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ABSTRACT This paper investigates the physical layer security issue in an unmanned aerial vehicle (UAV)
aided cognitive radio network. Specially, a UAV operates as an aerial secondary transmitter to serve a
ground secondary receiver (SR) by sharing the licensed wireless spectrum assigned to primary terrestrial
communication networks, and in the meantime multiple eavesdroppers (Eves) try to wiretap the legitimate
UAV-to-SR link. Under the assumption that the location formation of the Eves is imperfect, we jointly
optimize the robust trajectory and transmit power of the UAV over a finite flight period to maximize the
SR’s average worst-case secrecy rate, while controlling the co-channel interference imposed on the primary
receivers (PRs) below a tolerable level. The design is formulated as a non-convex semi-infinite optimization
problem that is challenging to be optimally solved. To deal with it, we first prove that the considered problem
can be simplified as a more tractable one, which resolves the location uncertainties of the Eves without
the aid of S-Procedure adopted in conventional methods. After that, an efficient iterative algorithm based
on successive convex approximation (SCA) is developed to obtain a locally optimal solution. Numerical
simulations are provided to demonstrate the effectiveness of our proposed algorithm and offer important
system design insights.

INDEX TERMS UAV communications, cognitive radio, physical layer security, trajectory optimization,
robust design.

I. INTRODUCTION
For the past few years, unmanned aerial vehicles (UAVs)
have found widespread promising applications in the field
of wireless communications due to their several advantages,
such as highly controllable mobility, the ability of on-demand
deployment, and line-of-sight (LoS) air-to-ground links [1].
For example, UAVs can be employed as aerial base sta-
tions (BSs) [2] to provide wireless service for a set of ground
users, mobile relays [3] to deliver the source data to a remote
destination node, or mobile data collectors [4] for wireless
sensor networks.

Previous researches on UAV-enabled wireless communi-
cations can be loosely divided into two types. One type
considers the application of UAVs as quasi-static BSs.
Specifically, the UAVs’ horizontal positions, altitudes and/or
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spatial density can be optimized to maximize the commu-
nication coverage area [5], [6], minimize the number of
required UAV BSs [7], or maximize the number of cov-
ered users [8]–[10]. To fully exploit the high mobility of
UAVs, the other type considers the application scenarios
where UAVs are employed as mobile BSs/relays/access
points/energy transmitters, whose locations over time (i.e.,
trajectories) can be properly designed to improve the commu-
nication performance. For example, a trajectory optimization
problem is studied in [11] for completion time minimization
in UAV-enabled multicasting. The authors in [12] investigate
the jointly optimal 3D UAV trajectory and resource alloca-
tion algorithm design for a multicarrier solar-powered UAV
communication system, with the goal of maximizing the sys-
tem sum throughput. For a rotary-wing UAV-enabled wire-
less communication system, the work [13] studies the joint
optimization of UAV trajectory, communication scheduling
and mission completion time to minimize the UAV energy
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consumption. In addition, UAV trajectory optimiza-
tion or path planning has been widely investigated in various
other applications such as multi-UAV communications [14],
UAV-enabled wireless power transfer [15], mobile-edge com-
puting [16], [17], and UAV-enabled data harvesting [18].

Despite the appealing benefits brought by UAVs,
the broadcast nature of LoS channels brings a severe chal-
lenge to the information security of UAV-ground commu-
nications, since confidential messages are more vulnerable
to be eavesdropped by unauthorized ground nodes. As an
alternative to conventional cryptographic methods, physical
layer security has become an appealing solution to cope
with the security threats in UAV networks by exploiting the
physical characteristics of wireless channels [19]. In general,
the secrecy rate is considered as the key design metric to mea-
sure the physical layer security performance, which stands for
the rate of confidential information can be reliably conveyed
without being divulged to any eavesdroppers [20].

Recently, UAV-enabled secure communications have been
extensively studied in the literature. As summarized by [21],
emerging physical layer security strategies against eaves-
dropping in UAV wireless communication systems include
trajectory optimization, resource allocation, robust design,
artificial noise, and cooperation among multiple UAVs.
Specifically, to maximize the secrecy rate, joint trajectory and
transmit power design schemes are presented in [22] for a
single-UAV communication system with a ground node and
a potential eavesdropper. A joint user scheduling, UAV tra-
jectory and transmit power control optimization framework
is proposed in [23] for a downlink transmission scenario,
where a UAV serves multiple users in a time division mul-
tiple access (TDMA) manner in the presence of an eaves-
dropper. The authors in [24]–[26] investigate the physical
layer security for UAV-enabled mobile relaying systems.
Reference [24] optimizes the UAV trajectory together with
the transmit power of the source/UAV to secure the data trans-
mission. In [25], caching is leveraged to improve the secrecy
rate of the system. A secrecy energy efficiency (SEE) maxi-
mization problem is studied in [26], where SEE is defined as
the ratio of the secrecy rate to the UAV energy consumption
measured by bits-per-Joule (bits/J). In [27], a joint power con-
trol and trajectory optimization problem is investigated for
UAV-enabled secure communications with no-fly zone con-
straints. Besides being employed as a transmitter or mobile
relay, the UAV can also work as a friendly jammer that sends
jamming signals to combat against eavesdropping attack. For
example, [28] considers a scenario where a UAV jammer
helps secure ground wiretap channels. Furthermore, a two-
UAV scenario has been studied in several prior works, where
oneUAV transmits the confidential messages to the legitimate
users, and the other cooperative UAV jams the eavesdroppers
(e.g., [29]–[31]). The authors in [32] consider a cooperative
secure communication system with multiple source UAVs
and jamming UAVs. The SEE of the system is maximized
by jointly optimizing the UAVs’ trajectories, transmit power
and user scheduling.

In addition, some prior works also take into account
the imperfect location information of eavesdroppers
(e.g., [33]–[37]), which is more suitable for practical appli-
cations. A joint robust trajectory and transmit power design
framework is proposed in [33] for a single-UAV wireless net-
work with a legitimate receiver and multiple eavesdroppers
each located in an uncertain region. Compared with [33],
an extra UAV is employed as a cooperative jammer in [34]
to confuse an eavesdropper. In [35], the authors consider
a scenario where a UAV acts as a friendly jammer to
help secure communications between a legitimate on-ground
transmitter-receiver pair for unknown eavesdropper location.
For a UAV-enabled orthogonal frequency division multiple
access (OFDMA) communication system, the authors in [36]
jointly optimize the user scheduling, power allocation, UAV’s
trajectory and flight velocity to maximize the system energy
efficiency. In [37], the authors investigate energy-efficient
computation offloading problems in the presence of an active
and a passive eavesdropper, respectively, for a secure UAV-
edge-computing system.

Note that all the aforementioned works have assumed
that the UAV communications are operated over dedicated
frequency bands. Nevertheless, the problem of spectrum
scarcity becomes increasingly severe due to the dramatic
growth of mobile terminals, which makes it practically hard
to assign dedicated spectrum to new UAV communications.
In this regard, cognitive radio (CR) technology has been
widely accepted as a promising approach to heighten the
spectrum utilization ratio and ease the condition of spec-
trum scarcity [38]. Therefore, using UAVs in CR network
can combine the benefits of both. A novel cognitive UAV
communication paradigm is proposed in [39], where a UAV
is employed as a cognitive/secondary transmitter to commu-
nicate with a secondary receiver (SR) in the presence of a set
of primary terrestrial communication links that operate over
the same frequency band. The authors jointly optimize the
UAV trajectories and transmit power to maximize the SR’s
achievable rates under the quasi-stationary and mobile UAV
scenarios, respectively, while ensuring that the interference
power at the primary receivers (PRs) must be less than a
given threshold. However, the work in [39] does not take
the issue of UAV network security into account. Currently,
only limited research efforts have been devoted to the physi-
cal layer security enhancement for UAV-aided CR networks.
In [40], the authors deploy a UAV as a secondary relay to
bridge the communication between a secondary transmitter-
receiver pair in the presence of a PR that operate over the same
frequency band and a potential eavesdropper. Reference [41]
considers a scenario where a UAV is introduced as a friendly
jammer to help improve the secrecy rate performance of
a CR network. However, only one eavesdropper with per-
fect location information and one PR are considered in [40]
and [41], which is overly optimistic and extremely simplifies
the practical consideration.

