cameras installed
at different locations on the vehicle, the style changes were
similar to that of the daytime and nighttime images consist-
ing of roads, vehicles, and background. In particular, as is
mentioned in Section C, since only the regions in the images
showing tires and vehicles are used in the training samples for
the vehicle detector, they should be similar in the synthetic
and actual nighttime images.

C. NIGHT DATA AUGMENTATION FOR BSD

In this section, we describe the process of data augmentation
using synthetic nighttime images to improve the nighttime
performance of the existing BSD system [5]. To this end,
let us first describe the BSD system briefly. The BSD sys-
tem detected vehicles in three stages: tire hypothesis gen-
eration and verification; front and rear tire classification;
followed by vehicle hypothesis generation and verification,
as described in Fig. 3 in the form of a flowchart. In the
system, tire hypotheses were acquired using the Viola-Jones
object detector [43] on the side-rectilinear images. Then,
in the hypothesis verification stage, Histogram of Oriented
Gradient (HOG) [44] features were extracted from the gener-
ated hypotheses, and the hypotheses were classified into tires
and non-tires using a Support Vector Machine (SVM) [45].
Finally, the classification stage, the front and rear tires were
distinguished using HOG for the features and SVM as the
classifier.
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FIGURE 3. Flowchart of the existing camera-based BSD system.

Subsequently, vehicle hypotheses were derived as com-
binations of front and rear tires. During this process, only
geometric constraints (e.g., the minimum distance between
the front and rear tires, the front tire must be located left of the
rear tire, etc.) are utilized for hypotheses generation, and so
no training process is required at this stage. After that, HOG
features are extracted and SVM is utilized for the vehicle
hypothesis in a similar way to the tire verification process.

The proposed method augments the synthetic nighttime
images by doubling the training samples used in the four
training stages. Fig. 4 shows a flowchart of the data aug-
mentation process. In the tire hypothesis generation stage,
only the tire region of the synthetic nighttime image was
cropped using the annotation information of the daytime
image and used as a training sample. In the tire hypothesis
verification and tire classification stages, the region of the tire
was expanded to include the car body. Finally, in the vehicle
hypothesis verification stage, the vehicle training samples
were cropped based on the annotation of the front and rear
tire positions and pair information. The daytime and synthetic
nighttime training samples used in each stage are shown
in Fig. 4.

IV. EXPERIMENTS AND EVALUATION

Three different datasets were used to evaluate the
performance of the proposed framework. Table 1 shows the
information on three datasets. CycleGAN was trained and
evaluated for day-to-night image translation with the publicly
available Nexar dataset comprising 50,000 front-view images
from the Nexar Challenge 2 [13]. This dataset includes both
daytime and nighttime images from various cities. We used
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FIGURE 4. Synthetic nighttime sample augmentation at each training stage.

TABLE 1. Information on the three datasets used to evaluate the proposed framework.

Dataset Name Resolution Viewpoint Time of Acquisition Number of Images
CycleGAN training data Nexar dataset 1280 x 720 Front Daytime/nighttime 4,000
Vehicle detector training data ~ Genesis dataset 1000 x 250 Side-rectilinear Daytime 2,000
Vehicle detector test data Sonata dataset 1000 x 250 Side-rectilinear Daytime/nighttime 4,000

2,000 daytime and 2,000 nighttime images from the Nexar
dataset to train CycleGAN.

Datasets for the vehicle detector were captured using two
different vehicles, Hyundai models Genesis and Sonata, for
training and testing, respectively. The training dataset was
obtained with a rear fisheye camera mounted on the Hyundai
Genesis. We collected the 2,000 images and converted them
into side-rectilinear images. The resolution of the rear fish-
eye camera was 1280 x 720 pixels, with a field of view
of 180 degrees. The side-rectilinear images had a resolution
of 1000 x 250 pixels. The dataset for testing of the vehicle
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detector was obtained using a rear fisheye camera mounted
on the Hyundai Sonata with a resolution and field of view
the same as the one on the Genesis. However, the quality
of the side-rectilinear images was far different due to the
different camera poses. Fig. 5 shows a comparison of the rear
fisheye images from the two vehicles. The road area taken
up by the Sonata is smaller than that of the Genesis. Since
the datasets are heterogeneous, the vehicle detection perfor-
mance using these datasets was much lower than that obtained
in [5]. We conducted experiments to show that heteroge-
neous datasets are not a problem when demonstrating the
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FIGURE 5. Comparison of images obtained from the fisheye cameras on
the two vehicles.

performance improvement due to the data augmentation.
From the results reported in Table 2, it can be seen that the
recall rate was greatly reduced when the vehicle detector
was trained with the daytime image dataset from one vehi-
cle type and tested using the datasets from the other one.
However, there was no problem in confirming the
performance improvement when using nighttime data
augmentation.

