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ABSTRACT A probabilistic load flow (PLF) is an effective tool that helps describe the uncertainty of power
system operation. However, when confronting random variables with non-Gaussian distributions and highly
discrete characteristics, existing PLF methods have difficulty balancing efficiency and accuracy. Therefore,
a novel approach based on bivariate dimension reduction (BDR) and the Johnson system is proposed herein.
BDR is used to estimate the moments of output random variables (ORVs). Because BDR considers the
joint effect of input random variables, it significantly reduces the estimation error for high-order moments
in particular. In addition, a strategy to improve BDR efficiency is proposed. The Johnson system is used
to obtain the probability distributions of ORVs as it has better adaptability and accuracy than the series
expansion method. Case studies including comparisons between this approach and others found in the
literature were conducted, and the results obtained showed that the proposed method has better performance
than previous approaches.

INDEX TERMS Bivariate dimension reduction, Johnson system, probabilistic load flow, renewable energy
source.

I. INTRODUCTION
The number of renewable energy sources (RESs), such
as wind and photovoltaic power, that are being consumed
is increasing annually. While RESs provide tremendous
economic benefits, they considerably increase the opera-
tional uncertainty of power systems, rendering safe and stable
operation difficult.

In highly uncertain situations, traditional deterministic
methods are often less useful than probabilistic ones. The
concept of probabilistic load flow (PLF) [1] has therefore
recently attracted considerable attention as a valuable tool for
describing the operating status of power systems.

Since the concept emerged, various PLF methods have
been developed. These can be categorized as simulation,
analytical, and approximation methods [2]. The accuracy
and efficiency of the calculated results are two impor-
tant indices considered in evaluating the performance of
individual methods.

Simulation methods include the Monte Carlo simulation
method (MCSM) and various improved methods [3]–[6]
based on it. Through several sampling and deterministic
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load flow (DLF) computations, accuracy is guaranteed.
Unfortunately, such methods are quite time consuming, and
are therefore mainly employed as reference standards to
evaluate the accuracy of other methods.

Cumulant method (CM) [7]–[16] is the representative of
the analytical method. It can easily and efficiently calculate
the cumulants of the output random variables (ORVs) based
on the linearized load flow model and the characteristics of
the cumulant. Although CM performs well in terms of effi-
ciency, its accuracy is less impressive: a considerable error is
observed when the input random variables (IRVs) are highly
discrete [16].

Point estimate method (PEM) [17]–[25] is the representa-
tive of the approximation method. Computationally, PEM is
also efficient. It constructs orthogonal polynomials to approx-
imate the implicit function relating IRVs to ORVs; thus,
the moments of the ORVs can be estimated. Hong’s 2m + 1
PEM scheme [18], [19] appears to be the most commonly
applied scheme; it only requires 2m+ 1 times DLFs when m
IRVs are considered; however, it exhibits poor performance
for estimating high-order moments. Singular value decom-
position [20] and Nataf transformation [21] is combined
with PEM, which makes this method available for large-
scale power systems and correlated IRVs. In recent years,

46346 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9373-9028
https://orcid.org/0000-0001-6563-1848
https://orcid.org/0000-0002-1030-4708
https://orcid.org/0000-0002-0975-0241


H. Li et al.: PLF Based on BDR and Johnson System

univariate dimension reduction (UDR) [22]–[25] is proposed
as an improved PEM, which has better accuracy than Hong’s
scheme. Although many improvements to PEM have been
proposed, it still faces difficulties in accurately estimating the
high-order moments of ORVs, such as skewness and kurtosis,
which are important parameters in describing the distribution
shape of a non-Gaussian variable.

Sparse polynomial chaos expansion (sPce) [26], [27] is
another candidate. It uses a surrogate model instead of
nonlinear AC load flow equations to solve the PLF problem,
which can balance efficiency and accuracy. However, making
the proper choice of numbers of DLF in advance to obtain a
reasonable surrogate is difficult, and no analytical expression
of PDF and CDF is available that may cause inconvenience
in the application of this method.