Motivated by the above observations, we investigate in this
paper a UAV-aided secure CR network, where a secondary
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FIGURE 1. Illustration of a cognitive UAV secrecy communication system.

UAV transmitter sends confidential information to a ground
SR in the presence of multiple PRs that operate over the same
frequency band and multiple eavesdroppers (Eves), as shown
in Fig. 1. It is assumed that the Eves’ locations are only
partially known to the UAV, subject to norm-bounded errors.
For protecting the primary communications, we adopt the
interference temperature (IT) technique in CR networks [42].
Accordingly, the interference imposed from the UAV trans-
mit power to each PR must be below a given IT thresh-
old. Our target is to maximize the SR’s average worst-case
secrecy rate through jointly designing the UAV’s transmit
power and trajectory over a finite flight duration with pre-
determined initial and final locations, subject to the mobil-
ity and transmit power constraints of the UAV, and the IT
constraints at the PRs. The consequent problem is a non-
convex semi-infinite optimization problem that is hard to
solve optimally. Note that the trajectory optimization meth-
ods proposed in [39] for cognitive UAV communications
do not take into account the security issue, thus can not be
directly applied to our considered problem. Besides, in com-
parison with the prior studies on cognitive UAV secrecy com-
munications (i.e., [40] and [41]), we consider multiple Eves
with imperfect location information and multiple PRs, which
in return brings challenge in robust trajectory and power
design. In this paper, we develop an efficient suboptimal
iterative algorithm for the considered problem by exploiting
the properties of it and the advantages of successive convex
approximation (SCA).

For clarity, the main contributions of this work are summa-
rized as follows.

• We consider an average worst-case secrecy rate maxi-
mization problem in a UAV-aided secure CR network
with multiple Eves each located in an uncertain region.
To our best knowledge, this is a novel optimization
problem and has not yet been studied in the literature.

• To tackle the formulated non-convex semi-infinite opti-
mization problem, we first provide some useful insights
to simplify it into a more tractable one, which resolves
the location uncertainties of the Eves without the aid
of S-Procedure [43] adopted in conventional methods
(e.g. in [33]). Then, an efficient iterative algorithm is

proposed to obtain a locally optimal solution by lever-
aging the SCA technique.

• Numerical results demonstrate that the proposed joint
design algorithm can enhance the secrecy rate perfor-
mance in comparison with other benchmark schemes
without trajectory optimization and/or power control.
Besides, some important insights are provided in the
simulations for the impact of IT threshold on the system
performance.

The rest of this paper is organized as follows. Section II
introduces the system model and the problem formula-
tion for a cognitive UAV secrecy communication system.
In Section III, we propose an efficient suboptimal algorithm
for the considered problem. Simulation results are given in
Section IV to demonstrate the efficacy of the proposed design,
followed by conclusions in Section V.
Notations: In this paper, scalars and column vectors are

written in italic and boldface lower-case letters, respectively.
RM×1 denotes the space of M -dimensional real-valued vec-
tor. For a scalar x, its absolute value is denoted by |x|.
For a vector a, aT represents its transpose and ‖a‖ denotes
its Euclidean norm. For two points A and B in a three-
dimensional Cartesian coordinate, |AB| denotes the Euclidean
distance between the two points. For two sets K1 and K2,
K1 ⊆ K2 represents that K1 is a subset of K2.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
As shown in Fig. 1, we consider the secrecy transmission in a
UAV-aided CR network, which is composed of one secondary
UAV transmitter, one SR, K Eves and L PRs. All the devices
are assumed to be equipped with a single antenna. Without
loss of generality, we express locations in a three-dimensional
Cartesian coordinate system with all dimensions measured in
meters (m). Suppose that the SR locates at (xs, ys, 0), and the
location of each Eve k ∈ K , {1, · · · ,K } is

(
xe,k , ye,k , 0

)
,

where ws = [xs, ys]T ∈ R2×1 and we,k = [xe,k , ye,k ]T ∈
R2×1 denote the horizontal locations of the SR and Eve k ,
respectively. It is assumed that the UAV knows the exact
location of the SR via proper information exchange, but only
has the estimated horizontal location of Eve k , denoted by
w̃e,k = [x̃e,k , ỹe,k ]T ∈ R2×1, with the estimation error being
1we,k = we,k − w̃e,k = [1xe,k ,1ye,k ]T ∈ R2×1.1 The
estimation error satisfies

1x2e,k +1y
2
e,k ≤ ε

2
k , (1)

from which we have

we,k ∈ Ae,k ,
{
we,k |

∥∥we,k − w̃e,k∥∥2 ≤ ε2k} , (2)

1We assume that the SR can obtain its location via the global position
systems (GPS) and/or other location techniques and then reports the location
information to the UAV. However, owing to the lack of cooperation between
the UAV and Eve k , the UAV can only obtain Eve k’s estimated location by
an camera or synthetic aperture radar. Such location estimation is expected
suffering from errors since Eve k may keep silent to hide its existence [33].
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where Ae,k represents the set of Eve k’s possible locations.
Accordingly, Eve k can be seen as locating in an uncertain
circular region with a radius of εk centered at

(
x̃e,k , ỹe,k , 0

)
.

For l ∈ L , {1, · · · ,L}, PR l is assumed to locate at(
xp,l, yp,l,Hl

)
with wp,l = [xp,l, yp,l]T ∈ R2×1 denoting its

horizontal location and Hl representing its altitude.2

We assume that the UAV flies from the pre-determined
initial location (xI , yI ,H) to the final location (xF , yF ,H)
within the flight period T . Define qI = [xI , yI ]T ∈ R2×1

and qF = [xF , yF ]T ∈ R2×1 as the horizontal initial and final
locations. For avoiding unnecessary energy consumption on
frequent ascending or descending, the UAV is assumed to fly
at a constant altitude H , the value of which corresponds to
the minimum altitude required for terrain or building avoid-
ance [44]. For ease of design, the flight period T is equally
discretized into N time slot with step size δ = T/N , which
is set sufficiently small such that the change in the UAV’s
location within each time slot can be neglected [14]. As such,
we can characterize the UAV trajectory projected on the
horizontal plane as q[n] = [x[n], y[n]]T ∈ R2×1, n ∈ N ,
{1, · · · ,N }. Let D = Vmaxδ denote the maximum flying
distance of the UAV within one time slot, where Vmax is the
maximum speed in meter/second (m/s). In practice, the UAV
trajectory is limited by the following mobility constraints:

‖q[n+ 1]− q[n]‖ ≤ D, n ∈ N \ {N } , (3a)

‖q[1]− qI‖ ≤ D, q[N ] = qF . (3b)

Furthermore, in any time slot n, the distances from the UAV
to the SR, Eve k and PR l can be expressed as ds[n] =√
‖q[n]− ws‖2 + H2, de,k [n] =

√
‖q[n]− we,k‖2 + H2 and

dp,l[n] =
√
‖q[n]− wp,l‖2 + (H − Hl)2, respectively.