TABLE 2. Comparison of vehicle detection performance by vehicle type.

Training Dataset Test Dataset Precision Recall
Genesis (Daytime)  Genesis (Daytime)  97.0% 89.0%
Genesis (Daytime)  Sonata (Daytime) 99.2% 56.9%

A. QUALITATIVE EVALUATION OF DAY-TO-NIGHT IMAGE
TRANSLATION

To verify whether the CycleGAN generator trained with the
front-view images could translate the daytime side-rectilinear
images to the nighttime images, we compared the quality
of the generated nighttime images by changing the train-
ing data for CycleGAN. Three training datasets were used:
2,000 daytime and nighttime image pairs, 500 pairs, and
selected 500 pairs. Several images in the Nexar dataset were
inappropriate for training because the camera installation
angle was improper. Therefore, in the case of the selected
500 pairs, only the images in which the front-view was
normally acquired were used and the improper images were
excluded. Fig. 6 presents examples of excluded images that
were considered to have been acquired incorrectly.

FIGURE 6. Examples of inadequate images in the Nexar dataset.
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Training was performed on an NVIDIA GTX 1080Ti with
11 GB memory. The architecture of the generative network
used was the neural-style transfer proposed by Cortes and
Vapnic [45]. The training parameters of the network were as
follows: a learning rate of 0.0002, the weight for the cycle-
consistency loss A was 10, and the number of training epochs
was 200. In the comparison of the three cases, each trained
generator was used to transform 2,000 side-rectilinear images
of the Genesis dataset. Fig. 7 shows the synthetic nighttime
images generated by the three generators. In the case of using
500 pairs, the images tended to show a lot of unnatural defects
as if the light had been reflected. These defects occurred on
the surface of the vehicles or near them. In the case of using
the selected 500 pairs, the overall quality of the generated
nighttime images was the best. Details of the roads and build-
ings around the region of the sky were better maintained than
with the other two datasets. However, unnatural glittering
occurred and there was a lot of noise on the surfaces of the
vehicles. When using the 2,000 pairs dataset, there was a
tendency to generate smooth images without noise on the
surfaces of the vehicles and the surrounding area of the vehi-
cles compared to the other two cases. However, the buildings
around the sky and road areas were lower quality than when
using the 500 selected pairs.

Our data augmentation approach added training samples
by cropping the tires and body of the vehicle from the
generated nighttime images. Therefore, when generating the
synthetic nighttime images, the quality of the vehicle region

TABLE 3. The number of images used for learning at each stage.

Stage # of Positives # of Negatives
Tire hypothesis generation 10,129 3,740

Tire hypothesis verification 19,262 9,226
Front/rear tire classification 9,259 10,003
Vehicle hypothesis verification 3,820 4,225

TABLE 4. Performance at the tire hypothesis generation stage.

Tire Hypothesis Generation Precision Recall
Daytime data only 80.6% 82.1%
Daytime + GAN (500 pairs) 80.5% 86.1%
Daytime + GAN (Selected 500 pairs) 74.0% 90.9%
Daytime + GAN (2,000 pairs) 78.6% 92.1%

TABLE 5. Performance at the tire hypothesis verification stage.

Tire Hypothesis Verification Precision Recall
Daytime data only 99.7% 45.7%
Daytime + GAN (500 pairs) 87.0% 71.2%
Daytime + GAN (Selected 500 pairs)  87.6% 69.0%
Daytime + GAN (2,000 pairs) 97.6% 72.6%
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(b)
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FIGURE 7. Results of day-to-night image translation after training with, (a) 500 pairs, (b) the selected 500 pairs, and (c) 2,000 pairs.

TABLE 6. Performance at the tire classification stage.

