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ABSTRACT With the development of new technologies in the field of renewable energy and batteries,
increasing number of houses have been equipped with renewable energy sources (RES) and energy storage
systems (ESS) to reduce home energy cost. These houses usually have home energy management sys-
tems (HEMS) to control and schedule every electrical device. Various studies have been conducted on HEMS
and optimization algorithms for energy cost and peak-to-average ratio (PAR) reduction. However, none of
papers give a sufficient study on the utilization of main grid’s electricity and selling electricity. In this paper,
firstly, we propose a newHEMS architecture with RES and ESSwhere we take utilization of the electricity of
the main grid and electricity selling into account. With the proposed HEMS, we build general mathematical
formulas for energy cost and PAR during a day. We then optimize these formulas using both the particle
swarm optimization (PSO) and the binary particle swarm optimization (BPSO). Results clearly show that,
with our HEMS system, RES and ESS can help to drop home energy cost significantly to 19.7%, compared
with the results of previous works. By increasing charge/discharge rate of ESS, energy cost can be decreased
by 4.3% for 0.6 kW and 8.5% for 0.9 kW. Moreover, by using multi-objective optimization, our system can
achieve better PAR with an acceptable energy cost.

INDEX TERMS Home energy management systems, electricity selling, renewable energy sources, energy
storage systems, day-ahead price, meta-heuristic algorithms.

I. INTRODUCTION
In recent decades, the rate of global warming and climate
change have been more severe, causing world extreme events
such as hemispherical sea ice melting, serious flood, strong
hurricane, and so on. One of main causes of global warming
is carbon dioxide emissions from the consumption of fossil
fuel to meet daily energy demand. To mitigate this prob-
lem, researches have been conducted in two different ways:
finding more renewable energy resources (RES) to replace
fossil fuel and utilizing energy in a most efficient way with
the integration of RES and energy storage systems (ESS).

The associate editor coordinating the review of this manuscript and

approving it for publication was Alexander Micallef .

For the purpose of utilization, smart grid (SG) has been
introduced as a replacement of the existing power grid which
does not support consumer’s new requirements. The SG
utilizes the latest communication technologies to improve
the traditional electrical power system. With integration of
RES and ESS, SG helps decrease the emission of carbon
particulate and greenhouse gases as well as climate change
mitigation (CCM) [1]. Two key integral parts of SG which
make it better than traditional grids are advanced metering
infrastructure (AMI) and demand side management (DSM).

The main functions of AMI are energy measurement and
information collection. It comprises of smart meters and
Information and Communication Technology (ICT). The ICT
enables SG to keep the consumers updated about varying
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electricity prices, or events/failures due to devices or disas-
ters. It also sends information of energy consumption mea-
sured by smart meter to electricity operators to enable the
operators to monitor and analyze real-time data and make
real-time decisions about activities of power networks.

DSM is an important part in the energy management of
SG. DSM provides a diversity of functionalities in vari-
ous areas such as electricity market control, energy man-
agement, infrastructure construction and management of
decentralized energy resources [2]. DSM, which includes
demand response (DR) and energy optimization, encom-
passes a broader range of energy demand management con-
cepts. DSM seeks a balance between energy supply and
demand on the both side of utilities and consumers whereas
DR focuses on the consumer side only. The DR is used for
the programs designed to help end-users to reduce short-
term energy demand in response to a price signal from the
electricity hourly market, or a trigger initiated by the elec-
tricity grid operator [3]. DR seeks to adjust the demand for
power, rather than the supply. However, it is examined in the
literature that researchers considered the DSM and DR are
interchangeable [4].

Usually, the main objective of DSM and DR functions in
SG is to encourage the consumers to utilize their RES (local
generators) for their load, especially at peak hours, whereby
decreasing the dependence on electricity providers. The sec-
ond objective is to encourage consumers to shift home load:
moving the time of energy use from peak hours to off-peak
hours [2], [5]. These objectives also help the consumers
to reduce their electricity cost and energy consumption in
peak hours. Moreover, with amazing development of electric
mobile devices such as electric vehicles (EV) and revolution
of the technologies in RES, consumers are encouraged to
participate in electricity market by selling surplus energy. The
buyers can be electric cars, other houses and even electricity
providers. To achieve the above objectives, a home energy
management system (HEMS) is required at the consumer
side. HEMS controls and optimizes RES, ESS and home
appliances in a most efficient way and also helps consumers
to incorporate other DSM activities.

Various studies have proposed algorithms to optimize
the operation of home appliances such as linear program-
ming (LP) [6], mixed integer linear programming (MILP)
[7], [8], mixed integer nonlinear programming (MINLP)
[9], [10], dynamic programming (DP) [11], or convex
programming (CP) [12]. However, these techniques have
very slow convergence rate with a large number of vari-
ables, and in some cases, they are unable to handle a
lot of appliances [3], [13]. Meta-heuristic algorithms are
employed in HEMS to deal with such shortcomings. The
most widely used meta-heuristic algorithms are particle
swarm optimization (PSO), binary particle swarm optimiza-
tion (BPSO), genetic algorithm (GA), wind-driven optimiza-
tion (WDO), bacterial foraging optimization (BFO) and Jaya
algorithm [3], [13], [14], [15].

Based on the above background, we propose a new HEMS
with integration of RES and ESS. Our HEMS is connected
with electricity operator through AMI. Electricity operator
sends useful forecast information to our HEMS by using
AMI such as pricing information and solar irradiance. The
proposed HEMS makes the following contributions.
• With the integration of RES and ESS, we propose a
novel HEMS architecture to reduce energy cost and
PAR. In our HEMS, utilizing main grid and electricity
selling are emphasized and described as follows: Our
ESS can be used to store electricity from main grid at
low price time as well as electricity from RES. This
electricity is reused for home load at high price time.
Moreover, our HEMS allows prosumers to sell surplus
electricity at appropriate time slots.

• With the proposed HEMS architecture, we build general
mathematical formulas where we consider utilization
of main grid and electricity selling as well as the sell-
ing price. Based on these formulas, our HEMS gives
detailed schedules for each electrical device during a
day. Furthermore, the amount of electricity utilized from
main grid and the amount of electricity sold to the out-
side are also determined at each time slot.