It has been verified by the measurement results
in [45]–[47] that the practical air-to-ground communica-
tion channels are mainly dominated by the LoS links,
especially when the UAV flies in certain environment like
rural or sub-urban areas with little blockage and scatter-
ing, and/or operates beyond a certain altitude. Addition-
ally, the LoS-dominating air-to-ground channel model is
also one of the considered channel models in the recent
3GPP specification [48]. As a result, to illustrate the most
essential design insights and for ease of exposition in this
paper, we adopt the widely-used LoS channel model for the
UAV-to-ground links as in the prior works [22]–[34], [36],
[37], [39]–[41]. The extension to the probabilistic LoS and
Rician fading channels will be left as our future work.
Besides, the Doppler effect brought by the UAV mobility is
assumed to be perfectly compensated at the receivers based
on existing techniques [49]. As a result, the channel power
gain from the UAV to the SR in time slot n can be expressed as

hs[n] = β0d−αs [n] =
β0(

‖q [n]− ws‖2 + H2
)α/2 , (4)

2It is seen from Fig. 1 that the PRs in our considered scenario are ground
BSs, whose locations are fixed and can be easily obtained by the UAV in
advance.

where β0 denotes the channel power gain from the UAV to
the SR at the unit reference distance, and α ≥ 2 represents
the generic path loss exponent determined by the radio propa-
gation environment. Similarly, the channel power gains from
the UAV to Eve k and PR l in time slot n are respectively
given by

he,k [n] = β0d
−α
e,k [n] =

β0(
‖q [n]− we,k‖2 + H2

)α/2 , (5)

hp,l[n]= β0d
−α
p,l [n]=

β0(
‖q [n]−wp,l‖2+(H−Hl)2

)α/2 . (6)

Denote the transmit power of the UAV in time slot n by
p[n], which needs to satisfy

0 ≤ p[n] ≤ Pmax, ∀n, (7a)

1
N

N∑
n=1

p[n] ≤ P̄, (7b)

where Pmax and P̄ denote the maximum peak power and
average power given a priori, respectively. Note that (7b)
corresponds to the total communication related power budget.
Besides, to guarantee that (7b) is a non-trivial constraint,
we assume that P̄ < Pmax. Then, we can express the
achievable rate from the UAV to the SR in time slot n in
bits/second/Hertz (bps/Hz) as

Rs[n] = log2

(
1+

hs[n]p[n]
σ 2

)
= log2

(
1+

γ0p [n](
‖q [n]− ws‖2 + H2

)α/2
)
, (8)

where γ0 , β0/σ
2 with σ 2 denoting the noise power at the

receiver. Similarly, the achievable rate from the UAV to Eve
k in time slot n in bps/Hz is given by

Re,k [n] = log2

(
1+

γ0p [n](
‖q [n]− we,k‖2 + H2

)α/2
)
. (9)

Since the location information of each Eve is imperfect,
the maximal achievable rate of Eve k in time slot n can
be expressed as maxwe,k∈Ae,kRe,k [n]. Accordingly, the worst-
case secrecy rate of the SR, in the presence of K Eves, in time
slot n in bps/Hz can be written as

Rsec[n] =
[
Rs[n]−max

k∈K
max

we,k∈Ae,k
Re,k [n]

]+
, (10)

where [x]+ , max(x, 0), which makes function (10) non-
smooth at zero value.

In such a spectrum sharing scenario, the terrestrial PRs
suffer from the air-to-ground co-channel interference intro-
duced by the secondary UAV communication. In a certain
time slot n, the interference power at PR l is given by

Q[n] = hp,l[n]p[n]=
β0p[n](

‖q [n]−wp,l‖2+(H−Hl)2
)α/2 . (11)
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To protect the primary communications, we apply the widely
adopted IT technique as in [39], [42]. Accordingly, in each
time slot n, the UAV’s interference power at PR l should be
limited below a threshold, denoted by 0l ≥ 0. We thus have

β0p[n](
‖q [n]− wp,l‖2 + (H − Hl)2

)α/2 ≤ 0l . (12)

B. PROBLEM FORMULATION
Our objective is to maximize the SR’s average worst-case
secrecy rate over the totalN time slots (i.e., 1

N

∑N
n=1 Rsec[n]),

by jointly optimizing the UAV’s trajectory {q[n],∀n} and
transmit power {p[n],∀n}, constrained by the UAV mobility
constraints in (3), the transmit power constraints in (7) and
the IT constraints in (12). Mathematically, the investigated
problem can be formulated as

(P1) : max
{q[n],p[n]}

1
N

N∑
n=1

[
Rs[n]−max

k∈K
max

we,k∈Ae,k
Re,k [n]

]
(13a)

s.t. ‖q[n+ 1]− q[n]‖ ≤ D, n ∈ N \ {N } , (13b)

‖q[1]− qI‖ ≤ D, q[N ] = qF , (13c)

0 ≤ p[n] ≤ Pmax, ∀n, (13d)

1
N

N∑
n=1

p[n] ≤ P̄, (13e)

β0p[n](
‖q [n]−wp,l‖2+(H−Hl)2

)α/2 ≤ 0l, ∀n, l,
(13f)

where the operation [·]+ has been dropped in (13a), since
for any time slot n, the corresponding summation term in the
objective function, i.e., Rs[n]−maxk∈Kmaxwe,k∈Ae,kRe,k [n],
must be non-negative at the optimal solution; otherwise, its
value can be increased to zero by setting p[n] = 0 without
violating the power-related constraints (13d)-(13f). As such,
problem (P1) resolves the non-smooth issue brought by the
operation [·]+.
Remark 1: It is not hard to see that the minimum required

time length for the UAV to fly from the pre-determined
initial location to the final location is given by Tmin =∥∥qF − qI∥∥ /Vmax. Obviously, there must be T ≥ Tmin to
ensure the feasibility of trajectory design. Note that when
T ≥ Tmin, we can alway find feasible solutions to problem
(P1) that meet all the constraints. Therefore, the feasibility
condition of (P1) is just T ≥ Tmin.

Problem (P1) is challenging to solve for the following three
aspects. First, due to the uncertainty in each Eve’s location,
(P1) is an intractable semi-infinite optimization problem.
Second, the objective function is non-concave due to the
coupling of optimization variables q[n] and p[n]. Third, (13f)
is not jointly convex with respect to q[n] and p[n]. In general,
there is no standard method to solve such a non-convex
problem optimally. In Section III, we will propose an efficient
algorithm to find a locally optimal solution for (P1).

III. PROPOSED ALGORITHM FOR PROBLEM (P1)
In this section, we develop an efficient algorithm to solve
problem (P1) sub-optimally. Specially, we first provide some
useful insights to simplify problem (P1) into a more tractable
one, which resolves the location uncertainties of the Eves.
After that, for the resulting non-convex optimization problem,
we propose an efficient iterative algorithm to obtain a locally
optimal solution with the assistance of the SCA technique.
In the end, we summarize the overall algorithm and propose
an efficient initialization scheme for it.

A. SIMPLIFICATION OF PROBLEM (P1)
For problem (P1), since each Eve’s uncertain location param-
eter we,k only exists in the expression for Re,k [n], we first
derive an explicit expression for maxwe,k∈Ae,kRe,k [n]. Notice
that by referring to (9), we have

max
we,k∈Ae,k

Re,k [n]

= log2

1+ γ0 p [n](
min

we,k∈Ae,k
‖q [n]− we,k‖2 + H2

)α/2
 , (14)

where we have used the fact that the expression for Re,k [n]
is monotonically decreasing with respect to ‖q[n] − we,k‖2.
This thus motivates us to consider the following problem:

min
we,k∈Ae,k

‖q[n]− we,k‖2. (15)

It is not difficult to verify that the optimal value of (15) is
attained at w∗e,k (q[n]) = w̃e,k +

q[n]−w̃e,k
‖q[n]−w̃e,k‖

εk when ‖q [n] −
w̃e,k‖ ≥ εk , and w∗e,k (q[n]) = q[n] otherwise. Accordingly,
we have

min
we,k∈Ae,k

‖q[n]− we,k‖2

=

{∣∣ ‖q [n]− w̃e,k‖ − εk ∣∣2 , ‖q [n]− w̃e,k‖ ≥ εk ,
0, ‖q [n]− w̃e,k‖ < εk .