As cumulant and moment can be easily transformed into
each other [7], CM and PEM can also be classified into
the moment-based PLF method. Evidently, only knowing
moments of ORVs is typically insufficient in practical use.
Therefore, the series expansion method (SEM), such as the
Gram–Charlier series [7], [11] and Cornish–Fisher series
[8], [12] is commonly utilized to approximate probability
distributions according to moments. Despite its popularity,
SEM has major defects: 1) The ORVs’ skewness and kur-
tosis are limited, or SEM will generate illegitimate negative
probability distribution functions [28]; 2) the approximation
accuracy is not directly proportional to the number of terms
[7], therefore, it is hard to determine the proper terms used
in advance; 3) large errors are commonly observed in the tail
area. However, for some applications based on PLF, such as
chance-constrained optimization [29], the tail area is of inter-
est. Maximum entropy [15] is another method that attempts to
improve PDF approximation accuracy. However, this method
requires the correct range of the ORV, which is difficult to
obtain for the moment-based method.

In practice, the uncertainties of RES outputs are highly dis-
crete (a problem for CM) and usually follow a non-Gaussian
distribution with correlation (a problem for PEM), whereas
applications based on PLF increasingly require high effi-
ciency (a problem for MCSM). Therefore, new schemes for
PLF that are both accurate and efficient would be of great
interest. This paper proposes a new PLF method based on the
bivariate dimension reduction (BDR) and the Johnson system
[30], [31]. The contributions of this study are as follows.

1) BDR is an improvement over UDR. To the best of the
authors’ knowledge, this is the first time that BDR has been
used to solve the PLF problem, through which the first four
moments of ORVs have been accurately estimated.Moreover,
a strategy is proposed to improve BDR efficiency.

2) The Johnson system is used to approximate the
PDF or CDF of ORVs as it is more accurate than SEM and
works well with BDR. Furthermore, the analytical expression
of PDF or CDF can be obtained through the Johnson system,
which will benefit the applications based on PLF.

The remainder of this paper is organized as follows. The
theoretical background related to PLF calculation and the

Nataf transformation is introduced in Section II. Section III
describes the proposed method. In Section IV, the procedure
of the proposed PLF method is presented, and in Section V,
case studies are performed. Finally, the conclusions drawn are
presented in Section VI.

II. PROBLEM BACKGROUND
A. PROBLEM FORMULATION
The load flow equations describe the relationship between
IRVs and ORVs. A concise manner of representing this rela-
tionship is

Y = G(X) (1)

where X = [x1, x2, · · · xn]T is the vector of IRVs; Y =
[y1, y2, · · · ym]T is the vector of ORVs; and G(·) represents
the functional dependence in the load flow equations in the
AC formulation.

The IRVs influence the result of a load flow calculation.
While there is no limit to the number or type of IRVs,
in practice, some variables are either predictable or have an
insignificant influence. In this study, active and reactive bus
power injections are considered to be IRVs with arbitrary
distributions. The ORVs include bus voltage magnitudes V
and angles θ as well as branch active flows P and reactive
flows Q, whose distributions are determined by the IRVs’
distribution and load flow equations.

The central moments of Y are given by:

E(Yl) = E[Gl(X)] =
∫
Gl(X) fX(X)dx (2)

where E(·) is the expectation operator, l denotes the l th central
moment, and fX(X) represents the joint probability density
function (PDF) of X.
According to (2), each moment is calculated through

n-dimensional integration. However, such integration is dif-
ficult for the following reasons: 1) fX(X) is often compli-
cated and may even be impossible to express analytically;
2) high-dimensional integration in general is difficult and
time-consuming.

Our proposed method identifies the proper transformation
and dimensionality reduction to reduce the computational
difficulty and effort without compromising accuracy.We then
use the obtained moments and the Johnson system to
approximate the probability distributions of the ORVs.