• In proposed HEMS, we combine two algorithms, PSO
and BPSO, for optimization because of the complexity
of the HEMS architecture: BPSO is used for binary
variables and PSO is used for continuous variables.

• We evaluate the proposed HEMS by performing exten-
sive simulations. Firstly, we focus on the minimiza-
tion of energy cost using single-objective optimization.
Secondly, we apply multi-objective optimization to the
HEMS to minimize both energy cost and PAR.

• We further analyze our proposed HEMS with the effects
of changing the selling price. In addition, the effect of
different ESS charge/discharge rate and ESS capacity for
reducing the energy cost are also evaluated.

The rest of this paper is organized as follows. Section II
reviews the related works to our system and our paper’s con-
tributions. In Section III, we describe our HEMS architecture
in detail. Problem formulation of total energy cost and PAR
during a day is built in Section IV. PSO and BPSO algorithms
are presented in Section V. In Section VI, simulations and
the results are discussed. Finally, Section VII draws the con-
clusion of our paper after which some future works are also
highlighted.

II. RELATED WORK AND MOTIVATION
Recently, various studies have been conducted on HEMS
with various optimization algorithms. The common targets
of these studies were to minimize energy cost and PAR.
Beside the two objectives, some papers also consider user
comfort (UC) such as waiting time, thermal comfort, air
quality and so on.

In [9], a home automation/energy management sys-
tem (HAEMS) with integrated ESS was presented.
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The objective of this paper was to optimize a mixed objective
function which includes energy cost, user’s convenience and
thermal comfort. The tariff used in their system was RTP
pricing. In this paper, they used General Algebraic Modeling
System (GAMS) software with Cplex/Dicopt solvers as the
main optimization engine. They considered their HAEMS in
three scenarios: naive, normal, and smart. The simulation
results showed that in smart scenario, their HAEMS has
improved the mixed objective function up to 55% and 25%
with respect to the naive and normal scenarios in a hot
weather condition and up to 63% and 38% in a cold weather
condition. However, in this paper, RES was not included
and PAR was not considered. In [10], authors proposed a
residential smart energy management system (RSEMS) with
integrated ESS and RES. A hybrid objective function was
built to optimize the energy cost, user’s satisfaction and
thermal comfort simultaneously. They used MATLAB and
GAMS for optimization tasks. Their RSEMS was compared
with conventional EMS in two scenarios: hot summer day
and cold winter day. Their RSEMS helped to improve hybrid
objective function up to 29% and 33% in hot and cold weather
conditions respectively. However, PAR was not considered
in this paper. In both [9] and [10], utilizing main grid’s
electricity at low price time and electricity selling activities
were mentioned but they were not emphasized. Authors did
not give a detailed schedule for selling operation at each time
slot. Moreover, selling price was not considered. Their works
can not be applied in case selling price is smaller than the
price of main grid.

In [16], an ontology-driven multi-agent based energy man-
agement system (MAS) was proposed. This system was used
to monitor and optimally control a micro-grid system with
integrated homes or buildings (residential micro-grid) with
various RES. At homes, different agents including EMSwere
implemented to cooperate with each other to reach an optimal
operating strategy. Moreover, this system also had useful
agents such as central coordinator agent (CCA) which is
responsible for collecting and sharing useful information, and
battery bank agent (BBA) to compensate any real-time power
imbalances within the residential micro-grid economically.
The BBAwas also a device which stores the surplus of energy
and provides energy back to micro-grid. The BBAwas able to
sell or buy energy from utility. Authors tested their system in
three scenarios: naive, normal, and smart with different time
frames (weekdays and weekend), different climate (hot and
cold), pricing schemes (RTP, TOU, and flat rate). Through a
number of simulations, they demonstrated that the proposed
MAS had the capability to reduce system’s operation cost
and to ensure user’s needs under different weather conditions,
time frames, and pricing schemes. However,MAS focused on
the whole residential micro-grid, not for a single home.

In [11], authors proposed an energy management system
for a group of homes with integrated ESS and RES to opti-
mize the energy cost. At each home, an energy consumption
controller (ECC) with dynamic programming was suggested
for load scheduling and a game theoretic approach was

adopted to model power trading between these users. At each
time slot, ECC was re-run to turn on or off home appli-
ances and users could re-choose selling price and amount
of trading energy based on Nash equilibrium. Their simu-
lation results showed that with the support of their system,
energy consumption was decreased from 1360.9 kWh to
820.2 kWh. Hence, energy cost of their system was reduced
from $62.91 to $40.37. However, the utilization of main grid
and PAR were not considered.

In [3], an optimized home energy management sys-
tem (OHEMS) with integrated RES and storage resource
to optimize the energy cost and PAR was proposed. The
tariff in their system was a day-ahead pricing. They applied
many heuristic algorithms into OHEMS and compared results
of these algorithms. These heuristic algorithms are genetic
algorithm (GA), binary particle swarm optimization (BPSO),
wind driven optimization (WDO), bacterial foraging opti-
mization (BFO) and hybrid GA-PSO (HGPO). Their study
shows that HGPO gives the lowest total energy cost and
BFO gives the lowest PAR among these algorithms. However,
the user comfort (UC)was not discussed. In this work, authors
gave a fixed plan for the operation of RES and ESS. ESS
is only used to store 30% of RES energy at day time and
discharged at high price time slot at night time. 70% of RES
energy is used for home load. With this fixed plan, their
OHEMS cannot utilize the electricity of the main grid at
time which has low price. Moreover, their OHEMS does not
support consumers to sell electricity.

In [13], HEMS with different heuristic algorithms and dif-
ferent tariffs was studied. Their objectives were to minimize
energy cost, PAR and maximize user comfort. The user com-
fort in their papers is waiting time of user. The tariffs applied
in their system were real-time electricity pricing (RTEP) and
critical peak pricing (CPP). Four heuristic algorithms applied
in their system were wind driven optimization (WDO), har-
mony search algorithm (HSA), genetic algorithm (GA) and
GHSA which combines the attributes of GA and HSA. They
also considered their HEMS in two cases single home (SH)
and multiple homes (MH). Their simulation results showed
that GHSA outperformed the other algorithms in terms of
objectives. However, in their HEMS, the integration of RES
and ESS into residential side was ignored.