(16)

By substituting the solution in (16) back into (14), we have

max
we,k∈Ae,k

Re,k [n]

=


R̂e,k [n], ‖q [n]− w̃e,k‖ ≥ εk ,

log2

(
1+

γ0p[n](
H2
)α/2

)
, ‖q [n]− w̃e,k‖ < εk ,

, R̃e,k [n], (17)

where

R̂e,k [n] , log2

1+
γ0p[n](∣∣ ‖q [n]−w̃e,k‖−εk ∣∣2+H2

)α/2
 .
(18)

Without loss of optimality to problem (P1), we replace the
term maxwe,k∈Ae,kRe,k [n] in (13a) with the solution in (17),
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and then rewrite the objective function of (P1) as

1
N

N∑
n=1

[
Rs[n]−max

k∈K
R̃e,k [n]

]
. (19)

However, since R̃e,k [n] is a piecewise function of the opti-
mization variable q[n], problem (P1) with objective function
(19) is still intractable. To handle the intractability, we first
present the following lemma:
Lemma 1: In any time slot n, if ‖q [n] − w̃e,k‖ < εk for

some certain k ∈ K, we have mink∈K
∣∣ ‖q [n]− w̃e,k‖ − εk ∣∣

< ‖q [n]− ws‖.
Proof : See Appendix A.
Then, we introduce the following proposition:
Proposition 1: Problem (P1) is equivalent3 to the following

problem

(P2) : max
{q[n],p[n]}

1
N

N∑
n=1

[
Rs[n]−max

k∈K
R̂e,k [n]

]
(20)

s.t. (13b)− (13f).

Notice that in (P2), the expression for R̂e,k [n] is in a determin-
istic form and does not change with the relationship of size
between ‖q [n]− w̃e,k‖ and εk .

Proof : First of all, by substituting the expression for
Rs[n] in (8) and the expression for R̂e,k [n] in (18) into (20),
we can re-express the objective function of (P2) as shown in
(21) (at the bottom of this page).

Next, denoteM∗1 andM∗2 as the optimal values of problem
(P1) and (P2), respectively. Note that we have M∗1 ≤ M∗2 ,
since R̃e,k [n] ≥ R̂e,k [n]. We then denote (q∗, p∗) as the
optimal solution to problem (P2), where q∗ , {q∗[n],∀n}
and p∗ , {p∗[n],∀n}, which is also a feasible solution to
problem (P1) due to the fact that (P1) and (P2) have the same
constraints. Denote M̃ as the objective value of problem (P1)
attained at (q∗, p∗). Obviously, M̃ ≤ M∗1 . Then, we are going
to show that M̃ = M∗2 . To this end, for any specific time
slot n0, we consider the following two different cases.

3Here, the word ‘‘equivalent’’ means that the two problems have the same
optimal value.

1) CASE 1: ‖q∗ [n0]− w̃e,k‖ ≥ εk , ∀k ∈ K
Since R̃e,k (q∗[n0], p∗[n0]) = R̂e,k (q∗[n0], p∗[n0]) in this
case, it is easy to obtain that

Rs
(
q∗[n0], p∗[n0]

)
−max

k∈K
R̃e,k

(
q∗[n0], p∗[n0]

)
= Rs

(
q∗[n0], p∗[n0]

)
−max

k∈K
R̂e,k

(
q∗[n0], p∗[n0]

)
. (22)

2) CASE 2: ‖q∗ [n0]− w̃e,k‖ < εk FOR SOME CERTAIN k ∈ K
According to Lemma 1, we have

min
k∈K

∣∣ ‖q∗ [n0]− w̃e,k‖ − εk ∣∣ < ‖q∗ [n0]− ws‖. (23)

By observing problem (P2) with objective function (21), it is
easy to see that (23) must lead to p∗[n0] = 0 at the optimal
solution to problem (P2), since otherwise the transmit power
allocated to time slot n0 can be assigned to any other time slot
for further secrecy performance improvement. It then follows
that

Rs
(
q∗[n0], p∗[n0]

)
−max

k∈K
R̃e,k

(
q∗[n0], p∗[n0]

)
= Rs

(
q∗[n0], p∗[n0]

)
−max

k∈K
R̂e,k

(
q∗[n0], p∗[n0]

)
= 0. (24)

With (22) and (24), we have M̃ = M∗2 and thus M∗1 ≥ M∗2 .
Therefore, M∗1 = M∗2 , which thus completes the proof of
Proposition 1.
Remark 2: By exploiting the special structure of the consid-

ered problem, Proposition 1 avoids dealingwith the piecewise
objective function (19), yielding the more tractable prob-
lem (P2). Note that we can also apply the S-Procedure [43]
to tackle the location uncertainties of the Eves as in the
existing work [33]. Compared with [33], our work avoids
the introduction of a great deal of slack variables and
high-dimensional linear matrix inequality (LMI) constraints.
Besides, Proposition 1 can be directly applied to simplify the
problem studied in [33].

According to Proposition 1, we only need to focus on
solving problem (P2), which, however, is still non-convex
due to the non-concave objective function and non-convex
constraint (13f). In the following subsection, we will adopt
the SCA technique to solve (P2) sub-optimally.

B. SCA-BASED ALGORITHM FOR PROBLEM (P2)
By introducing two sets of slack variables [µs[1], · · · ,
µs[N ]]T and [µe[1], · · · , µe[N ]]T , and operating a simple

1
N

N∑
n=1

log2
(
1+

γ0 p [n](
‖q [n]− ws‖2 + H2

)α/2
)
−max

k∈K
log2

1+
γ0p[n](∣∣ ‖q [n]− w̃e,k‖ − εk ∣∣2 + H2

)α/2



=
1
N

N∑
n=1

log2
(
1+

γ0 p [n](
‖q [n]− ws‖2 + H2

)α/2
)
− log2

1+
γ0p[n](

min
k∈K

∣∣ ‖q [n]− w̃e,k‖ − εk ∣∣2 + H2

)α/2

 . (21)
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mathematical manipulation on constraint (13f), we can trans-
form problem (P2) into the following equivalent form:

(P3) : max
Z

1
N

N∑
n=1

R̄sec[n] (25a)

s.t. µs[n] ≥
(
‖q [n]− ws‖2 + H2

)α/2
, ∀n, (25b)

µe[n]≤
(∣∣ ‖q [n]− w̃e,k‖−εk ∣∣2+H2

)α/2
,∀n, k,

(25c)

p[n]≤
0l

β0

(
‖q [n]−wp,l‖2+(H−Hl)2

)α/2
,∀n, l,

(25d)

(13b)− (13e),

where Z , {q[n], p[n], µs[n], µe[n]}Nn=1 is the set of opti-
mization variables, and

R̄sec[n]= log2

(
1+

γ0p [n]
µs[n]

)
−log2

(
1+

γ0p [n]
µe[n]

)
. (26)

The proof of equivalence between problem (P3) and (P2)
can be referred in Appendix B. Next, we focus on solving
problem (P3). Note that the objective function is not jointly
concave with respective to q[n] and p[n]. Besides, the right-
hand-sides (RHSs) of the constraints (25b) and (25d) are
all convex with respect to q[n] (the proof is given in
Appendix C). Therefore, constraint (25b) is convex, while
constraint (25d) is non-convex since the super-level set of
a convex quadratic function is not convex in general [43].
However, it is hard to tell whether constraint (25c) is convex.
To tackle this issue, we introduce a set of slack variables
[t[1], · · · , t[N ]]T , and then convert constraint (25c) to