B. NATAF TRANSFORMATION
The Nataf transformation [21], [32] is an effective tool that
can project an independent standard Gaussian space to the
original integral space represented in (2). Thus, the correla-
tion issue is well handled and the joint PDF fX(X) is replaced
by the product of the PDFs of independent standard Gaussian
variables; this will benefit the subsequent implementation of
the proposed method.

According to the Nataf transformation [21], the IRV vector
X is transformed from the independent standard Gaussian
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random-variable vector U to:
u1
u2
...

un

 Z=LzU
−−−−−→


z1
z2
...

zn

 F−1i (8(zi))
−−−−−−−→


x1
x2
...

xn

 = X (3)

where Z is the Gaussian random variable vector with corre-
lation, LZ is the lower triangular matrix from the Cholesky
decomposition of the correlation coefficient matrix ρZ, 8(·)
denotes the CDF of a standard Gaussian variable, and
F−1i (xI ) , i = 1, · · · ,n denotes the inverse CDF of xi.
Assuming the correlation coefficient matrix ρX of X is

available, ρZ could be obtained through the relationship
between ρX and ρZ [32]:

ρzij =

∫
∞

−∞

∫
∞

−∞

(
xi − µi
σi

)(
xj − µj
σj

)
fxixj (xi, xj)dxidxj

=

∫
∞

−∞

∫
∞

−∞

(
F−1i (8(zi))− µi

σi

)(
F−1j (8(zj))− µj

σj

)
·φzizj (zi, zj, ρzij )dzidzj (4)

where ρxij and ρzij are the elements in ρX and ρZ representing
the correlation coefficient between the ith and jth variables
inX and Z; µi and µj are the expectations of IRV xi and
xj, respectively; σi and σj are the variances of IRV xi and
xj, respectively; and φzizj (zi, zj, ρzij) is the joint PDF of the
two-dimensional standard Gaussian variables zi and zj with
the correlation coefficient ρzij . In this study, ρZ is obtained
accurately and rapidly throughGauss–Hermite integration, as
detailed in [32].

Combining (1) and (3), Y is expressed as:

Y = G(X) = G(8−1(F(X)) = H (U) (5)

The central moments of Y can be calculated from the
following equation instead of (2):

E(Y l)=
∫
· · ·

∫
H l(u1, · · · , un)φ(u1) · · ·φ(un)du1 · · · dun

(6)

where φ(ui) is the PDF of the independent standard Gaussian
variable ui. Note that the fX(X) in (2) has been replaced in (6)
by the product of the PDFs of independent standard Gaussian
variables.

III. THE PROPOSED METHOD FOR
PROBABILISTIC LOAD FLOW
In this section, the procedure of the proposed method that
combines BDR and Johnson system are analyzed in detail.

A. THE PRINCIPLE OF BIVARIATE DIMENSION
REDUCTION
Following Nataf transformation, (6) is still not easy to solve
owing to the n-dimensional integrand H (U). An effective
approach to deal with this problem is to employ general
dimension reduction (GDR) [33]–[35] for the integration.

The core idea of GDR is to approximate H (U) by
summing several low-dimension functions such that that the
n-dimensional integration in (6) is solved by summing several
low-dimensional integrations. The computation of several
low-dimensional integrations is frequently much faster and
easier than that of one high-dimensional integration.

According to the principle of GDR, the n-dimensional
integrand H (U) is exactly expressed as follows [35]:

Y = H (U) = H0 +
∑
i

Hi(ui)+
∑
i1<i2

Hi1i2 (ui1 , ui2 )+ · · ·

+

∑
i1<i2<···il

Hi1i2···il (ui1 , ui2 , · · · uil )+ · · ·

+

∑
i1<i2<···in

Hi1i2···in (ui1 , ui2 , · · · uin ) (7)

The various terms in (7) are expressed as follows:

H0 = H (Uc)

Hi(ui) = H (ui,Ui,c)− H0

Hi1i2 (ui1 , ui2 )

= H (ui1 , ui2 ,Ui1i2,c)− Hi1 (ui1 )− Hi2 (ui2 )− H0

...