Muhammad Awais in [17] presented home energy
management (HEM) with three heuristic algorithms: bacte-
rial foraging optimization algorithm (BFOA), flower pollina-
tion algorithm (FPA) and hybrid bacterial flower pollination
algorithm (HBFPA). They test the proposed scheme in a sin-
gle home and in smart community involving multiple house-
holds. Their targets were to minimize energy cost and PAR
with affordable users’ waiting time. The proposed HBFPA
shows efficacy for energy cost and for reduction of PAR with
reasonable user waiting time. However, they did not consider
RES and ESS in their HEM.

In [8], an optimization and energy management in the
smart home was proposed. Energy consumption was opti-
mized with the integration of ESS, electric vehicle, and two
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kinds of RES: solar energy and wind energy. The selling
energy was also considered. The system was simulated in
three scenarios: 1 day, 4 days and 7 days. MILP and heuristic
algorithms were compared in the three scenarios. However,
their system does not have AMI, hence they did not receive
information from electricity operators. In their system, they
forecast daily load in general and home appliances were not
described. They did not give a detailed schedule for each
device at home. Hence, this system cannot be applied to
DSM. In addition, authors only consider minimizing energy
cost without taking PAR into account.

In [18] and [19], straightforward solution of HEMS
was proposed with direct current (DC) power management.
In their HEMS, smart DC sockets with load shedding algo-
rithm were used to control home devices with priority. How-
ever, home devices were turned on or off by smart sockets
only according to the threshold of energy consumption at each
sampling period, and time constraints of home devices were
not considered.

In [6], an OEMS for reduction of energy cost was studied.
In this work, plug-in hybrid electric vehicle (PREV) batteries
and ESS were used to collect electricity and determine the
optimization values. The PREV provides electricity for ESS
when demand is low and ESS is discharged for home when
demand is high. They used linear programming to solve the
optimization problem. However, RES was not considered in
this model.

In [20], an energy management system with load fore-
casting based on Kalman Filter was demonstrated. In their
system, a PV system, ESS and critical peak pricing (CPP)
were used. ESS was used to store excess PV power and
provide the charged power as needed. Kalman Filter was
used to forecast the home load for the next day. Their system
need to be trained to construct load forecasting model. How-
ever, their system did not have AMI to receive information
from electricity operators. The DSM and DR activities were
also not considered. In addition, their system did not give a
detailed schedule for each home appliance.

The brief comparison of research works on HEMS is listed
in Table 1 where a HEMS supporting selling operation allows
prosumers to change selling price and give a detailed amount
of energy sold to the outside. On the other hand, selling capa-
bility means that a HEMS is considered to sell electricity to
the outside but it does not support to change selling price and
does not give a schedule for selling. Motivated by the above
literature works, we suggest a novel HEMS with integration
of RES and ESS utilizing main grid and electricity selling
whose objective is to minimize both energy cost and PAR.

III. HEMS ARCHITECTURE
Fig. 1 shows the main elements of the proposed HEMS.
We assume that every consumer is equipped with AMI,
a main controller (MC), ESS and a PV system as RES.

In general, AMI refers to collection of systems that include
smart meter (SM), advanced communications and data man-
agement systems [13]. AMI works as a backbone from

FIGURE 1. HEMS architecture.

electricity providers to consumers. SM works as a commu-
nication gateway between our house and providers. SM is
responsible for reading, processing and sending energy usage
data from our house to the providers via AMI. Moreover,
AMI is also used to transmit useful grid information from
electricity providers to consumers. These kinds of informa-
tion may be the price information, forecast temperature, solar
irradiance, and wind speed.

The MC is the heart of our HEMS. Main task of MC is to
control all home appliances including a PV system and ESS.
MC is able to turn on or off every device in our system based
on schedule calculated through our optimization algorithms.
A smart scheduler (SS) that performs optimization algorithms
is installed inside MC. At the beginning of the day, the useful
information is received from electricity provider via AMI.
SS is then run to create an optimized schedule for every device
during a day. MC can control all appliances following this
schedule to achieve the minimization of energy cost and PAR.

There are many kinds of RES such as wind turbines,
PV systems, fuel cells. In our system, we use a PV system
because of its easy installation and cheap price. A DC/AC
inverter is used to convert the DC current from the PV system
into AC current.

To utilize the electricity of the main grid, we use ESS to
store electricity from the main grid at low price time and
provide electricity for our home appliances at high price time.
ESS also helps us exploit the PV system efficiently. The
energy from a PV system is able to be stored in ESS at any
time slot and reused in different time slot. Furthermore, our
system supports selling energy to the outsiders such as smart
electric vehicles, other houses, or even main grid. We assume
that our MC can use AMI to transmit selling electricity.

IV. PROBLEM FORMULATION
To optimize electricity bill and PAR, we define mathematical
models and constraints of all elements in our HEMS. In this
section, we build mathematical formulas of RES, ESS, appli-
ances and our cost function during a day time from 0 A.M.
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TABLE 1. A comparison of HEMS: State of the art.

FIGURE 2. Electricity flows in our HEMS.

to 12 P.M.. We also divide a day into T = 24 time slots and
the duration of each time slot is 1t = 1h.

A. ELECTRICITY FLOWS
Fig. 2 shows all electricity flows in our system. In our model,
RES can be used to provide electricity for appliances in a
house and store electricity in the ESS at any time slot in
any quantity. The ESS can be used to provide electricity for
appliances and sell electricity at any time slot in any quantity.
If the electricity from RES and ESS is not enough for home
devices, the electricity of the main grid is needed. Moreover,
electricity from the main grid can be stored in ESS in the low
price time slot and would be used in the high price time slot.

B. RENEWABLE ENERGY SOURCE
As shown in Fig. 1, our HEMS is equipped with a PV system
as RES. According to [21] and [22], we use the following
equation to calculate the output power PRES of PV system in
kW at time τ .