µe[n] ≤ t[n]α/2, ∀n, (27a)

t[n] ≤
∣∣ ‖q [n]− w̃e,k‖ − εk ∣∣2 + H2

= ‖q[n]− w̃e,k‖2−2εk‖q[n]− w̃e,k‖ + ε2k + H
2,

∀n, k. (27b)

With this manipulation, problem (P3) can be equivalently
transformed into

(P4) : max
Z̃

1
N

N∑
n=1

R̄sec[n]

s.t. (13b)− (13e), (25b), (25d), (27a), (27b),

where Z̃ , {q[n], p[n], µs[n], µe[n], t[n]}Nn=1. The equiv-
alence between problem (P4) and (P3) can be found in
Appendix D. Note that constraints (27a) and (27b) are
non-convex due to the convexity of the terms t[n]α/2 and
‖q[n]− w̃e,k‖2. Therefore, (P4) is a non-convex optimization
problem, where the non-convexity arises from the objective
function, and constraints (25d), (27a) and (27b). To address
this issue, we intend to leverage the SCA technique to con-
vert the non-convex problem (P4) approximately into a con-
vex one. By iteratively solving a series of approximate convex
problems, we can obtain a locally optimal solution to the
original non-convex problem (P4).

Specially, denote the given local point in the r-th itera-
tion by Z̃r , {qr [n], pr [n], µrs [n], µ

r
e[n], t

r [n]}Nn=1.
4 Then,

we rewrite the summation term R̄sec[n] in (26) as

R̄sec[n] = log2 (µs[n]+ γ0p[n])− log2 (µs[n])

− log2 (µe[n]+ γ0p[n])+ log2 (µe[n]) . (29)

Note that in (29), the term − log2 (µs[n]) is convex with
respect to µs[n], and the term − log2 (µe[n]+ γ0 p[n]) is
jointly convex with respect to µe[n] and p[n]. These thus
make (29) a non-concave function. Recall that any convex
function is globally lower-bounded by its first-order Taylor
expansion at any point [43]. Therefore, with given local point
Z̃r at iteration r ≥ 1, we can obtain the global under-
estimator for R̄sec[n] as shown in (30).

R̄sec[n] ≥ log2 (µs[n]+ γ0 p[n])− log2
(
µrs [n]

)
−
µs[n]− µrs [n]
µrs [n] ln 2

− log2
(
µre[n]+ γ0 p

r [n]
)

−
µe[n]− µre[n](

µre[n]+ γ0 pr [n]
)
ln 2

−
γ0 (p[n]− pr [n])(

µre[n]+ γ0 pr [n]
)
ln 2
+log2 (µe[n]), R̄

lb,r
sec [n]. (30)(

‖q [n]−wp,l‖2+(H−Hl)2
)α/2

≥

(
‖qr [n]−wp,l‖2+(H−Hl)2

)α/2
+α

[(
‖qr [n]−wp,l‖2+(H−Hl)2

) α
2−1

]
×

[(
qr [n]−wp,l

)T (q[n]−qr [n])] , P lb,r
p,l (q[n]) , ∀n, l.

(31)

To proceed, we consider the non-convex constraints (25d),
(27a) and (27b). Since the RHSs of (25d) and (27a), and the
term ‖q[n]− w̃e,k‖2 in (27b) are convex with respect to q[n],
t[n] and q[n], respectively, we have the inequalities in (31),
(32) and (33) by applying the first-order Taylor expansions at
given local point Z̃r .

t[n]α/2 ≥ tr [n]+
α

2

(
tr [n]

) α
2−1

(
t[n]− tr [n]

)
, T lb,r (t[n]) ,∀n. (32)

‖q[n]− w̃e,k‖2 ≥ ‖qr [n]− w̃e,k‖2 + 2
(
qr [n]− w̃e,k

)T
×
(
q [n]− qr [n]

)
, E lb,r

e,k (q[n]) , ∀n, k.

(33)

Then, with (31), (32) and (33), we can approximate the non-
convex constraints (25d), (27a) and (27b) as the following
convex ones:

p[n] ≤
0l

β0
· P lb,r

p,l (q[n]) , ∀n, l, (34)

µe[n] ≤ T lb,r (t[n]) , ∀n, (35)

4 In Algorithm 1 proposed in Section III-C, we show that Z̃r is in fact the
solution obtained from the (r − 1)-th iteration, and Z̃0 stands for the initial
point.
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Algorithm 1 Proposed Algorithm for Problem (P1)

1: Construct the initial point Z̃0. Let r = 0.
2: repeat
3: Solve problem (P5) for the given local

point Z̃r and denote the optimal solution as
Z̃∗ , {q∗[n], p∗[n], µ∗s [n], µ∗e [n], t∗[n]}Nn=1.

4: Update Z̃r+1
= Z̃∗.

5: Update r = r + 1.
6: until The fractional increase of the objective value is

below a given maximum tolerance ε.

t[n] ≤ E lb,r
e,k (q[n])− 2εk‖q[n]− w̃e,k‖ + ε2k + H

2,∀n, k.

(36)

By summarizing the above developments, we obtain the fol-
lowing approximate problem (P5) for (P4) at the given local
point Z̃r in the r-th iteration:

(P5) : max
Z̃

1
N

N∑
n=1

R̄lb,rsec [n]

s.t. (13b)− (13e), (25b), (34)− (36).

Since the objective function is convex, and the feasible region
is also convex, problem (P5) is a convex optimization prob-
lem, which can be efficiently solved by standard convex
optimization solvers, e.g., CVX [43].5

C. OVERALL ALGORITHM
Since (P1) is an intractable non-convex semi-infinite opti-
mization problem, finding the global optimal solution is
exceedingly difficult in general. Based on the simplification
and approximations presented in previous two subsections,
an efficient suboptimal algorithm for problem (P1) is con-
cluded in Algorithm 1. As depicted by the steps 3-5, we show
that the given local point Z̃r is in fact the solution obtained
from the (r − 1)-th iteration. The setup of the initial point Z̃0

will be given in Section III-D. A brief convergence analysis
is given as follows. Since the optimal value of (P4) is finite,
and the objective value of (P4) with the solution obtained by
solving problem (P5) is non-decreasing after each iteration,
Algorithm 1 is guaranteed to converge at a locally optimal
solution to problem (P4) (and thus problem (P1)).

Next, the computational complexity of the proposed algo-
rithm is discussed. Note that in each iteration, the complex-
ity of Algorithm 1 is dominated by solving problem (P5)
via the interior-point method invoked by CVX. Specifically,
problem (P5) contains N − 1 second-order cone (SOC) con-
straints of dimension 4, 1 SOC constraint of dimension 2,
2 linear inequality constraints (1 linear equality constraint) of
dimension 2, 2N linear inequality constraints of dimension 1,

5As a side note, constraint (25b) can be expressed in a canonical form that
accepted by CVXwith the aid of the function pow_abs or the functions norm
and square_pos when α = 2, and together with the function pow_pos when
α > 2.

1 linear inequality constraint of dimension N , N SOC con-
straints of dimension 3, LN linear inequality constraints of
dimension 3, N linear inequality constraint of dimension 2,
and KN SOC constraints of dimension 3. The total num-
ber of optimization variables is 6N . Based on the com-
plexity analysis in [50], the computational cost of solving
problem (P5) is about O

[
N 3.5

(
K 1.5
+ L1.5

)]
. As a result,

the total complexity of Algorithm 1 is on the order of
O
[
IN 3.5

(
K 1.5
+ L1.5

)]
with I denoting the number of itera-

tions needed for convergence.

