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ABSTRACT The dynamic positioning system is a system that ships rely on their own propulsion devices to
maintain position and course. Pod propulsion wasmore andmore installed in dynamic positioning unmanned
surface vessels because it can rotate 360 degrees freely. The maximum disturbance of unmanned surface
vessel dynamic positioning comes from the forces and moments generated by the ocean wind, wave and
current. In order to improve its accuracy of disturbance rejection, the mathematical model of the vessel was
established according to the special structure of pod propulsion ship, and the calculations of the forces and
moments of wind, wave and current are given. Then, the sliding mode controller based on approach law
and adaptive backstepping were designed, and optimal controller based on cerebellar model articulation
controller (CMAC) was further designed. The tracking differentiator was added to eliminate the large
chattering in the initial stage of the system. Finally, the simulation verification was carried out. It can be seen
from the results that the control law designed has better control effects than traditional sliding mode control
and can realize dynamic positioning of pod driven unmanned surface vessel under certain disturbances.

INDEX TERMS Cerebellar model articulation controller, dynamic positioning system, pod propulsion,
sliding mode control, unmanned surface vessel.

I. INTRODUCTION
Unmanned surface vessel (USV) is a huge and complex
system, which involves many theories and technologies, such
as ship design andmanufacture, sensor technology, intelligent
decision-making, maritime communication [1], etc. USV is a
kind of special mobile robot in essence, so its research can be
carried out by the technology ofmobile robot or rotorcraft fly-
ing robot [2], [3]. At present, many countries are competing
to develop USV [4]. The United States Navy began to study
the USV in the 1990s. In 2007, the United States Navy
issued the Navy’s master plan for USV, which gave it seven
tasks, and defined the ship type, size and standard, which
marked that the USV of United States embarked on the for-
mal development stage. Israel’s ‘‘protector’’ USV has begun
mass production which already equipped by the military.

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiping Li.

Singapore Navy is its first overseas user. In one test, they used
landing ships to carry two ‘‘protector’’ USV for maritime
defense and blockade operations. According to Singapore’s
Ministry of Defense, ‘‘protector’’ is very efficient. Germany
and Japan are also studying USV actively. The development
of China’s USV is still in its infancy, and progress has been
made in civil use. Such as the ‘‘tianxiang-1’’ USV was used
as meteorological emergency equipment to provide meteoro-
logical support services for the Olympic sailing competition
in Qingdao. The research of the USV can be divided into two
types: full drive propulsion and underactuated propulsion.
The problem of dynamic positioning is full drive control
[5], [6]. Dynamic positioning system is an important part of
the control system of USV. International maritime organiza-
tion defines dynamic positioning system (DPS) as automatic
control for the position and course of a ship only depend on its
own propulsion system [7], [8]. Pod propulsion is often used
for dynamic positioning ships. The pod propulsion improves
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the hydrodynamic characteristics and maneuverability of the
ship. It integrates the propulsion and steering mechanism
through a rotatablemotor. It does not set the rudder unit which
can save the space of the ship and increase the flexibility of
the ship construction.

The control algorithm is the core of the dynamic
positioning system of USV. This paper adopts the slid-
ing mode control (SMC) algorithm based on Cerebellar
Model Articulation Controller. SMC is applicable for linear,
nonlinear, continuous, discrete, deterministic and uncertain
systems [9]. This control method allows the system state
to slide along the sliding surface, which makes the sys-
tem invariable under external disturbance [10]. In 1950s,
Emelyanov proposed sliding mode control. In 1977, Utkin
studied it deeply and formed a set of systematic theory [11].
Since 1980s, there have been different kinds of sliding mode
control, such as SMC of discrete system, adaptive SMC and
terminal SMC, etc. In recent years, there have been multiple
improved sliding mode control algorithms, such as neural
SMC, fuzzy SMC and integral SMC, etc. The algorithm
studied in this paper is sliding mode controller based on
adaptive backstepping which is optimized by CMAC. CMAC
is proposed by Albus in a series of basic papers according
to Eccles cerebellar space-time model [12]. The cerebellar
model simulates a learning structure of human cerebellum.
It is a local approximation neural network based on table
query, and provides a multi-dimensional nonlinear mapping
ability from input to output. It has one disadvantage, that
is, the storage space of the weight coefficient of the neural
network increases sharply with the increase of the input
dimension of the cerebellar model. In order to solve this
problem, Thompson and Kwon used a neighborhood sequen-
tial method [13], and the weight coefficient of each memory
unit is adjusted only once during the whole learning period,
which can solve the problem of possible conflict in learning.
Eldracher et al. used adaptive coding technology [14], which
can effectively improve the approximation ability of cere-
bellar model function. In this paper, the good approximation
ability of CMAC is used to track the output of sliding mode
controller and gradually replaces the original controller to
work independently. Thus, some unstable factors are elimi-
nated and the controller is optimized.