PRES (τ ) = GHI (τ ) · S · ηRES ∀τ 0 ≤ τ ≤ 24 (1)

where GHI is the global horizontal irradiation (kW/m2) at
the location of solar panels. S is the total area (m2) of solar

panels and ηRES is the solar conversion efficiency of the PV
system.
In time slot t with time slot’s duration 1t , our PV system

generates an electrical energy ERES (t) as follows.

ERES (t) = PRES (τ ) ·1t ∀t 1 ≤ t ≤ T (2)

where τ is the real time in time slot t.
As shown in Fig. 2, this energy would be used for home

load and ESS charging. Thus, we have the following equation.

ERES (t) = E loadRES (t)+ E
charge
RES (t) ∀t 1 ≤ t ≤ T (3)

where E loadRES (t) is an energy quantity used for home load in
time slot t . EchargeRES (t) is an energy quantity used to charge
ESS in time slot t .
From (1), (2), and (3), we have following constraints for

variables E loadRES (t) and E
charge
RES (t).

0 ≤ E loadRES (t) ≤ GHI (τ ) · S · η
RES
·1t ∀t 1 ≤ t ≤ T

(4)

0 ≤ EchargeRES (t) ≤ GHI (τ ) · S · ηRES ·1t ∀t 1 ≤ t ≤ T

(5)

C. ENERGY STORAGE SYSTEM
The main role of ESS is to exploit the PV system and the
electricity of the main grid more efficiently. Our ESS is able
to store the energy of the main grid or RES in a time slot with
low price and provide to home load in a time slot with high
price. The parameters of our ESS used in this paper are shown
in Table 2.
In a general case, ESS in our HEMS has two functions:

a source to provide energy for home load and sell surplus
energy to the outside, and a sink to store energy from RES
and the main grid. Hence, with ∀t 1 ≤ t ≤ T , we have the
following formulas.

EDischargeESS (t) =
(
E loadESS (t)+ E

selling
ESS (t)

)
·

(
1− modeESS (t)

)
(6)
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TABLE 2. The parameters of an ESS [21].

EChargeESS (t) =
(
EchargeRES (t)+ EchargeMG (t)

)
· modeESS (t)

(7)

where EDischargeESS (t) refers to an energy quantity which is
drawn from ESS in a time slot t . EChargeESS (t) refers to an energy
quantity stored in the ESS in a time slot t .E loadESS (t) is an energy
quantity used for home load in a time slot t . EsellingESS (t) is an
energy quantity used to sell to the outside in a time slot t .
EchargeRES (t) is an energy quantity stored in ESS from RES in
a time slot t . EchargeMG (t) is an energy quantity stored in ESS
from the main grid in a time slot t . Because ESS is only able
to be either charged or discharged in a time slot, modeESS (t)
is a binary variable which shows the status of ESS in slot t .

modeESS (t) =

{
1 if ESS is charged.
0 if ESS is discharged.

(8)

Assuming that ELevelESS (t) is energy level of ESS after time
slot t where ∀t 1 ≤ t ≤ T , we have the following formula.

ELevelESS (t) = ELevelESS (t − 1)+ EChargeESS (t) · ηESS

−EDischargeESS (t)/ηESS (9)

where ηESS is ESS efficiency. It is worth noting that ηESS must
be used in (9) because some energy is lost when charging
or discharging an ESS, which is called round trip efficiency.
When using ESS, we must satisfy the following constraints.
• The charge/discharge rate of ESS cannot exceed the
Chrate/Dhrate. It means that we are only able to put in
or draw certain energy quantity in a time slot t with
duration 1t .

• The energy level of ESS must be between ELmin and
ELmax .

From above constraints, with ∀t 1 ≤ t ≤ T , we have the
following constraints.

0 ≤ EDischargeESS (t) = E loadESS (t)+ E
selling
ESS (t) ≤ Dhrate ·1t

(10)

0 ≤ EChargeESS (t) = EchargeRES (t)+ EchargeMG (t) ≤ Chrate ·1t

(11)

ELmin ≤ ELevelESS (t) ≤ ELmax (12)

0 ≤ E loadESS (t) ≤ Dhrate ·1t (13)

0 ≤ EsellingESS (t) ≤ Dhrate ·1t (14)

0 ≤ EchargeRES (t) ≤ Chrate ·1t (15)

0 ≤ EchargeMG (t) ≤ Chrate ·1t (16)

Since we only consider our system during a day (no net
accumulation for next day), energy level must be returned to
the initial energy level at the end of the day. Thus, we have
this constraint.

ELevelESS (T ) = EL0 (17)

We assume that all energy to be sold come from ESS. If we
want to sell energy generated from RES, it should be stored in
ESS before selling. Note that the variable EchargeRES (t) has two
constraints in (5) and (15). If our RES generates more energy
than the sum of the energy needed by home appliances and
the energy is able to stored in ESS in a time slot, the remain
energy of RES will be wasted.

D. HOME APPLIANCES
In our system, we suppose that there are two different sets of
appliances: shiftable appliances M and non-shiftable appli-
ancesN . The set of shiftable devicesM = {a1, a2, a3, ..., am}
includes the devices which can operate at any time slots
whereby we can move the operation time of these devices to
low price slots to save costs. The set of non-shiftable devices
N = {b1, b2, b3, ..., bn} have a fixed operation time slots
defined by users. In a time slot t , the energy consumption
of total appliances, Eappliancestotal (t), in a house is the sum of
the energy consumption of shiftable set M , EM (t), and non-
shiftable setN ,EN (t), which are given in (18), (19), (20), with
∀bi ∈ N ,∀ai ∈ M ,∀t 1 ≤ t ≤ T .

Eappliancestotal (t) = EN (t)+ EM (t) (18)

EN (t) =
n∑
i=1

Powerrate(bi)× O(bi, t)×1t (19)

EM (t) =
m∑
i=1

Powerrate(ai)× O(ai, t)×1t (20)

where Powerrate(ai) and Powerrate(bi) refer to the power rat-
ing of devices ai, bi which is given by producers. O(ai, t) and
O(bi, t) are binary variables which show the status of devices
ai and bi in a time slot t .