D. INITIALIZATION SCHEME
In this subsection, we give a low-complexity initialization
scheme for Algorithm 1 in three steps. First of all, the initial
UAV trajectory

{
q0[n]

}N
n=1 adopts the heuristic best-effort

manner as designed in [22], i.e., the UAV flies straightly
from the initial location to the position right above the SR
at speed Vmax, then hovers there with the maximum duration,
and finally flies straightly at speed Vmax to reach the final
location by the end of the last time slot. In the case that the
UAV dose not have sufficient time to reach the position right
above the SR, it will turn at a certain midway point and then
fly straightly to the final location at speed Vmax. Secondly,
the slack variables

{
µ0
s [n]

}N
n=1,

{
t0[n]

}N
n=1 and

{
µ0
e[n]

}N
n=1

are respectively set as

µ0
s [n] =

(
‖q0 [n]− ws‖2 + H2

)α/2
, ∀n, (38a)

t0[n] = min
k∈K
| ‖q0 [n]−w̃e,k‖−εk |2+H2, ∀n, (38b)

µ0
e[n] = t0[n]α/2, ∀n. (38c)

Finally, with given
{
q0[n], µ0

s [n], µ
0
e[n], t

0[n]
}N
n=1, problem

(P4) can be written as

max
p[n]

1
N

N∑
n=1

[
log2 (1+anp[n])−log2 (1+bnp[n])

]
(39a)

s.t. 0 ≤ p[n] ≤ Pmax, ∀n, (39b)

1
N

N∑
n=1

p[n] ≤ P̄, (39c)

p[n] ≤
0l

β0

(
‖q0 [n]−wp,l‖2 + (H−Hl)2

)α/2
,

∀n, l, (39d)

where an , γ0/µ0
s [n] and bn , γ0/µ

0
e[n]. We then simply set

p0[n] = min
[
P̄,minl∈L

0l
β0

(
‖q0 [n]−wp,l‖2+(H−Hl)2)α/2

]
if an ≥ bn, and p0[n] = 0 otherwise. Obviously,

{
p0[n]

}N
n=1

is a feasible solution to problem (39), which guarantees a non-
negative secrecy rate of the SR in each time slot and satisfies
all the power-related constraints (39b)-(39d).

Up to now, we have obtained the initial point Z̃0 ,
{q0[n], p0[n], µ0

s [n], µ
0
e[n], t

0[n]}Nn=1 for Algorithm 1.

IV. SIMULATION RESULTS
In this section, simulation results are provided to validate
the performance of the UAV-to-SR secrecy communications

VOLUME 8, 2020 49345



Y. Gao et al.: Robust Trajectory and Power Control for Cognitive UAV Secrecy Communication

achieved by our proposed joint UAV trajectory optimization
and transmit power control algorithm (denoted as J-T&P).
For comparison, the following three benchmark schemes are
selected.
• BET/P: best-effort trajectory design with power control.
This scheme designs the UAV’s trajectory in the heuris-
tic best-effort manner described in Section III-D, and
optimizes the transmit power by solving problem (39).
Inspired by [20], the optimal solution to problem (39)
can be expressed as

p∗ [n] =

{
min

(
p̂[n], p̃[n],Pmax

)
, an ≥ bn,

0, an < bn,
(40)

where

p̂ [n] =
[√(

1
2bn
−

1
2an

)2

+
1

β ln 2

(
1
bn
−

1
an

)
−

1
2bn
−

1
2an

]+
, (41)

p̃ [n] = min
l∈L

0l

β0

(
‖q0 [n]− wp,l‖2 + (H − Hl)2

)α/2
.

(42)

In (41), β ≥ 0 is a parameter ensuring 1
N

∑N
n=1 p

∗[n] ≤
P̄, which can be obtained by the bisection search.

• BET/NP: best-effort trajectory design without power
control. For this scheme, the UAV’s trajectory is
designed in the foregoing best-effort manner, and the
transmit power is set equally over time, i.e., p[n] = p,
∀n. Here, to satisfy the transmit power constraints and
IT constraints, we set p = min

(
P̄,minn∈N p̃[n]

)
.

• SLT/P: straight-line trajectory design with power con-
trol. In this scheme, the UAV flies from the initial to the
final location along a straight line at a constant speed
of
∥∥qF − qI∥∥ /T . Under this trajectory, the optimized

transmit power is obtained by using (40).
Remark 3: We note that one scheme is also commonly

considered as a baseline in the related works, which optimizes
the UAV’s trajectory with the transmit power fixed as p[n] =
P̄,∀n. This scheme, however, is not applicable to our inves-
tigated problem due to the stringent IT constraints in (13f).
Specifically, with given transmit power p[n] = P̄,∀n, (13f)
can be rewritten as√

‖q[n]−wp,l‖2 + (H−Hl)2 ≥
(
β0P̄
0l

)1/α

,∀n, l. (43)

It is not difficult to see that when P̄ is very large and/or 0l
is very small, the UAV requires to fly far away from the
PRs in each time slot to meet the IT constraints. However,
in the case that the PRs locate near the UAV’s initial/final
location, pure trajectory optimization can not even generate
a feasible solution to problem (P1). Therefore, this scheme is
not considered in the performance comparison.

We consider a system with K = 2 Eves, whose esti-
mated locations are marked by ′4′s as shown in Fig. 3, and

TABLE 1. Simulation parameters.

FIGURE 2. Convergence performance of the proposed J-T&P algorithm
(P̄ = 15 dBm, 0 = −80 dBm and T = 120 s).

ε1 = 20 m and ε2 = 80 m. There are L = 4 PRs with equal
height Hl = 25 m, ∀l, marked by ′�′s. The SR is located
at ws = [0, 0]T . The initial and final locations of the UAV
are set as qI = [−400,−200]T and qF = [400,−200]T ,
respectively. For illustration, the SR and the UAV’s initial and
final locations are marked by ′◦′, ′×′ and ′+′, respectively.
The peak transmit power limit is set as Pmax = 4P̄. The
IT thresholds are assumed to be identical for different PRs,
i.e., 0l = 0, ∀l. It is not difficult to verify that under this
setup, the IT constraints are dominated by the PR nearest
to the UAV at each time slot. The values of P̄, 0 and T
will be given in the following simulations. If not otherwise
specified, other corresponding parameters in the simulations
are summarized in Table 1.

We first numerically demonstrate the convergence perfor-
mance of our proposed J-T&P algorithm in Fig. 2. Here,
we set P̄ = 15 dBm, 0 = −80 dBm and T = 120 s. As we
can see, the average worst-case secrecy rate obtained by the
proposed J-T&P algorithm increases rapidly with the number
of iterations and converges within around 6 iterations.

Fig. 3 shows the optimized UAV trajectories achieved by
different algorithms, under different setups of P̄ and 0 with
the flight period set as T = 120 s. Notice that the UAV
trajectories by the benchmark BET/P, BET/NP and SLT/P
schemes do not change with different values of P̄ and 0.
For the proposed J-T&P algorithm, when P̄ = −5 dBm and
0 = −50 dBm, it is observed that the UAV flies in an arc
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FIGURE 3. UAV’s trajectories for T =120 s under different values of P̄
and 0.

path at speed Vmax to keep away from Eve 1 and reach a
certain point near the SR, then hovers there as long as it can,
and finally flies at speed Vmax to the final location along an
arc path bypassing Eve 2. This observation is confirmed by
the UAV’s flight speed shown in Fig. 4(a). The optimized
hovering point is on the left of the SR since the radius of the
uncertain region of Eve 2 is larger than that of Eve 1. When
the transmit power budget becomes larger (i.e., P̄ = 15 dBm
and 0 = −50 dBm), it is interesting to note that the UAV
moves further away from the Eves relative to the case with
P̄ = −5 dBm. This observation indicates that moving further
away from the Eves is conducive to maximizing the average
secrecy rate when the UAV is allowed to transmit with a
higher power. However, when P̄ = 15 dBm and 0 decreases
to −80 dBm, the UAV chooses a trajectory that is further
away from the PRs to reduce the co-channel interference
power at them. This trajectory appears different from those in
the previous two cases since the IT constraints become much
more stringent.