The main contributions of this article are summarized as
follows:

(1) The mathematical models of pod driven unmanned
surface vessels and ocean disturbances are established to
enhance dynamic positioning simulation, and in order to
realize dynamic positioning, a slidingmode control law based
on approach law is designed.

(2) In order to solve the problem of long adjustment time
of traditional sliding mode control based on approach law,
adaptive backstepping sliding mode control law based on
CMAC neural network optimization is designed. It greatly
improves the control effect and shortens the adjustment time.

(3) In order to solve the very large oscillation in the
initial stage of control, the tracking differentiator is added

FIGURE 1. Layout diagram of pods.

into the controller. In this way, the large-scale oscillation in
the initial stage of the system is eliminated. This kind of
oscillation is very disadvantageous in actual control, and the
actuator cannot produce this kind of control state quickly.

The rest of this paper is organized as follows:
Section 2 introduces the mathematical models of ship motion
and ocean disturbances. Section 3 introduces the design
method of the controller. Section 4 shows the results of
simulation of dynamic positioning system.

II. MATHEMATICAL MODEL OF POD DRIVEN SHIP
DYNAMIC POSITIONING SYSTEM
This paper discusses the motion of pod driven unmanned
surface vessel with three degrees of freedom on the
ocean [15]–[20]. Using pod propulsion can produce greater
lateral force and gyroscopic moment than the rudder under
the same turning angle.

Because the ships studied in this paper are symmetrically
installed with two propeller pods, whose layout diagram is
shown in Figure 1. The forces and moment produced by pods
can be calculated as follows:

XP = 2(1− tp)(Tl cos δl + Tr cos δr )
YP = 2(1− tp)(Tl sin δl + Tr sin δr )
NP = −YPLop
Tl/r = ρn2l/rD

4
l/rKl/r

(1)

XP,YP andNP are the longitudinal force, transverse force and
moment produced by pod; δl and δr are turning angles for left
and right pod; Lop is half of the length of the ship (L); tp is the
thrust deduction coefficient; Tl is the thrust of left pod; Tr is
the thrust of right pod; ρ is the density of sea water; nl/r is the
speed of the propeller; Dl/r is the diameter of the propeller;
Kl/r is the thrust calculation coefficient. Subscripts ‘‘l’’ and
‘‘r’’ mean left pod and right pod respectively.

Mathematical Model of Ship is:

MV̇ + DV = τT + τD (2)

V = [u, v, r]T is ship velocity vector, which are longitu-
dinal speed, transverse speed and steering moment. τT =
[XT ,YT ,NT ]T means the longitudinal force, transverse force
and moment of pods. τD = [XD,YD,ND]T means the longi-
tudinal force, transverse force and moment of disturbances,
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inertia matrix

M =

m− Xu̇ 0 0
0 m− Yv̇ Yṙ
0 −Nv̇ Izz − Nṙ


and damping matrix

D =

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 .
m is ship mass after dimensionless; Izz is moment of
inertia; Xu̇, Xu, Yv̇, Yv, Yṙ , YrNv̇, Nv Nṙ , and Nr are
hydrodynamic derivatives which can be obtained by sea trial
and recursion [21].

The formulas of wind forces and moment are:
Xwind = 0.5ρaU2

RAf Cwx
Ywind = 0.5ρaU2

RAsCwy
Nwind = 0.5ρaU2

RAsLCwn

(3)

Among the formulas, L is the length of ship; UR is the
relative wind velocity; ρa is the air density; As is the side
of the projection area on the water line; Af is the orthogonal
projection area of the hull surface; Cwx , Cwy and Cwz can be
calculated as (4):

Cwx = X0 + X1 cosψ + X3 cos 3ψ + X5 cos 5ψ
Cwy = Y1 sinψ + Y3 sin 3ψ + Y5 sin 5ψ
Cwn = N1 sinψ + N2 sin 2ψ + N3 sin 3ψ

(4)

Among them, Xi, Yi and Ni are obtained through a large
number of ship wind tunnel tests [22].