Front/Rear Tire Classification Front tire Rear tire Front/Rear Tire Classification  Front tire Rear tire
(daytime data only) (classification)  (classification) | (daytime + GAN (500 pairs)) (classification) (classification)
Front tire (ground truth) 75.75% 24.25% Front tire (ground truth) 78.36% 21.64%

Rear tire (ground truth) 0.81% 99.19% Rear tire (ground truth) 2.92% 97.08%
Front/Rear Tire Classification Front tire Rear tire Front/Rear Tire Classification  Front tire Rear tire
(daytime + GAN (Selected 500 pairs)) (classification)  (classification) | (daytime + GAN (2,000 pairs))  (classification) (classification)
Front tire (ground truth) 71.84% 28.16% Front tire (ground truth) 79.38% 20.62%

Rear tire (ground truth) 1.17% 98.83% Rear tire (ground truth) 4.22% 95.78%

was better than the sky and road regions. Consequently, using
the 2,000 pairs dataset was suitable for training with our data
augmentation approach.

B. QUANTITATIVE EVALUATION OF NIGHTTIME DATA
AUGMENTATION FOR BSD
The performance of each stage of the vehicle detector whose
training dataset is augmented by the generated synthetic
images was evaluated. Four experiments were conducted for
each stage using only the daytime training samples and using
both the daytime and synthetic nighttime training samples.
The dataset for performance evaluation was the daytime
and nighttime images taken with the fisheye camera on the
Hyundai Sonata. Table 3 reports the number of images used
for learning in each stage. The test data comprised 2,000 side-
rectilinear images, including 1,582 vehicles and 3,656 tires.
The detection performance at each step was measured in
the same manner as in [5]. We used the intersection over
union (IOU) as the criterion for recall and precision. It was
determined that the detection was successful if the IOU was
greater than 0.3. Table 4 summarizes the performance of the
tire hypothesis generation stage. From the results, the recall
was improved by 10% by augmenting the synthetic nighttime
samples, and although there was a 2% decrease in precision,
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TABLE 7. Performance at the vehicle verification stage.

Vehicle Hypothesis Verification Precision Recall
Daytime data only 100.0% 26.2%
Daytime + GAN (500 pairs) 96.6% 51.6%
Daytime + GAN (selected 500 pairs)  96.9% 47.7%
Daytime + GAN (2,000 pairs) 97.1% 55.0%

it is important to test as many hypotheses as possible in the
hypothesis generation stage.

Next, the performance of the tire hypothesis verification
stage is summarized in Table 5. When the samples acquired
from the synthetic nighttime images were augmented in the
training dataset, the precision of the tire hypothesis verifi-
cation stage decreased by 2.1%, but the recall improved by
26.9%.

The performance at the tire classification stage was eval-
uvated with a confusion matrix, as reported in Table 6.
However, the result did not improve as we thought. When the
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FIGURE 8. Results of vehicle detection. Training with (a) daytime samples only, (b) 500 image pairs, (c) selected 500 pairs, and (d) 2,000 image

pairs.

classifier was trained with the daytime training samples only,
the classification accuracy was the highest and the recall
for the tire hypothesis verification stage was 45.7%. On the
other hand, when augmenting synthetic nighttime samples,
the recall for the tire hypothesis verification stage was 72.6%.
In fact, the number of tires used to measure the performance
of tire classification was 200 fewer when using only daytime
samples. Moreover, the tires detected when training with the
daytime samples were relatively clear and the quality was
favorable, and so the accuracy was high.
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Similar to the tire hypothesis verification, the perfor-
mance of vehicle hypothesis verification was evaluated by
measuring recall and precision. Improving the performance
at this stage is the most important because the detection
results are used to give the BSD warning signal. From the
results in Table 7, when augmenting the nighttime samples,
the precision dropped by 2.9%, but recall improved by around
twice as much (from 26.2% to 55.0%).

The results of the vehicle detection applied to the test
images are shown in Fig. 8. The tires were not detected
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frequently using the daytime dataset, and even when detected,
the tire classification was wrong. In contrast, in the case of
augmenting the synthetic nighttime samples from the GAN
trained with 2,000 pairs, the tires were detected and classified
accurately in a low-illumination environment.

V. CONCLUSION

In this paper, we propose a new framework of data augmen-
tation using GAN. The detection performance of an existing
BSD system is improved in a low illumination environment
by applying this framework. The proposed framework gen-
erates synthetic nighttime images using a conditional GAN.
A public front-view image database was used to train the
GAN, but since the images were from different viewpoints,
the synthetic images were not a complete reproduction of
reality. Nevertheless, they are sufficient for data augmenta-
tion for vehicle detection. When the augmented BSD system
was applied to actual nighttime images, the detection perfor-
mance was nearly doubled compared to training with daytime
images only.

In future work, we will apply the proposed frame-
work to improve the nighttime detection performance of
different viewpoint image-based ADAS applications such
as those based on the around view monitoring-based
applications.
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