O(ai, t) =

{
1 if shiftable device ai is ON

0 if shiftable device ai is OFF
(21)

O(bi, t) =

{
1 if non-shiftable device bi is ON

0 if non-shiftable device bi is OFF
(22)

Since O(bi, t) has a fixed value, EN (t) also has fixed value.
In a whole day of T = 24 hours, the total energy consumption
of all appliances in our system is given by

T∑
t=1

Eappliancestotal (t) =
T∑
t=1

EN (t)+
T∑
t=1

EM (t). (23)

When a shiftable device is moved to low price slots,
the energy demand of this device is not changed because the
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operation time of each shiftable device does not change and it
is not interrupted during operation. To provide enough energy
for home appliances, we use 3 different sources as shown
in Fig. 2: energy from RES E loadRES , ESS E

load
ESS , and the main

grid E loadMG in a time slot t . Hence, we have the following
formula with ∀t 1 ≤ t ≤ T .

Eappliancestotal (t) = E loadRES (t)+ E
load
ESS (t)+ E

load
MG (t) (24)

⇒E loadMG (t)=Eappliancestotal (t)−E loadRES (t)−E
load
ESS (t)

(25)

From (18), we have

E loadMG (t) = EN (t)+ EM (t)− E loadRES (t)− E
load
ESS (t). (26)

Because E loadMG (t) ≥ 0 and we assume that the main grid
always provide enough electricity for the requirement of our
home load. Thus, we have the following constraint.

0 ≤ E loadRES (t)+ E
load
ESS (t) ≤ EN (t)+ EM (t) = Eappliancestotal (t)

(27)

E. LOAD DEMAND AND COST FUNCTION
In this subsection, we build a formula of energy from themain
grid called load demand in each time slot. We get the total
energy cost for a day using the load demand and the prices
of the main grid. According to [23], there are many kinds of
electricity tariffs such as Time-of-Use pricing (ToU), Real-
Time Pricing (RTP), Critical Peak Pricing (CPP) and so on.
ToU and RTP are commonly used tariffs in most HEMSs.
In this paper, we use Day-Ahead Pricing (DAP), a kind of
RTP where the price of electricity changes on the hourly
basis and remains constant in an hour. Customers are typically
notified of DAP prices on a day-ahead basis.

We assume that the energy from RES and ESS is compli-
mentary, whereby in a time slot t , load demand needed from
main grid, ELD(t), includes E loadMG (t) and EchargeMG (t) as shown
in Fig. 2. With ∀t 1 ≤ t ≤ T , we have the following formula.

ELD(t) = E loadMG (t)+ EchargeMG (t) (28)

From (26), we have

ELD(t) = EN (t)+ EM (t)+ EchargeMG (t)−E loadRES (t)−E
load
ESS (t).

(29)

In addition, we sell amount of energy, EsellingESS (t), to the out-
side in a time slot t . Hence, the energy cost to be paid in a
time slot t , EC(t), is

EC(t) = ELD(t)× PMG(t)− E
selling
ESS (t)× Psell(t). (30)

where PMG(t) is the electricity price of the main grid in the
time slot t . This value is determined by the electrical provider.
Psell(t) is the price of selling energy in the time slot t . This
value is decided by users. From (30), total cost we must pay

for energy from the main grid during a day T = 24 hours,
Cday, is

Cday =
T∑
t=1

EC(t)

=

T∑
t=1

(
ELD(t)×PMG(t)− E

selling
ESS (t)×Psell(t)

)
. (31)

From (29), we have the following formula.

Cday =
T∑
t=1

((
EN (t)+ EM (t)+ EchargeMG (t)− E loadRES (t)

−E loadESS (t)
)
× PMG(t)− E

selling
ESS (t)× Psell(t)

)
(32)

Since our objective is to minimize the total energy cost during
a day, objective function is defined as

min(Cday)

= min
( T∑
t=1

((
EN (t)+ EM (t)+ EchargeMG (t)− E loadRES (t)

−E loadESS (t)
)
× PMG(t)− E

selling
ESS (t)× Psell(t)

))
. (33)

Combining with (20), we have the objective function of our
system as

min
( T∑
t=1

((
EN (t)+

m∑
i=1

Powerrate(ai)× O(ai, t)×1t

+EchargeMG (t)− E loadRES (t)− E
load
ESS (t)

)
× PMG(t)

−EsellingESS (t)× Psell(t)
))
. (34)

In (34), Powerrate(ai),EN (t), and PriceMG(t) are fixed
values we already know. O(ai, t) are binary variables.
EchargeMG (t),E loadRES (t),E

load
ESS (t),E

selling
ESS (t) are variables which

must satisfy all constraints: (3), (4), (5), (10), (11), (12), (13),
(14), (11), (16), (17), (27).

Usually, the price of the main grid is higher than the selling
price. We assume that Psell(t) = α×PMG(t) with 0 < α ≤ 1.
Thus, the objective function of our system becomes

min
( T∑
t=1

(
EN (t)+

m∑
i=1

Powerrate(ai)× O(ai, t)×1t

+EchargeMG (t)− E loadRES (t)− E
load
ESS (t)

−α × EsellingESS (t)
)
× PMG(t)

)
. (35)

F. PEAK-TO-AVERAGE RATIO
PAR is a ratio of the peak load demand and the average of
total load demand over a day, from t = 1 to t = 24. PAR tells
the energy behavior of our system and it is directly related to
the operation of the electricity main grid. The power supply

49442 VOLUME 8, 2020



H. T. Dinh et al.: HEMS With Renewable Energy and Energy Storage Utilizing Main Grid and Electricity Selling

companies always want to keep customers’ PAR low. In our
system, it is calculated as follows.

PAR =
max(ELD(t))

1
T

T∑
t=1

ELD(t)

(36)

where ELD(t) is calculated by (29).