In this paper, the formulas of wave forces and moment are:
Xwave =

1
2
ρgLζ 2a cosχC

D
Xw(λ)

Ywave =
1
2
ρgLζ 2a sinχC

D
Yw(λ)

Nwave =
1
2
ρgL2ζ 2a sinχC

D
Nw(λ)

(5)

In this formula, ρ is sea water density; g is gravitational
acceleration; ζa is the average wave amplitude; χ is the wave
encounter angle; λ is the wavelength. CD

Xw, C
D
Yw and CD

Nw
are coefficients summed up by ship model experiment, and
the mathematical expressions are shown as (6). L is the ship
length.
CD
Xw(λ) = 0.05− 0.2(

λ

L
)+ 0.75(

λ

L
)2 − 0.51(

λ

L
)3

CD
Yw(λ) = 0.46+ 6.83(

λ

L
)− 15.65(

λ

L
)2 + 8.44(

λ

L
)3

CD
Nw(λ) = −0.11+ 0.68(

λ

L
)− 0.79(

λ

L
)2 + 0.21(

λ

L
)3

(6)

This paper assumes that current as uniform current. In attach
coordinate system, the current longitudinal and transverse
velocities are: {

uc = Vc cos(ψc − ψ)
vc = Vc sin(ψc − ψ)

(7)

FIGURE 2. Control block diagram of DPS.

uc and vc are current longitudinal and transverse velocity; Vc
is the current velocity relative to the earth;ψa is current angle;
ψ is course angle. {

ur = u− uc
vr = v− vc

(8)

ur and vr are the ship longitudinal and transverse velocities;
u and v are the velocity of the ship relative to the earth.Due
to the assumption that current is under the condition of uni-
form flow, the ship’s turning angular velocity r is consistent
whether to the water or the ship. The derivative of (8) is
obtained: {

u̇r = u̇− rvc
v̇r = v̇+ ruc

(9)

III. DESIGN AND ANALYSIS OF CONTROLLER
The dynamic positioning system consists of the measurement
system, control system and thrust allocation system [23].
During the voyage, the control system produces the control
signals to resist the effects of various disturbances [24].
Control block diagram of DPS is shown in Figure 2. x∗, y∗

andψ∗ are expected position and course; x, y andψ are actual
position and course;XT , YT andNT are the longitudinal force,
transverse force and moment produced by controllers.

A. SLIDING MODE CONTROL ALGORITHM
Sliding mode control is a kind of special nonlinear control,
whose nonlinear performance is the discontinuity of control.
Its control principle is to design the switching hyperplane of
the system according to the expected dynamic characteristics
of the system, and to bind the system state from outside the
hyperplane to the switching hyperplane. Once the system
reaches the switching hyperplane, the control function will
ensure the system along the switching hyperplane when the
plane reaches the origin of the system. The advantage of
sliding mode control is that it can overcome the uncertainty
of the system and has strong robustness to the disturbance
and unmodeled dynamics, especially for the nonlinear sys-
tem. The disadvantage of this method is that when the state
trajectory reaches the sliding mode surface, it is difficult to
strictly follow the slidingmode towards the origin the balance
point slides, but shuttles back and forth on both sides of the
sliding surface, resulting in chattering.

The conventional sliding mode control law of dynamic
positioning can be designed according to the following steps.
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It is known from (2):

V̇ = −M−1DV +M−1(τT + τD) (10)

η = [x, y, ψ]T are the longitudinal displacement, lateral
displacement and heading angle of the ship.

η̇ = R(ψ)V (11)

In (11),

R(ψ) =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 .
So (12) can be deduced:

η̈ = R(ψ)V̇ + Ṙ(ψ)V

= −R(ψ)M−1DR(ψ)−1η̇ + R(ψ)M−1τT
+R(ψ)M−1τD + Ṙ(ψ)V (12)

We set ηd = [xd , yd , ψd ]T , so the position error e = η − ηd .
Then switching function is:

s1 = ė+ Ce (13)

C is a diagonal matrix of 3×3, C = diag(c1, c2, c3). So ṡ1 =
ë + Cė, The design of controller based on the equal speed
approach law:

ṡ1 = −εsgn(s1), ε > 0 (14)

So, the sliding mode control law is:

τT = (R(ψ)M−1)−1(Cė+ εsgn(s1)

+R(ψ)M−1DR(ψ)−1η̇ − R(ψ)M−1τ̄D) (15)

where τ̄D represents the upper bound of the total uncertainty
τD. The Lyapunovmethod is used to determine the stability of
the controller. The following Lyapunov function can be used:

V (x) =
1
2
s21 (16)

If V̇ (x) < 0, it is stable. The first derivative of the above
function is V̇ (x) = s1ṡ1. So the following formula can be
calculated:{

∵ ε > 0
∴ ˙V =s1ṡ1 = −εs1sgn(s1) < 0

(17)

Therefore, the approach law can stabilize the
system [25]–[28].