Fig. 4 plots the corresponding UAV’s transmit power and
flight speeds of different algorithms versus time. In Fig. 4(b),
it is observed that when P̄ increases (i.e., P̄ = 15 dBm
and 0 = −50 dBm), the proposed T-J&P and benchmark
BET/P schemes reduce the transmit power to satisfy the IT
constraints when the UAV approaches PR 2 (at time instants
t = 40.5 s and t = 77.5 s for the proposed T-J&P algorithm,
and at time instants t = 42.5 s and t = 77.5 s for the bench-
mark BET/P scheme). A similar observation can be made
in Fig. 4(c) when P̄ = 15 dBm and 0 decreases to−80 dBm.
We can also see from Fig. 4(c) that the transmit power by
the proposed J-T&P algorithm is somewhat similar to that by
the benchmark BET/P scheme, both of which are restricted
to extremely low levels due to the stringent IT constraints.
In addition, under different setups of P̄ and 0, we can see
that when the UAV remains stationary at the hovering point,
the proposed J-T&P algorithm sets the transmit power to a
certain value tomaximize the secrecy rate while satisfying the
IT constraints at PRs 2 and 3. It is also worth mentioning that
when the distance from the UAV to the nearest possible Eve

is smaller than that to the SR, the J-T&P, BET/P and SLT/P
schemes all set the transmit power to zero. This implies that
the IT constraints at PRs 1 and 4 can always be met under
any setup of the IT threshold 0 when t ≤ 34.5 s and t ≥ 82 s
for the J-T&P and BET/P schemes, and when t ≤ 48 s and
t ≥ 61 s for the SLT/P scheme. Finally, for the BET/NP
scheme, we found that p = min

(
P̄,minn∈N p̃[n]

)
= P̄

when 0 = −50 dBm, and p = min
(
P̄,minn∈N p̃[n]

)
=

minn∈N p̃[n] when 0 = −80 dBm. This result indicates that
the transmit power by the BET/NP scheme is dominantly
limited by the maximum average transmit power constraint
in the former case, but by the IT constraints in the latter case.

In Fig. 5, we plot the SR’s average worst-case secrecy rates
obtained by different algorithms versus the flight period T
under different values of P̄ and 0. As expected, the proposed
J-T&P algorithm always outperforms the other benchmark
schemes, which shows the benefit of the joint trajectory opti-
mization and power control in maximizing the SR’s average
secrecy rate. It is also observed that the secrecy rates of
the J-T&P, BET/P and BET/NP schemes notably increase
with T . This is because for these three schemes, themaximum
secrecy rates are mainly achieved at their respective hovering
points (see Fig. 3 and 4), and larger T enables the UAV
to hover longer at such locations, thus resulting in higher
average secrecy rates. Nevertheless, the average secrecy rate
obtained by the SLT/P scheme remains unchanged regardless
of T , since this scheme adopts a straight-line trajectory with
a constant speed of

∥∥qF − qI∥∥ /T . The fairly large secrecy
rate gap between the proposed J-T&P and benchmark SLT/P
schemes demonstrates that the trajectory optimization is vital
for improving the secrecy performance. Besides, we note
that although the BET/P scheme in general outperforms the
BET/NP scheme, the secrecy rate gap between them becomes
very small when P̄ increases from −5 to 15 dBm and 0 =
−50 dBm. This observation suggests that the secrecy rate
performance mainly relies on the UAV trajectory when P̄ is
high and 0 = −50 dBm.

Fig. 6 illustrates the SR’s average worst-case secrecy rates
achieved by different schemes versus the average transmit
power P̄ with T = 120 s. We first observe that the proposed
J-T&P algorithm always obtains the highest secrecy rate,
while the benchmark SLT/P scheme achieves the lowest one.
It is also seen that when 0 = −80 dBm, the secrecy rates of
all algorithms do not change with P̄. The reason is that in this
case, the stringent IT constraints dominate the transmit power,
while the maximum average and peak transmit power con-
straints almost have no influence on it. When 0 = −50 dBm,
the secrecy rates obtained by all algorithms increase with P̄,
as expected. This is due to the fact that when the IT constraints
become less strict, a larger average transmit power budget
offers a high flexibility in power allocating to achieve a higher
secrecy rate. Furthermore, we note that the secrecy rates of
all schemes tend to be saturated when P̄ is high, and the
BET/NP scheme yields almost the same performance as the
BET/P scheme when P̄ ≥ 15 dBm, which is consistent with
the observation in Fig. 5(b). These results further demonstrate
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FIGURE 4. UAV’s transmit power and flight speed versus time for T = 120 s under different values of P̄ and 0.

FIGURE 5. Average worst-case secrecy rate versus the flight period T under different values of P̄ and 0.

that in the high P̄ regime when 0 = −50 dBm, the UAV tra-
jectory plays a dominant role in the secrecy rate performance.

Fig. 7 shows the SR’s average worst-case secrecy rates
achieved by different schemes versus the IT threshold 0 with
T = 120 s. As can be seen, under different values of P̄,
the secrecy rates of all schemes first increase with 0 when 0
is small and then remain constant when 0 exceeds a certain
level. This result can be explained as follows. When 0 is
small, the increase in 0 could weaken the IT constraints,
which allows the UAV to transmit with a higher power, lead-
ing to an increase in the secrecy rate. When0 is large enough,
the transmit power is dominantly limited by the maximum
average and peak transmit power constraints, thus further
increasing 0 could not enlarge the feasible region of it any
more. Besides, some similar observations as in Fig. 6 can
be observed. Specifically, the secrecy rates of all algorithms
do not change with P̄ when 0 is sufficiently small, but
increase with P̄when0 becomes larger. The BET/NP scheme

performs very close to the BET/P scheme over the whole 0
regime when P̄ = 15 dBm.

The effect of the number of PRs (L) on the SR’s average
worst-case secrecy rate achieved by the proposed J-T&P
algorithm is shown in Fig. 8. In this simulation, each PR’s
horizontal location is randomly generated in a square region
with a geometric center (0, 0, 0) and each side being 200 m.
It is assumed that all PRs have the same altitude 25 m. We set
P̄ = 10 dBm, 0 = −65 dBm and T = 120 s. All other set-
tings are the same as those in Fig. 3. All the results in Fig. 8 are
obtained by averaging 100 random realizations. As expected,
it is observed that the secrecy rate decreases as L increases.
The reason for this result being that since the number of IT
constraints increases with L, the feasible region of problem
(P4) becomes smaller, resulting in a decrease in the secrecy
rate.

Finally, we consider the effect of the Eves’ location uncer-
tainties on the secrecy rate performance. Fig. 9 plots the SR’s
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FIGURE 6. Average worst-case secrecy rate versus the average transmit
power P̄ for T = 120 s.

FIGURE 7. Average worst-case secrecy rate versus the IT threshold 0 for
T = 120 s.