Hi1···il (ui1 , · · · , uil )

= Hi1i2···il (ui1 , ui2 , · · · uil ,Ui1i2···il ,c)

−

∑
{j1j2···jl−1}⊂{i1i2···il }

Hj1j2···jl−1 (uj1 , uj2 , · · · ujl−1 )

−

∑
{j1j2···jl−2}⊂{i1i2···il }

Hj1j2···jl−2 (uj1 , uj2 , · · · ujl−2 )− · · ·

−

∑
j⊂{i1i2···il }

Hj(uj)− H0 (8)

Here, UC is the reference vector, which is [0, · · · , 0] in the
independent standard Gaussian space; Ui1i2···il ,C is formu-
lated after eliminating the sub-vectors of UC corresponding
to ui1 , ui2 , · · · ,uil ,Hi(ui) represents the effects of the variable
ui on Y; Hi1,i2···il (ui1 , ui2 , · · · ,uil ) represents the joint effects
of all variables ui1 , ui2 , · · · ,uil on Y.
By truncating (7), H (U) is approximated by the following

equation:

H (U) ≈ H0 +
∑
i

Hi(ui)+ · · ·

+

∑
i1<i2<···is

Hi1i2···is (ui1 , ui2 , · · · uis ) (9)

where s is the highest reduction dimension. Based on the
value of s in (9), the approximation of H (U) can be classified
into the univariate dimension reduction (UDR), where s = 1,
and themultivariate dimension reduction (MDR), where s> 1
and s� n.

UDR has been proven to be equivalent to Zhao’s PEM [21].
Based on the UDR, only two terms exist on the right side of
(9): one is the constant function and the other is the sum of
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univariate effects functions. The multivariate functions, rep-
resenting joint effects, are neglected, causing a substantially
large residue error. Although the estimation accuracy for
lower moments, such as expectation and variance, is accept-
able, the UDRwill cause large errors for high-ordermoments,
particularly for a power system with arbitrarily large IRVs’
variation and/or high nonlinearity [33].

In contrast, MDR can approximate the H (U) to any
level of precision. Even though more computation effort is
involved with the MDR than with the UDR, an appropriate
value of s and the efficiency enhancement strategy proposed
herein will permit an acceptable balance of efficiency and
precision.

B. COMPUTING MOMENTS OF OUTPUT
RANDOM VARIABLES
The computation cost of MDR increases with increasing
reduction dimension s. Previous works [33], [35] indicate that
s = 2 provides a reasonable balance between the concerns
of accuracy and efficiency and will always be assumed here-
after; the term BDR will refer to the s = 2 MDR method in
the remainder of this paper.

Deploying the BDR, the integrand H (U) is approximated
as follows:

H (U) ≈
∑
i1<i2

H (ui1 , ui2 ,Uij,c)− (n− 2)
n∑

k=1

H (uk ,Uk,c)

+
(n− 1)(n− 2)

2
H0 (10)

Evidently, H (U) is approximated by n(n−1)/2 bivariate
functions, n univariate functions, and a constant function.
Combining (6) and (10), the central moments of Y can be

expressed as follows:

E(Yl)≈E[
∑
i1<i2

H l(ui1 , ui2 ,Ui1i2,c)−(n−2)
n∑

k=1

H l(uk ,Uk,c)

+
(n− 1)(n− 2)

2
H l
0]

=

∑
i1<i2

E[H l(u−i1 ,ui2 ,Ui1i2,c)]−(n−2)
n∑

k=1

E[H l(uk ,Uk,c)]

+
(n− 1)(n− 2)

2
H l
0 (11)

where

E[H l(uk ,Uk,c)] =
∫
+∞

−∞

H l(uk ,Uk,c)φ(uk )duk

E[H l(ui1 , ui2 ,Ui1i2,c)] =
∫
+∞

−∞

∫
+∞

−∞

H l(ui1 , ui2 ,Ui1i2,c)

·φ(ui1 )φ(ui2 )dui1dui2 (12)

Thus, the n-dimensional integration in (6) has been
transformed into the much easier summation of several one-
and two-dimensional integrations in (12).