B. ADAPTIVE BACKSTEPPING SLIDING MODE
CONTROLLER
The backstepping method is widely used in control system
design. Because of the uncertainty of system parameters, (10)
can be written as V̇ = (−M−1D+1A)V + (M−1 +1B)τT
+(M−1 +1C)τD. The formula can be written as:

V̇ = −M−1DV +M−1τT + F (18)

In (18), F = 1AV + 1BτT + (M−1 + 1C)τD, and it
represents the total uncertainties of the system. In practi-
cal control, the uncertainties and disturbances are usually
unknown. Therefore, it is difficult to determine the upper
bound of the total uncertainties F [29]–[31]. An adaptive
method can be used to estimate the total uncertainties F .
Ship position signal were set ηd = [xd , yd , ψd ]T , The

adaptive sliding mode controller is designed according to the
following steps:

Step 1: The position error is:

z1 = η − ηd (19)

According to (11), and because ηd = [xd , yd , ψd ]T is con-
stant, so:

ż1 = η̇ − η̇d = R(ψ)V (20)

The stability term is defined as:

a1 = c1z1, c1 > 0 (21)

The Lyapunov function is defined as:

V1 =
1
2
z21 (22)

Definition:

z2 = ż1 + a1 = R(ψ)V + a1 (23)

Therefore:

V̇ = z1ż1 = z1(z2 − a1) = z1z2 − c1z21 (24)

Step 2:

ż2= z̈1+ȧ1=R(ψ)(−M−1DV+M−1τT+F)+Ṙ(ψ)V+ȧ1
(25)

The Lyapunov function is defined as:

V2 = V1 +
1
2
s22 (26)

where s2 is a switching function, the switching function is
defined as:

s2 = k1z1 + z2, k1 > 0 (27)

Therefore:

V̇2 = V̇1 + s2ṡ2 = z1z2 − c1z21 + s2ṡ2
= z1z2 − c1z21 + s2(k1ż1 + ż2)

= z1z2 − c1z21 + s2(k1(z2 − c1z1)

+R(ψ)(−M−1DV+M−1τT+F)+Ṙ(ψ)V+ȧ1) (28)

The designed backstepping sliding mode control law is as
follows:

τT = MR(ψ)−1(−k1(z2 − c1z1)+ R(ψ)M−1DV

−R(ψ)F̄sgn(s2)− Ṙ(ψ)V − ȧ1
− h(s2 + ξsgn(s2))), h > 0, ξ > 0 (29)
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where F̄ represents the upper bound of the total uncertainty
F. Substitute (29) into (28):

V̇2 = V̇1+s2ṡ2=z1z2−c1z21 − hs
2
2 − hξ |s2| + Fs2 − F̄ |s2|

≤ −c1z21 + z1z2 − hs
2
2 − hξ |s2| + |s2| (|F | − F̄)

≤ −c1z21 + z1z2 − hs
2
2 − hξ |s2| (30)

Because:

zTQz = [z1 z2]

c1 + hk21 hk1 −
1
2

hk1 −
1
2

h

 [z1 z2]T

= c1z21 + hk
2
1 z

2
1 + 2hk1z1z2 − z1z2 + hz22

= c1z21 − z1z2 + hs
2
2 (31)

So (30) can be written as:

V̇2 ≤ −zTQz− hξ |s2| (32)

Because:

|Q| = h(c1 + hk21 )− (hk1 −
1
2
)2 = h(c1 + k1)−

1
4

(33)

By choosing the value of h, c1 and k1, |Q| > 0 can be made,
thus ensuring that Q is a positive definite matrix, then:

V̇2 ≤ 0 (34)

It is difficult to determine the upper bound of F , so the
adaptive method is adopted. Definition of Lyapunov
function is:

V3 = V2 +
1
2γ

F̃2 (35)

where F̂ is the estimation of F , the estimation error of F is
F̃ = F − F̂ , and γ is a positive constant, assuming F is a
slow-changing disturbance, that is to say Ḟ = 0, therefore:

V̇3 = V̇2 −
1
γ
F̃ ˙̂F

= z1z2 − c1z21 + s2(k1(z2 − c1z1)

+R(ψ)(−M−1DV +M−1τT + F)+ Ṙ(ψ)V + ȧ1)

−
1
γ
F̃ ˙̂F

= z1z2 − c1z21 + s2(k1(z2 − c1z1)

+R(ψ)(−M−1DV +M−1τT + F̂)+ Ṙ(ψ)V + ȧ1)

−
1
γ
F̃( ˙̂F − γ s2) (36)

The control law of the adaptive sliding mode controller is as
follows:

τT = MR(ψ)−1(−k1(z2 − c1z1)+ R(ψ)M−1DV

−R(ψ)F̂ − Ṙ(ψ)V − ȧ1 − h(s2 + ξsgn(s2))),

h > 0, ξ > 0 (37)

Design the adaptive law as follows:

˙̂F = γ s2 (38)

Substitute (37) and (38) into (36):

V̇3 = z1z2 − c1z21 − hs
2
2 − hξ |s2| (39)

According to (31), (39) can be written as:

V̇3 = −zTQz− hξ |s2| ≤ 0 (40)

C. ANALYSIS OF CHATTERING PHENOMENON
Chattering is common in sliding mode control [32]. The
chattering phenomenon can be reduced when the approach
law satisfies the following conditions:
1) Fast approach;
2) Finite time arrival;
3) When reaching the switching line, the speed is equal to

zero, namely:

lim
s→0

ṡ = 0 (41)

According to (27), we can calculate the following result:

ṡ2 = k1ż1 + ż2
= k1(z2 − c1z1)+ R(ψ)(−M−1DV +M−1τT + F)

+ Ṙ(ψ)V + ȧ1 (42)

Substitute (37) into (42),

ṡ2 = −hs2 − p sgn(s2), h > o, p > 0 (43)

In the formula above, p = hξ .−hs2 is the exponent approach
law. We assume ζ̇ = −hζ ,then the solution of this equation
is:

ζ = ζ (0)e−ht (44)

In the exponential approach, the approach speed is
gradually reduced from a large value to zero, which not only
shortens the approach time, but also makes the speed of the
moving point reaching the switching surface very small. For
a simple exponential approach, it is a gradual process for
the moving point to approach the switching surface, which
cannot guarantee the arrival of finite time, and there is no
sliding mode on the switching surface. Therefore, an equal
speed approach term−p sgn(s2) should be added, so when s2
is close to zero, the approach speed is p, which can guarantee
the arrival of finite time. In addition, according to (43), we can
calculate: 

lim
s2→0+

ṡ2 = −h

lim
s2→0−

ṡ2 = h
(45)

When h is small enough, it can ensure that the switching
speed is small and the distance through the switching surface
is small, which also ensures that the chattering is reduced.
Therefore, through the above analysis, we can conclude

that our control law is helpful to reduce the chattering
phenomenon of sliding mode control.
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FIGURE 3. The structure of CMAC netword.

D. OPTIMAL CONTROLLER BASED ON
CMAC NEURAL NETWORK
A simple CMAC structure is shown in Figure 3, where X
represents the P-dimensional input state space. Let the input
vector of CMAC network be represented by point x i =
(x i1, x

i
2, · · · , x

i
p)
T in the space X which is p-dimensional and

the corresponding output vector be represented by yi =
F(x i1, x

i
2, · · · , x

i
p). In Figure 3, i = 1, 2, 3, and a point X i

in the input space will simultaneously activate NL elements
in A (NL = 4 in figure 3) to make them simultaneously 1,
while most other elements are 0, and the output yi of the
network is the weight summation of 4 activated units in A.
It can be regarded as the receptive field size of signal detection
unit. For CMAC, its working process generally includes two
aspects: the calculation of results output and the generation
of errors, and the adjustment of weights.

1) OUTPUT CALCULATION AND ERROR
GENERATION STAGE OF CMAC
Generally speaking, each component of input vector comes
from different sensors in practical application, and its value is
mostly analog, while each element in A is only 0 or 1. In order
to map the points in X-space to discrete points in A-space,
the analog X i must be quantized to discrete points in the input
state space. Each state X i is mapped to a set of Ai in the
A-space storage area, and the NL elements of A-space are all
1. From Figure 3, we can see that the mapping A2 and A3 of
X2 and X3 in A-space appear intersection A2 ∩ A3, and that
means two of their corresponding four weights are the same,
so the two outputs of weight accumulation and calculation are
also close. From the point of view of function mapping, this
feature can play a role of generalization. Obviously, for far
away samples X1 and X3, A1 ∩ A3 mapped to A-space is an
empty set. This generalization does not work, so it is a local
generalization. The nearer the input space is, the closer the
elements in the intersection set are to NL after mapping to
A-space storage area. The intersection of the corresponding
input samples in A-space plays a role in clustering the similar
samples.