V. PARTICLE SWARM OPTIMIZATION ALGORITHM
The particle swarm optimization (PSO) is an evolution-
ary computation algorithm which simulates the behavior of
organisms [24]. The PSO algorithm is usually used to solve
continuous optimization problems. At the beginning of PSO
algorithm, a population of particles is created and randomly
placed at the search space of the problem to be optimized.
At each iteration, each particle moves to a different position
inside the search space to find an optimal solution. A new
position is calculated using the current position and velocity.
Generally, the new position xi(t + 1) and velocity vi(t + 1)
of particle i at iteration t + 1 is calculated by the following
formula.

vi(t + 1) = ω · vi(t)+ Cl · rl · (lbi(t)− xi(t))

+Cg · rg · (gb(t)− xi(t)) (37)

xi(t + 1) = xi(t)+ vi(t + 1) (38)

where ω is the inertia weight and is a constant, vi(t) is the
velocity of particle at iteration t , Cl is the acceleration coef-
ficients for personal best and is a constant, rl is the random
number distributed from 0 to 1 for personal best, lbi(t) is the
personal best position of the particle at iteration t , xi(t) is the
position of the particle at iteration t , Cg is the acceleration
coefficients for global best and is a constant, rg is the random
number distributed from 0 to 1 for global best, and gb(t) is
the global best position at iteration t . After running a number
of iterations, all particles will move to a best position (best
solution) of the problem.

In our objective function, we have two kinds of variables:
continuous variables such as EchargeMG (t),E loadESS (t) and binary
variables that only have 0 or 1 such as O(ai, t). The original
PSO algorithm is only correctly operated in the continuous
search space. For binary variables, we must use the binary
particle swarm optimization (BPSO) given by Kennedy and
Eberhart in [25]. In BPSO algorithm, the formula of each
particle’s velocity at iteration t + 1 is the same as (37).
To update the value of particle xi(t + 1) at iteration t + 1,
instead of using velocity as (38), we use a sigmoid function
S(.) given by (39).

S(vi(t + 1)) =
1

1+ e−vi(t+1)
(39)

and

xi(t + 1) =

{
1 S(vi(t + 1)) > rand().
0 S(vi(t + 1)) ≤ rand().

(40)

FIGURE 3. A flowchart of PSO algorithm.

TABLE 3. PSO and BPSO parameters.

where rand() is function which generate a pseudo-random
number in range [0.0, 1.0]. Fig. 3 shows the working flow
of our PSO algorithm. The PSO and BPSO parameters used
in our simulation are shown in Table 3.

VI. SIMULATIONS AND DISCUSSIONS
In this section, the results of our simulation are presented.
We simulate the hourly energy use of the set of household
appliances during a day. We divide a day into 24 time slots
where time slot 1 begins from 0 A.M. to 1 A.M., time slot 2
from 1 A.M. to 2 A.M. and so on. Our HEMS was evaluated
in two cases: (I) single-objective optimization and (II) multi-
objective optimization. In the first case, with the support of
RES and ESS, we focused on total energy cost optimization.
Utilization of energy of the main grid at low price time slot
and selling energy were evaluated in terms of total energy
cost during a day. In the second case, we minimized our
HEMS based on two objectives: total energy cost and PAR.
In both cases, our program is run on Intel(R) Core(TM)
i7-8700 CPU @ 3.20GHz (12 CPUs) and 16GB RAM with
Windows 10 pro. The computational time of our programwas
about 10 minutes.

To compare results of our simulation with one of [3],
the input parameters of our simulation were employed
from [3] including home appliances, day-ahead pricing
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TABLE 4. Description of the appliances.

FIGURE 4. Hourly prices according to DAP signal.

TABLE 5. The input parameters of our ESS in the simulation.

signal, solar irradiance and RES as shown in Table 4, Fig. 4,
Fig. 5 and Fig. 6, respectively. There are 11 appliances that
were divided into two categories: shiftable and non-shiftable.
The shiftable appliances are devices whose operating time
can be shifted to low price time slots whereas operating
time of non-shiftable devices cannot be changed. All the
appliances cannot be interrupted during operation. Table 4
shows the power rating and the length of operation time
of all appliances. For the RES in our system, we used an
electricity generation by PV system modeled in (1). Our RES
mainly depends on energy conversion efficiency of the solar
generator, the area of solar cells, solar irradiation. Our RES is
configured to generate the same amount of energy as in [3].

In our system, we use ESS with the same configuration as
in [3]. The parameters of our ESS are shown in Table 5. In [3],
authors proposed a fixed plan for RES and ESS. In their work,
30% of energy from RES in each time slot is used for the
charging of ESS, and the remaining energy is used for home
load. The ESS is charged only from the PV system in the day
time. The energy in ESS is only used for home load at high
price time slot from t20 to t24. In this paper, we propose a
fully flexible general plan for RES and ESS. As described in

FIGURE 5. Solar irradiance to compute PRES (τ ).

FIGURE 6. Hourly RES energy generated by the PV system.

Section IV, the energy from RES is not only used for home
appliances but also to charge ESS with any quantity and at
any time slot. An energy quantity of ESS also can be used for
selling to the outside at any time slot.

A. CASE 1: SINGLE-OBJECTIVE OPTIMIZATION
In this case, we focus on minimizing total energy cost of
our system during a day. We firstly assume that Psell(t) =
PMG(t)∀t which means α = 1.
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FIGURE 7. Total energy cost of different algorithms [3].

FIGURE 8. Hourly energy of the main grid stored in ESS.

1) TOTAL ENERGY COST
The comparison of total energy cost of our system and [3] is
shown in Fig. 7.
Total energy cost of our system is 445.78 cents, the small-

est energy cost among six algorithms. Compared with [3]’s
BPSO algorithm, the total energy cost of our system is signif-
icantly reduced by 19.7%. To understand where this benefit
comes from, we analyze an output of our simulation for all
appliances to see how our HEMS utilizes energy of the main
grid and ESS energy as shown in Fig. 8, Fig. 9, and Fig. 10
respectively.

Firstly, in order to decrease the total energy cost, our
HEMS tries to utilize energy of the main grid by storing main
grid’s electricity in ESS at low price times such as 0 A.M.,
1 A.M., 2 A.M. as shown in Fig. 8. This cheap energy will be
used for home devices at high price time such as from 8 A.M.
to 9 A.M. and from 9 A.M. to 10 A.M. (Fig. 9) or to sell to
the outside at high price time such as from 7 A.M. to 8 A.M.
and from 10 A.M. to 11 A.M. (Fig. 10).
Secondly, as illustrated by Fig. 11, most of the energy

generated from RES is used for home devices for two

FIGURE 9. Hourly ESS energy used for home load.