TABLE 1. Typical weights and abscissas for Gauss–Hermite quadrature.

Gauss–Hermite quadrature can be used to solve (12) as
follows:

E[H l(uk ,Uk,c)] =
r∑

m=1

wGH ,m
√
π

H l(
√
2αGH ,m,Uk,c)

E[H l(ui1 , ui2 ,Ui1i2,c)] =
r∑

m1=1

r∑
m2=1

wGH ,m1wGH ,m2
√
π

·H l(
√
2αGH ,m1 ,

√
2αGH ,m2 ,Ui1i2,c)

(13)

where αGH ,m and wGH ,m are the abscissas and correspond-
ing weights, respectively; r is the number of abscissas,
usually selected to be odd. The higher the number of
points, the higher the integration accuracy; however, accord-
ingly higher is the computational burden. Table 1 lists the
commonly used abscissas and their weights.

C. COMPUTATION EFFICIENCY ENHANCEMENT
The computational burden of BDR strongly depends on
the number of two-dimensional integrations. In this section,
we propose a strategy to reduce it.

The most time-consuming part of solving (11) is calculat-
ing the expectation of the bivariate function. According to (8),
this bivariate function is given as follows:
H (ui1 , ui2 ,Ui1i2,c) = Hi1i2 (ui1 , ui2 )+ H (ui1 ,Ui1,c)

+H (ui2 ,Ui2,c)− H0 (14)

Assuming that the joint effect Hi1i2 (ui1 , ui2 ) on Y is minor,
this function can be approximated as:
H (ui1 , ui2 ,Ui1i2,c)≈H (ui1 ,Ui1,c)+H (ui2 ,Ui2,c)−H0 (15)

which only includes a constant function and univariate
functions. Therefore, by solving the constant and univariate
equations first, and using the result to represent the bivariate
function, the amount of calculation can be tremendously
reduced.

Now, the problem is to judge whether the joint effects are
indeed minor. We achieve this with one DLF by comparing
the differences between (14) and (15).

First, two abscissas are selected from Table 1. Then, one
DLF using the selected abscissas is performed to obtain
the results of the bivariate function. The joint effect is then
calculated by:

Hi1i2 (ui1 , ui2 ) = H (
√
2αGH ,m1 ,

√
2αGH ,m2 ,Ui1i2,c)

−H (
√
2αGH ,m1 ,Ui1,c)

−H (
√
2αGH ,m2 ,Ui2,c)+ H0 (16)
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Note that there are m variables in Y, and the joint effect
Hi1i2 (ui1 , ui2 ) is different for different variables in Y. Let ε
represent the effect threshold: i.e., if any joint effect on the
variables in Y is larger than ε, the whole joint effect should
not be neglected. According to practical experience, most
joint effects are far less than 0.01 and have minor influence
onmoment estimation results; therefore, a predetermined ε =
0.01 is used in this study.

D. JOHNSON SYSTEM
For practical engineering applications, only knowing the
moments of the ORVs is not always sufficient: their
PDF or CDF may also be of interest. In this section, the
Johnson system is adopted to approximate the PDF or CDF
of ORVs.