In order to have a uniquemapping for each state of X-space
in A-space, the number of cells in memory of A-space should
be at least equal to the number of states in X-space, and
that is n ≥ qp. Let each component of three-dimensional
input be quantized to 10 levels, then n ≥ 1000. For many

FIGURE 4. The structure of CMAC optimal controller.

practical systems, qp is often much larger than this number.
The mapping from A-space to Ai is Hash coding. It is a
common technique for compressing sparse matrices, which
is implemented by a program that generates random num-
bers. The address of A-space is the Ai of program generated
by random number, and the random number is the address
of Ai. In Ai, there are NL random addresses corresponding
to each sample. The weights stored in NL addresses are
acquired by learning, and their sum is the output of CMAC.
Its expression is:

yi =
NL∑
j=1

wjaj(x) i = 1, · · · ,m (46)

Among them, wj is the weight of the j memory cell. If aj(x) is
activated, the value is 1. OnlyNL memory cells have an effect
on the output. Similar input-activated storage units overlap
to produce similar outputs, and inconsistent inputs produce
inconsistent outputs. The corresponding error expression is:

1Ei = ys −
NL∑
j=1

wjaj(x) i = 1, 2, · · · ,m (47)

2) WEIGHT ADJUSTMENT PHASE OF CMAC
In the output phase of CMAC algorithm, the actual output is
generated from the CMAC storage unit. The learning process
updates the weight of the CMAC storage unit according to
the error between the expected output and the actual out-
put. In conventional CMAC algorithm, errors are distributed
equally to all activated storage units. Let s be a state and wj(t)
be the weight stored in the j storage unit after t iteration. The
conventional CMAC update wj(t) algorithm is:

wj(t) = wj(t − 1)+
α

NL
aj(ys −

NL∑
j=1

aj(x)wj(t − 1)) (48)

ys is the expected output of s;
NL∑
j=1

aj(x)wj(t − 1) is the actual

output of s; a is the learning constant.
The structure of CMAC optimal controller is shown in

Figure 4. To sum up, CMAC optimal controller algorithm is
as follows.

(1) A suitable adaptive backstepping sliding mode
controller was designed.

(2) We use CMAC to approach the control algorithm in the
way of online learning. When the output of CMAC can track
the control algorithm completely, CMAC is used to control
independently.
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E. CONTROLLER WITH TRACKING DIFFERENTIATOR
In the process of using sliding mode controller, it is easy
to produce large-scale control signals in the initial stage
of the system, which will cause great impact on the sys-
tem. Moreover, such large-scale control signals are almost
impossible to produce in the actual process. Therefore, it is
necessary to add a transition process to reduce the system
overshoot. It is for this purpose that a tracking differentiator
is added. The tracking differentiator should be installed after
the input signal of the system.

The second-order tracking differentiator is:
d(x1(t))
dt

= x2(t)

d(x2(t))
dt

= R2
[
−a1(x1(t)− ηd )

m1
n1 −a2(

x2(t)
R

)
n2
m2

] (49)

ηd is the input signal; x1 and x2 are the track signal and
differential signal; R > 0; a1 > 0; a2 > 0; m1, m2, n1 and n2
are positive odd numbers.

The following is an analysis of stability. Because ηd is a
constant matrix, so η̇d = 0. (49) can be transformed into:

d(x1(t)− c)
dRt

= R−1x2(t)

d(R−1x2(t))
dRt

= −a1(x1(t)− ηd )
m1
n1

− a2(R−1x2(t))
n2
m2

(50)

We make h = Rt , z1(h) = x1(t) − ηd , z2(h) = R−1x2(t),
so (50) can be transformed into:

d(z1(h))
dh

= z2(h)
d(z2(h))
dh

= −a1(z1(h))
m1
n1 − a2(z2(h))

n2
m2

(51)

The Lyapunov function is defined as:

V (z1(h), z2(h)) =
2n1

m1 + n1
a1z

m1+n1
n1

1 + z22(h) (52)

Therefore:

d(V (z1(h), z2(h)))
dh

= 2a1z
m1
n1
1 (h)

d(z1(h))
dh

+ 2z2(h)
d(z2(h))
dh

= 2a1z
m1
n1
1 (h)z2(h)+ 2z2(h)(−a1z

m1
n1
1 (h)− a2z

n2
m2
2 (h))

= −2a2z
m2+n2
m2

2 (h) ≤ 0 (53)

(53) is only equal to 0 at (0, 0). According to the Lyapunov
theorem, (51) is asymptotically stable at (0, 0). That means
lim

h→+∞
z1(h) = 0, lim

h→+∞
z2(h) = 0. So we can draw the

following calculations:

lim
R→+∞

∫ t0+T

t0
|x1(t)− ηd |dt= lim

R→+∞

∫ Rt0+RT
Rt0

|z1(Rt)|dRt

R
(54)

TABLE 1. Ship size parameters.