FIGURE 10. Hourly ESS energy used for selling.

TABLE 6. Schedule of the shiftable appliances.

reasons: The first reason is that RES generates energy at high
price times. Hence, immediately using it for home devices is
better than storing it in ESS. Furthermore, storing RES energy
to ESS and discharging later lead to lose of energy due to
round-trip efficiency. The second reason is that the amount
of energy generated by RES is smaller than energy needed by
home devices in all time slots. In this case, our HEMS prefers
using it for home devices to storing it in ESS.

Finally, Table 6 shows the schedule of each shiftable appli-
ance which is the useful result of our algorithm. Our HEMS
schedules our appliances to operate at low price time. With
this schedule, we have hourly energy needed by home appli-
ances (red line) and hourly load demand of our system from
the main grid (blue line) at each time as shown in Fig. 12.
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FIGURE 11. RES energy used for ESS storing and home load.

FIGURE 12. Hourly load demand from main grid.

In detail, at low price time such as 7 P.M., 8 P.M., and 9 P.M.,
our system uses a lot of energy from the main grid for home
devices. Moreover, at time from 0 A.M. to 7 A.M., because
of utilization of cheap energy from the main grid, the load
demand from the main grid is bigger than the energy which
is required by the home appliances. Whereas, the need of
energy of the main grid is very small at high price time such
as 7 A.M., 8 A.M. because of the support of RES and ESS.
Even our HEMS does not need energy of the main grid at time
from 11 A.M. to 1 P.M since our ESS and RES have sufficient
energy for home load at these time slots.

In summary, above three main factors make total energy
cost of our system drop significantly. However, because we
only focus on minimizing the energy cost, the average PAR
of our system in this case is higher than algorithms of [3]
as illustrated in the Fig. 13. There is a trade-off between
decreasing the total energy cost and reducing the system’s
PAR. We thus try to balance these values in multi-objective
optimization section.

2) OUR SYSTEM WITH DIFFERENT ESS
In this subsection, we consider the effects of Chrate/Dhrate
and capacity of ESS on minimizing the energy cost. Fig. 14

FIGURE 13. PAR of different algorithms [3].

FIGURE 14. Average total energy cost with different Chrate/Dhrate and
capacity of ESS.

and Table 7 show the average total energy cost of our sys-
tem with different Chrate/Dhrate and ESS capacity when we
run our simulation with same PSO parameters as shown
in Table 3.
As shown in Table 7, the total energy cost has a steady

decrease with increasing Chrate/Dhrate. In particular, with
3 kWh of ESS capacity, average total energy cost is
431.61 cents and 425 cents for 0.6 kW and 0.9 kW of
Chrate/Dhrate respectively. Compared with total energy cost
of Chrate/Dhrate = 0.3 kW, the average energy cost of our
system is reduced slightly by 3.2% and by 4.7%. Assuming
that ESS has an infinite space to store energy (no limit),
we get maximum benefit from increasing Chrate/Dhrate
parameter with a remarkable drop to 4.3% and 8.5% for
0.6 kW and 0.9 kW of Chrate/Dhrate respectively. In addition,
from results of our simulation, ESS capacity required to store
enough energy is around 4 kWh and 6.5 kWh respectively.
We get these results because with biggerChrate/Dhrate we can
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TABLE 7. Average total energy cost with different Chrate/Dhrate and
capacity of ESS.

TABLE 8. Average total energy cost with different selling prices.

store more energy of the main grid at low price time slot and
use it for higher price time slot. Furthermore, Table 7 shows a
trend to decrease PAR of our system when the Chrate/Dhrate
is increased.

The increasing of Chrate/Dhrate helps to considerably
decrease the average total energy cost of our system. How-
ever, to get maximum benefit from this increase, we must
have an ESS with sufficient capacity to store energy.

3) OUR SYSTEM WITH SMALLER SELLING PRICE
In this subsection, the effect of smaller selling prices on total
energy cost is considered. If energy generated from RES is
always smaller than load demand of home appliances and
selling price is smaller than price of the main grid at all time
during a day, no energy should be sold to the outside. Hence,
for this subsection, the area of solar cells is doubled to double
the amount of RES energy at all time slots. To store all energy
from RES, our ESS has Chrate/Dhrate = 0.9 kW and its
capacity is always enough to store energy from RES and the
main grid (no limit). Table 8 shows the average total energy
cost of our system with α = 1, α = 0.9 and α = 0.8.
It means that we consider three cases with Psell(t) = PMG(t),
Psell(t) = 0.9 × PMG(t), and Psell(t) = 0.8 × PMG(t)∀t
respectively.

With double amount of energy from RES, our average
energy cost decreases by 26% from 407.69 cents (Table 7) to
301.66 cents (Table 8). In addition, the average energy cost
of our system is increased when selling price is decreased.
In particular, if selling price Psell(t) is reduced by 10%,
the average energy cost rises to around 2.6%.

To see how our HEMS utilizes the RES energy and energy
of the main grid in this case, we analyze an output of the best
case of our simulation with α = 0.9 as shown in Fig. 15,
Fig. 16, Fig.17 and Fig. 18.
As depicted in Fig. 15, at peak-price time from 7 A.M.

to 11 A.M., most of energy generated by RES is used for
home load. Because RES energy is larger than energy demand
from home devices at time from 8 A.M. to 11 A.M., the sur-
plus energy is lost. The lost energy can not be stored in ESS
because ESS is set to discharge mode.With this mode, energy
from ESS can only be drawn out to sell to the outside at

FIGURE 15. Hourly RES energy with double area of solar cells.

FIGURE 16. Hourly selling energy with double area of solar cells.

time from 7 A.M. to 11 A.M. (Fig. 16) or for home load at
time from 7 A.M. to 8 A.M. (Fig. 17). It is worth noting that
energy stored in ESS comes from two sources: energy from
RES and energy of main grid at low price time (Fig. 18). With
the support of cheap energy, the selling energy is maximum
with 0.9 kWh at time from 8 A.M. to 11 A.M.