The Johnson system uses the following function to
transform the ORV y (which follows an arbitrary probability
distribution) into the standard Gaussian variable u [30]:

u = a+ b× f (
y− c
d

) (17)

where a and b are the shape parameters, c is the position
parameter, and d is the scale parameter. Regarding (y−c)/d as
a variable v, the function f (v) has one of the following forms:

SL : f (v) = ln(v)

SU : f (v) = ln(v+
√
v2 + 1)

SB : f (v) = ln(v/(1− v))

SN : f (v) = v (18)

where SL is the family of Lognormal distributions, SU is
the family of unbounded distributions (and the range of v
is unlimited), SB is the family of bounded distributions, and
SN is the family of Gaussian distributions. SN is utilized for
transformations between Gaussian distributions.

Taking the inverse transformation of (20), the distribution
of y can be approximated by the standard Gaussian distribu-
tion as follows:

y = c+ d × f −1(
u− a
b

) (19)

Note that y is the function of the standard Gaussian vari-
able; therefore, there is an analytical expression of y, and
this feature will benefit applications, e.g., chance-constrained
optimization.

Let β1 represent the square of skewness and β2 represent
the kurtosis. We use the β1–β2 plane to illustrate the superior-
ity of the Johnson system. The β1–β2 plane is shown in Fig. 1.
Evidently, any probability distribution corresponds to a point
on this plane.

In Fig. 1, β1–β2− 1 = 0 denotes the boundary of skew-
ness and kurtosis. The distribution does not exist beyond
the boundary. The boundary curve of positive density of the
Gram–Charlier series is the dotted line. The skewness and
kurtosis of a distribution can only fall in the region enclosed
by this boundary line and the coordinate axes [30], [36]; thus,
the Gram–Charlier series can generate a PDF satisfying the
probability theory. The SL family forms a straight line on

FIGURE 1. Feasible area of Johnson system and Gram–Charlier series on
the β1–β2 plane.

the β1–β2 plane, dividing it into two areas. The upper and
lower areas correspond to the SB and SU families, respec-
tively. Evidently, the whole β1–β2 plane is covered by three
families from the Johnson system, which is superior to the
Gram–Charlier series and is a suitable choice to describe
complicated distributions.

E. DETERMINING JOHNSON FAMILIES AND PARAMETERS
According to the previous analysis, approximating an
arbitrary probability distribution can be accomplished by
determining the proper families in the Johnson system and
the corresponding parameters. Existing approaches include
the quantilemethod [37] and themomentmethod [38], among
others. The moment method requires information on the first
four moments, which can be accurately estimated via BDR.
Therefore, herein, using the moment method in conjunction
with BDR is suitable to form a complete process. We now
provide a simple description of the moment method.

The proper families are determined by calculating β ′2 from

β ′2 = ω
4
+ 2ω3

+ 3ω2
− 3 (20)

where ω is fixed by the skewness of the random variable:

ω =
1
2
(8+ 4β1 + 4

√
4β1 + β21 )

1
3

+
1
2
(8+ 4β1 + 4

√
4β1 + β21 )

−
1
3 − 1 (21)

If β ′2 is close to β2, the Lognormal distribution family SL is
selected. Otherwise, if β ′2 < β2, SU is selected, and if β2′ >
β2, SB is selected.
For SL , the parameters have analytical expressions and can

be calculated as follows:

a = 0.5b ln(ω(ω − 1))

b =
√
lnω

c = − exp(
0.5b− a

b
)

d = sign(
√
β1) (22)
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For SU , the values of a and b are determined first; c and
d are then calculated accordingly. If the random variable is a
symmetric distribution (β1 ≈ 0), then, a and b are calculated
as follows:

a = 0

b =
√
ln ζ

ζ =

√√
(2β2 − 2)− 1 (23)

Otherwise, iterative calculations are necessary to determine
a, b, and ζ .

After obtaining a and b, c and d are calculated as follows:

d = (
1
2
(ζ − 1)(ζ cosh(

2a
b
)+ 1))−

1
2

c = d
√
ζ sinh(

a
b
) (24)

For SB, the parameters are iteratively calculated.
The detailed process of iteration for SU and SB can be found

in Ref [38].