When
∫ Rt0+RT
Rt0

|z1(Rt)|dRt has an upper bound, (54) is equal

to 0. If lim
R→+∞

∫ Rt0+RT
Rt0

|z1(Rt)|dRt →+∞, According to the

L’Hopital’s rule, (54) can be transformed into:

lim
R→+∞

∫ t0+T

t0
|x1(t)− ηd |dt

= lim
R→+∞

(|z1(Rt0 + RT )| (t0 + T )− |z1(Rt0)| t0) (55)

Because lim
h→+∞

z1(h) = 0, therefore lim
R→+∞

∫ t0+T
t0

|x1(t)− ηd |dt = 0. It proves that the tracking differentiator
can track the input signal after a period of time T.

When adding the tracking differentiator, (19) and (20) can
be transformed into:{

z1 = η − x1(T )
z2 = η̇ − x2(T )

(56)

Because the differentiator is stable and bounded, the stability
of the system can be guaranteed. This means that when time
reaches T, V̇3 < 0 will be obtained.

IV. SIMULATION OF DYNAMIC POSITIONING
SYSTEM FOR POD SHIP
A. SHIP PARAMETERS
The ‘‘Taian Kou’’ ship is as an example for this simulation.
Its main parameters are shown in Table 1.
Parameters in M and D matrix can be calculated according

to ship parameters. The calculation results are as follows:

M =

0.3418 0 0
0 0.3336 0.0007
0 −0.0005 0.0228

 (57)

D =

0.0044 0 0
0 0.0186 −0.0029
0 0.0051 0.0024

 (58)

The ship has two pod thrusters whose output power
of 4700KW, as the main propeller of the ship, symmetrical
installed in the stern; the others are a pair of side thruster
with a power of 800KW, and they are not only a conventional
lateral propeller, but also a thruster for the ship’s dynamic
positioning.

B. SIMULATION RESULTS ANALYSIS
We set the target position is (50m, 50m, 45◦).
λ/L = 0.5, ςD = 0.05m, and χ = 90◦. The current
relative velocity is 1kn, and the direction is 30◦. The relative
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FIGURE 5. The Comparison between ESMC and ESSMC: (a) Actual
position x, (b) Actual position y, (c) Heading angle.

velocity of the wind is 10kn, and the wind direction is 60◦.
The controller parameters are set as follows:

(1) Sliding mode control based on equal speed approach
law (ESSMC): C = diag (10, 10, 30); ε = 20.
(2) Sliding mode control based on exponential approach

law (ESMC): ε = 20; k = 400; γ = 2, h = 20; c1 = 450;
k1 = 50; ξ = 1.5.

(3) Adaptive backstepping sliding mode control law based
on CMAC neural network optimization (CSMC): γ = 2,
h = 20; c1 = 450; k1 = 50; ξ = 1.5; q = 2000; C = 3;
β = 0.01; ∂ = 0.1.

(4) Controller with Tracking Differentiator (TDCSMC):
R = 200; a1 = a2 = 1; n1 = n2 = 3; m1 = m2 = 5.
The simulation experiment is divided into three cases.
Case 1. Chattering analysis between ESSMC and ESMC.
Case 2. Comprehensive analysis of control effect between

ESMC and CSMC.
Case 3. Improvement of system after adding differentiator.
Firstly, the results of case 1 are as follows:

FIGURE 6. The chattering analysis between ESMC and ESSMC in
transverse and longitudinal forces τ1, τ2 and moment τ3.

It can be seen from Figure 5 that both ESMC and ESSMC
can meet the control requirements. ESMC greatly shortens
the adjustment time, andmakes the control result arrive faster.

From Figure 6, it can be seen that ESMC reduces chat-
tering in three degrees of freedom while accelerating con-
trol time. Since the approach law of adaptive backstepping
sliding mode control applied in this paper is also exponential
approach, it shows that the controller designed in this paper
can effectively reduce chattering.

Secondly, the dynamic positioning control results of
ESMC and CSMC are compared in case 2.

From Figure 7, it can be seen that both ESMC and CSMC
can achieve the goal of dynamic positioning and have good
steady-state performance. But the dynamic process is differ-
ent. The CSMC shortens the adjustment time and makes the
unmanned surface vessel achieve its goal faster. In addition,
because the dynamic positioning is at the low speed of the
ship, the course change is relatively slow, so the two control
laws have similar results for course control.

From Figure 8, we can see that the two control laws can
make the ship’s lateral speed, longitudinal speed and turn-
ing angular speed change smoothly. The CSMC control law
can make the ship’s speed increase faster, whether in the
horizontal or vertical direction.