At time from 11 A.M. to 1 P.M., ESS is set to the charge
mode after selling. With this mode, the surplus energy of
RES, after providing for home load, is stored in ESS. At these
time slots, the selling energy and ESS energy for home load
are zero because ESS energy can not be discharged. At time
from 1 P.M. to 3 P.M., ESS is set to the discharge mode.
Hence, ESS energy can be drawn to sell to the outside and
provide for home load again as shown in Fig. 16 and Fig. 17,
respectively.

B. CASE 2: MULTI-OBJECTIVE OPTIMIZATION
PAR describes the behavior of the consumer’s home load
and it affects the operation of the main grid. As described
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FIGURE 17. Hourly ESS energy for home load with double area of solar
cells.

FIGURE 18. Hourly energy of the main grid stored in ESS with double area
of solar cells.

in previous section, when we only focus on minimizing the
total energy cost, our system’s PAR remains very high as
shown in Fig. 13. To solve this problem, we try to mini-
mize two aspects: total energy cost and PAR at the same
time. By usingweightmethod ofmulti-objective optimization
(MOO), we have a new objective function.

min(w1 × Cday + w2 × PAR) (41)

where Cday is calculated by (34) and w1 is the weight of
variable Cday and is a constant. PAR is calculated by (36) and
w2 is the weight of variable PAR and is also a constant.

The input parameters of our simulation are the same as the
single-objective optimization (SOO). Because of the compli-
cated objective function, the running time of our simulation is
slightly increased to 11.5 minutes. In this section, w2 is set to
a value bigger than the value of w1 with the hope that PAR is
decreased while Cday is increased to acceptable value. In our

TABLE 9. Average PAR and total energy cost with different w2.

FIGURE 19. Average PAR and average energy cost with different w2 and
other algorithms.

simulation, we keep w1 = 1 and change w2 to achieve the
PAR we desire.

Fig. 19 and Table 9 show the average total energy cost and
average PAR of our system in 3 cases: (w1 = 1,w2 = 10),
(w1 = 1,w2 = 20), and (w1 = 1,w2 = 30). A steady
decrease in average PAR and a gradual increase in average
total energy cost were observed with increasing w2.

More specifically, with (w1 = 1,w2 = 10), average PAR
of our system is 2.396, a decrease of 17.4% whereas we
have a 6% increase in average energy cost, as compared with
average PAR and total energy cost of our system in the SOO
case. In this case, we still have higher average PAR than [3]’s
BPSO algorithm. With (w1 = 1,w2 = 20), average PAR of
our system is 2.076, a decrease of 28.4% compared with PAR
of our system in the SOO case whereas our system’s average
total energy cost is only 496.84 cents. Compared to PAR and
total energy cost of [3]’s BPSO algorithm, these values of
our system is remarkable. By using MOO, our system has
better performance in both elements: PAR and total energy
cost. Our average PAR is smaller than the PAR of [3]’s BPSO
algorithm by approximately 10.2% and our average energy
cost is smaller than the energy cost of [3]’s BPSO algorithm
by approximately 10.5%.

Table 10 shows the schedule of shiftable appliances in
MOO best case of our system with w2 = 20. The pro-
posed HEMS schedules the appliances at appropriate time
to decrease the PAR. It is worth noting that there is a big
difference with the schedule of our appliances in SOO case
(Table 6). From this schedule, we have hourly energy which
is needed by home appliances and hourly load demand of
our system from the main grid as shown in the Fig. 20.
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TABLE 10. Schedule of the Shiftable appliances in MOO best case with
w2 = 20.

FIGURE 20. Hourly load demand of MOO best case from main grid with
w2 = 20.

As depicted in this figure, the biggest energy needed from the
main grid is approximately 4.2 kWh from 7 P.M. to 8 P.M.
and this value is spread through many time slots. This is
a significant decrease as comparing with the biggest load
demand of SOO case of 6 kWh in the Fig. 12. This result is
the main reason help our system’s PAR to decrease. At peak
hours such as from 4 P.M. to 6 P.M., with the support of
RES and ESS, the load demand from main grid also goes
down, compared with energy needed for home appliances.
This support also makes our PAR decrease.

VII. CONCLUSIONS AND FUTURE WORKS
This study presented a new HEMS with integration of RES
and ESS. Our objective was to minimize energy cost and
PAR of our system during a day. The algorithms we used
in our system were the combination of PSO and BPSO. Our
HEMS is able to utilize electricity of the main grid at low
price time to provide for home appliances at high price time
with the support of ESS and RES. In addition, our HEMS
support selling electricity to the outside. To achieve our objec-
tive, we built general mathematical formulas for energy cost
and PAR and evaluated our HEMS by performing extensive
simulations. With new functions, energy cost of our HEMS
was significantly reduced to 19.7%, as compared to previous
results of BPSO algorithms in [3]. However, when our system
only focuses on the minimization of energy cost, PAR of our
system remains very high. In order to reduce PAR, we used
the weighted method of MOO to minimize both energy cost

and PAR. Simulation results showed that, with appropriate
values of weight constants w1,w2, energy cost and PAR of
our system can be decreased to values smaller than both
energy cost and PAR of BPSO algorithm in [3]. In particular,
with w1 = 1,w2 = 20, both energy cost and PAR of our
system were reduced by approximately 10%. In terms of
ESS parameters, simulation results also show that there is
considerably reduction when Chrate/Dhrate and the capacity
of ESS are increased. Energy cost of our system was reduced
by 4.3% and 8.5% with 0.6 kW and 0.9 kW of Chrate/Dhrate
respectively and ESS must have sufficient capacity to store
energy.

With development of HEMSs, user-mode energy manage-
ment architecture in global scale is suggested for SG [26]. Its
main responsibilities are to maintain energy efficiency and
energy reliability under uncertain electricity generation and
demand of prosumers. In future, our HEMS need to cooperate
with this system to improve operations of SG.

In our future system, besides electricity cost and PAR, user
comforts, such as thermal comfort and consecutive tasks, will
also be considered. Real-time optimization is another way to
improve our system. With this technology, our system can be
optimized with real-time usage data.
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