IV. PROCEDURE OF COMPUTATION
The proposed PLF method based on BDR and the Johnson
system is presented step by step in this section, as follows:

1) Prepare the necessary data. The base data of the power
system are required, along with samples of IRVs, which can
be generated randomly or collected from historical data.

2) Obtain the correlation coefficient matrix of IRVs ρX ,
and then calculate its corresponding coefficient matrix ρZ in
standard Gaussian space.

3) Carry the Cholesky decomposition to ρZ and obtain the
corresponding lower triangular matrix LZ.
4) Determine the abscissas and weights for the

Gauss–Hermite quadrature scheme in the independent stan-
dard Gaussian space. Then, transform the abscissas to the
points in original space according to (6).

5) Perform theDLF for the constant function and univariate
functions of (12).

6) Judge whether the joint effect is minor based on (19)
and ε. If it can be ignored, use (18) to calculate the bivariate
function; if not, use (17).

7) Calculate the first four moments of the output variable
from (13), (14), and (15).

8) Determine the proper families and parameters in the
Johnson system according to the calculated moments.

9) Approximate the probability distribution of the ORVs.

V. CASE STUDIES
In this section, the proposed method is tested on a modi-
fied IEEE 118-bus system [39]. The DLF program is based
on MATPOWER 6.0 [40] and is executed on a PC with a
2.8-GHz CPU and 16 GB RAM.

Assume that eight wind farms are integrated in the test
system and are clustered into two groups. The total load of
the system is 4243 MW, and the total wind power installed
is 1320 MW; therefore, the penetration level of the wind
power is about 30%, a significant degree of penetration.
The wind farm locations, groups, and the rated power are
listed in Table 2.

TABLE 2. Parameters of wind farms.

TABLE 3. Uncertainty description of wind farms.

To test the adaptability of the proposed method to IRV
distribution, two cases using typical distribution that can
represent the uncertainty of wind are performed.

In the first case, we assume the wind speed to be following
Weibull distribution, which is a widely used distribution that
represents the long-term uncertainty of wind speed. The wind
power output is determined using the speed–power curve [5]
as follows:

P =


0 if wv < wvcin or wv < wvcout
wv−wvcin

wvcrated−wv
c
in
Prated if wvcin < v < wvrated

Prated else

(25)

where Prated is the rated power of the wind turbine, P is the
generated power of the turbine, wind turbines of the same
wind farm are assumed to be integrated into one, v is the
wind speed,wvcin andwv

c
out are cut-in and cut-out wind speed,

respectively, and wvcrated is the rated wind speed of the wind
turbine. In this case, we assume wvcin = 2 m/s, wvcout =
25m/s, and wvcrated = 13m/s.

In the second case, wind power outputs are directly
assumed to follow the Beta distribution, which is known to
describe the short-term uncertainty of wind power properly
[41]. The output of the windfarms is assumed to be 0.8 p.u.
in this case.

The uncertainty description of wind farms in the two cases
are summarized in Table 3.

In both cases, wind power outputs of the wind farm in the
same group are assumed to be highly correlated, and there
is no correlation between distinct groups. The correlation
matrices of the wind power outputs are as follows:

ρgroup1 =


1 0.72 0.83 0.69

0.72 1 0.78 0.81
0.83 0.78 1 0.74
0.69 0.81 0.74 1



ρgroup2 =


1 0.81 0.63 0.67

0.81 1 0.73 0.85
0.63 0.73 1 0.79
0.67 0.85 0.79 1


(26)
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TABLE 4. Average relative error index.

In both cases, the power factor is set as 0.95. We also
assume that the uncertainty of the load at each bus follows a
Gaussian distribution, with expectations of active and reactive
power injections equal to the base case data, and standard
deviations equal to 5% of the expectations.

The goal of the PLF algorithm is to obtain accurate PDF
and CDF curves efficiently, and the accuracy relies on two
aspects: moment estimation results and curve approximation
method.