From Figure 9, we can see that the two controllers have
calculated a stable and reliable control signal, which shows
that the online learning process of cerebellar neural network is
successful, andCMACcan learn slidingmode controlmethod
and maintain stability independently.

From Figure 10, F1, F2 and F3 are transverse and
longitudinal forces and moment of total uncertainties. It can
be seen that the estimation of uncertainties F is reasonable,
bounded and convergent. The purpose of adaptive adjustment
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FIGURE 7. The Comparison between ESMC and CSMC: (a) Trajectory of
ship in XY –plane, (b) Actual position x, (c) Actual position y, (d) Heading
angle.

controller is achieved. However, the traditional sliding mode
control is prone to produce a very large control signal in the
initial stage of the control process, which leads to a large
estimation disturbance in the initial stage, especially in F1 and
F2, resulting in a very large system oscillation in the initial
stage, which is not allowed in some cases. This problem can

FIGURE 8. The Comparison between ESMC and CSMC in Surge Velocity u,
Sway v and Yaw rate r.

FIGURE 9. The comparison between ESMC and CSMC in transverse and
longitudinal forces τ1, τ2 and moment τ3.

FIGURE 10. The Estimation of uncertainties F in CSMC.

be solved by adding tracking differentiator to arrange the
transition process.

Finally, a comparative analysis of the TDCSMC and
CSMC in case 3 are given.

From Figure 11, it can be seen that after adding tracking
differentiator, the output of the controller ismuchmore stable,
and there will be no strong oscillation in the whole control
process. This is more conducive to the practical application
of the controller, and more conducive to the security of the
system.

As can be seen from the comparison between Figure 12
and Figure 10, the uncertainties F is smaller and more
practical than the results in Figure 10 under the same
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FIGURE 11. Control force τ1, τ2 and moment τ3 in TDCSMC.

TABLE 2. Performance indexes comparison of control laws.

external conditions. In particular, more reasonable estimates
of F1 and F2 are given. Because the estimation of system
uncertainty is more reasonable, the output of the controller
does not oscillate greatly, which is more conducive to prac-
tical application. This shows the importance of arranging the
transition process according to the control objective and the
bearing capacity of the object, and the differential signal can
be directly given by arranging the transition process through
TD, which can be directly used by the controller.

Quantitative performance indexes of dynamic positioning
control are shown in table 2.

In table 2, ū, v̄, r̄, τ̄1, τ̄2 and τ̄3 indicate the average value of
each quantity separately, as can be seen, the adjustment time
of CSMC is less than ESMC. Because of the arrangement
of transition process, the adjustment time of TDCSMC is
slightly larger than CSMC, but also smaller than ESMC. ū, v̄
and r̄ in CSMC is larger than ESMC which means that the
reaction speed is increased. Because the transition process
slows down the reaction speed, that in TDCSMC is slightly
smaller than CSMC, but also larger than ESMC. τ̄1, τ̄2 and τ̄3

FIGURE 12. The estimation of uncertainties F in TDCSMC.

in CSMC decreases to a certain extent relative to ESMC, but
it is still large in value. TDCSMC can achieve a good value.
In summary, the designed control laws are proved by using
Lyapunov stability theory. The control laws can control the
actual position (x, y) and heading angle of the ship and remain
on the expected value, and ensure that all signals in the closed-
loop system of ship dynamic positioning are uniformly and
eventually bounded.

V. CONCLUSION
As an important research direction of ships in the future,
the dynamic positioning of unmanned surface vessel has great
research value. This paper studies from the following aspects.

(1) Aiming at the dynamic positioning problem, MMG
ship mathematical model is established combined with the
characteristics of pod propulsion ship.

(2) A new sliding mode controller is designed based on
CMAC neural network and adaptive backstepping method.
The Chattering problem is analyzed in detail. In order to
solve that sliding mode control is easy to generate large-
scale control signals at the beginning of the control process,
tracking differentiator is added to the controller.

(3) The simulation of the unmanned surface vessel’s
dynamic positioning system is carried out in MALAB. It can
be seen from the simulation results that the designed control
law has better control results than the traditional sliding
mode controller. By adding tracking differentiator, the control
process is smoother and the control reliability is improved.

Furthermore, this method realizes the control of the sys-
tem according to the real-time information provided in the
control process, which is very close to the actual engineering
situation, and is welcomed by the industry, and has a broad
application prospect. At the same time, its active disturbance
rejection has a good prospect of improving control perfor-
mance and economy. The research of this paper is expected
to provide reference for the following theoretical work and
engineering practice. The algorithm is universal and can solve
the problem of control in the case of environmental distur-
bances. It can be applied in the fields of unmanned aerial
vehicle (UAV) and vehicle motion control, etc.
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