FIGURE 8. Average worst-case secrecy rate of the proposed J-T&P
algorithm versus the number of PRs L (P̄ = 10 dBm, 0 = −65 dBm and
T = 120 s).

average worst-case secrecy rates of the proposed J-T&P and
benchmark BET/P schemes versus the radius of the uncertain
region of Eve 1 ε1 under different values of the radius of the

FIGURE 9. Average worst-case secrecy rates of the proposed J-T&P and
benchmark BET/P schemes versus the radius of the uncertain region of
Eve 1 ε1 under different values of the radius of the uncertain region of
Eve 2 ε2 (P̄ = 10 dBm, 0 = −65 dBm and T = 120 s).

uncertain region of Eve 2 ε2. In this simulation, we set P̄ =
10 dBm, 0 = −65 dBm and T = 120 s. All other settings are
the same as those in Fig. 3. Intuitively, the secrecy rates of the
two schemes decrease with the increasing of ε1 or ε2, which
validates the motivation of the worst-case robust optimiza-
tion. Besides, an interesting observation is that when ε1 =
ε2 = 20, 60 and 100 m, the performance gap between the
two schemes is small. The reasons are twofold. For one thing,
since the distances from the estimated locations of Eves 1 and
2 to the SR are equal, ε1 = ε2 would make the optimized
hovering point of the proposed J-T&P algorithm the same as
that of the benchmark BET/P scheme (i.e., the position right
above the SR). For another, the secrecy rates of both schemes
are mainly achieved at their respective hovering points (see
Fig. 3 and 4). Therefore, the same hovering point of the two
schemes would result in their similar secrecy rates.

V. CONCLUSION
In this paper, we have studied the secrecy transmission in a
UAV-aided CR network, where a secondary UAV transmitter
sends confidential information to a ground SR in the presence
of multiple co-channel primary terrestrial wireless commu-
nication links and multiple potential Eves with imperfect
location information. We aim at maximizing the SR’s aver-
age worst-case secrecy rate by jointly optimizing the UAV’s
transmit power and trajectory over a finite flight duration with
given initial and final locations, subject to the mobility and
transmit power constraints of the UAV, and the IT constraints
at the PRs. To tackle the formulated non-convex semi-infinite
optimization problem, we first prove that it can be simplified
as a more tractable one with an explicit objective function.
Then, an efficient iterative algorithm is proposed to obtain
a locally optimal solution by leveraging the SCA technique.
Simulation results show that the proposed joint design of the
UAV trajectory and transmit power can achieve better secrecy
rate performance as compared to other benchmark schemes
without trajectory optimization and/or power control.
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FIGURE 10. A geometric illustration of the considered scenario where the
UAV is above the uncertain region of the k∗n-th Eve. The exact location of
the SR and the estimated location of the k∗n-th Eve are denoted by points
D and E , respectively. Denote the projection point of the UAV on the
ground by Q. We set C as the interaction point of the uncertain region of
the k∗n-th Eve and the line segment that connects points Q and D.

∣∣QA
∣∣

and
∣∣QD

∣∣ correspond to
∣∣∣ ∥∥∥q [n]− w̃e,k∗n

∥∥∥− εk∗n

∣∣∣ and ‖q [n]− ws‖,
respectively.

APPENDIXES
APPENDIX A
PROOF OF LEMMA 1
Let Kn,M ,

{
k | ‖q [n]− w̃e,k‖ < εk

}
⊆ K with cardinality

M ≥ 1 be the subset of the Eves.6 Wemark the strongest Eve
that gains mink∈Kn,M

∣∣ ‖q [n]− w̃e,k‖ − εk ∣∣ as the k∗n -th one.
To facilitate the analysis, we give a geometric illustration of
the considered scenario where the UAV is above the uncertain
region of the k∗n -th Eve (i.e., ‖q [n]−w̃e,k∗n ‖ < εk∗n ) in Fig. 10.

7

According to the geometric properties shown in Fig. 10,
it follows that

|EQ| + |QA| = |EA| = |EC| < |EQ| + |QC| . (44)

Then we can derive from (44) that |QA| < |QC|. Since
|QC| < |QD|, we have |QA| < |QD|, i.e.,∣∣ ∥∥q [n]− w̃e,k∗n ∥∥− εk∗n ∣∣ < ‖q [n]− ws‖. (45)

Furthermore, it is clear that mink∈K
∣∣ ‖q [n]− w̃e,k‖ − εk ∣∣ ≤∣∣ ∥∥q [n]− w̃e,k∗n ∥∥− εk∗n ∣∣ since k∗n ∈ Kn,M ⊆ K. Accordingly,

we have

min
k∈K

∣∣ ‖q [n]− w̃e,k‖ − εk ∣∣ < ‖q [n]− ws‖. (46)

This lemma is thus proved.

APPENDIX B
Problem (P3) is equivalent to (P2) since at the optimal solu-
tion Z∗ , {q∗[n], p∗[n], µ∗s [n], µ∗e [n]}Nn=1 to (P3), we must
have the following equalities:

µ∗s [n] = (‖q∗ [n]− ws‖2 + H2)α/2,∀n, (47)

6Since the sets of the possible locations of the Eves may have a non-empty
intersection, the UAV may be above the uncertain regions of more than one
Eve in time slot n.

7To ensure a non-trivial secrecy rate, we assume that the SR is not in the
uncertain region of any Eve.

µ∗e [n] = (min
k∈K
| ‖q∗ [n]− w̃e,k‖ − εk |2 + H2)α/2, ∀n. (48)

These can be proved by contradiction. Specifically, if there
exists a µ∗s [n] such that µ∗s [n] > (‖q∗ [n] − ws‖2 + H2)α/2

and/or a µ∗e [n] such that µ
∗
e [n] < (mink∈K| ‖q∗ [n]− w̃e,k‖−

εk |
2
+H2)α/2, we can further improve the objective value of

problem (P3) by decreasingµ∗s [n] to (‖q
∗ [n]−ws‖2+H2)α/2

and/or increasing µ∗e [n] to (mink∈K| ‖q∗ [n]− w̃e,k‖− εk |2+
H2)α/2, which leads to a contradiction that µ∗s [n] and/or
µ∗e [n] are the optimal solutions. This thus proves that the
equalities in (47) and (48) hold. Therefore, problem (P3)
and (P2) are equivalent.

APPENDIX C
Consider a function g (x) = ‖x − b‖2 + c, where x ∈ Rn,
b ∈ Rn and c ≥ 0. It is well known that g (x) is a convex
function with respect to x. Since g (x) is convex and non-
negative, the convexity of g (x)α/2 is guaranteed with α

2 ≥ 1
according to the composition results given in Example 3.13 in
[43, Sec. 3.2.4]. As a result,

(
‖q [n]− ws‖2 + H2

)α/2
and(

‖q [n] − wp,l‖2 + (H − Hl)2
)α/2 are all convex functions

with respect to q[n].

APPENDIX D
Problem (P4) is equivalent to (P3) since at the optimal solu-
tion Z̃∗ , {q∗[n], p∗[n], µ∗s [n], µ∗e [n], t∗[n]}Nn=1 to (P4),
we must have the following equalities:

µ∗e [n] = t∗[n]α/2, ∀n, (49)

t∗[n] = min
k∈K
| ‖q∗ [n]− w̃e,k‖ − εk |2 + H2, ∀n. (50)

These can be proved by contradiction. Specifically, if there
exists a µ∗e [n] such that µ∗e [n] < t∗[n]α/2, we can further
improve the objective value of (P4) by increasing µ∗e [n] to
t∗[n]α/2, resulting in a contradiction that µ∗e [n] is the optimal
solution. This proves that the equalities in (49) hold. Besides,
if there exists a t∗[n] such that t∗[n] < mink∈K| ‖q∗ [n] −
w̃e,k‖− εk |2+H2, we can always find another t̂[n] such that
t̂[n] = mink∈K| ‖q∗ [n] − w̃e,k‖ − εk |2 + H2. By this newly
chosen t̂[n] and the proved equalities in (49), we can find
another µ̂e[n] such that µ̂e[n] = t̂[n]α/2 > t∗[n]α/2 = µ∗e [n].
Obviously, we can obtain a strictly larger objective value of
(P4) with the newly chosen µ̂e[n], which is in contradiction
to the assumption that µ∗e [n] and t

∗[n] are the optimal solu-
tions. This proves that the equalities in (50) hold. Therefore,
problem (P4) and (P3) are equivalent.
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