The moment estimation accuracy of the proposed BDR is
compared with those of the UDR proposed in ref. [25], CM
proposed in ref. [8], and 50000 times MCSM. Note that here,
the number of abscissas of BDR is chosen as 5, and, for con-
sistency, that of the compared UDR is adjusted to be the same.

To show the performance of the Johnson system, PDF
and CDF curves obtained by the BDR + Johnson system
were compared with those of the BDR + Gram–Charlier
series. To show the overall performance of the proposed
method (BDR + Johnson system), PDF and CDF curves
obtained by the proposed method were compared with
CM + Gram-Charlier series and the empirical curves from
MCSM.

The average relative error index [8] is adopted to indicate
the accuracy of the moment of the ORVs estimated using
each method. The average relative error index is defined as
follows:

ε̄i =
1
N1

N1∑
j

∣∣∣∣∣γ
EV
i,j − γ

MC
i,j

γMCi,j

∣∣∣∣∣× 100% (27)

where i refers to the ith central moment; N1 refers to the num-
ber of a type of ORV; j is the corresponding series number;

FIGURE 2. PDF (1) and CDF (2) of branch 49–50 active power flow.

and γMCi,j and γ EVi,j refer to the results calculated by MCSM
and the evaluated method, respectively.

The average relative error indices of the method being
evaluated in this test system are listed in Table 4. Experience
indicates that when using MCSM as a benchmark, a con-
vergent skewness is difficult to obtain. Therefore, to obtain
a relatively objective evaluation, if the absolute value of
skewness of an ORV calculated by MCSM is less than 0.05,
we do not include it in the statistics.

The data presented in Table 4 show that the BDR has the
smallest estimation error for the first four moments in both
cases. Comparing BDR and UDR, in estimating high-order
moments, BDR significantly outperforms UDR in terms of
precision. The maximum average relative error calculated
by BDR is 3.6132% of kurtosis of θ , whereas the mean
relative error of kurtosis of θ based on the UDR is as high as
61.2928% (too high for practical use). Evidently, considering
the joint effects of the IRVs significantly reduces the estima-
tion error of high-order moments. For CM, as the penetration
level of these two cases is high and the wind power output
is highly discrete, the linearization assumption is not valid,
resulting in low accuracy.

The average relative error of the third moment (skewness)
is high for all evaluated methods because of its small value
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FIGURE 3. PDF (1) and CDF (2) of branch 5–8 reactive power flow.

and the instability of the benchmark as mentioned previously;
however, its impact on approximating PDF and CDF curve,
is relatively small.

We select the PDF and CDF of an active flow of branch
49–50 and reactive flow of branch 5–8 in case II as examples
to show the effectiveness of the proposed method; the PDF
and CDF curves are plotted in Figs. 2 and 3, respectively.

The PDF and CDF curve show that the BDR +
Johnson system approximates well, whereas the BDR +
Gram–Charlier series exhibits evident deviation, particu-
larly in the tail area. In addition, the CDF approximated
by the Gram–Charlier series in Fig. 3 exhibits a negative
trend, violating the probability theorem. This renders the
Gram–Charlier series unreliable in practical use. Evidently,
for approximating the PDF and CDF of non-Gaussian vari-
ables, the Johnson system performs far better performance
than Gram-Charlier series.

It can be found that the PDF and CDF curves obtained by
the proposed method are very close to the MCSM results,
so the overall accuracy of the proposed method is verified.
There are two reasons that CM + Gram–Charlier series per-
forms poorly in these two examples. One is the inaccuracy
of moment estimation, and another is that the distribution of
ORV has non-Gaussian characteristics and the point on the
β1–β2 plane is out of the Gram-Charlier series boundary line.

TABLE 5. Comparison of the cdf approximation.

TABLE 6. Comparison of calculation speed.

As the CDF curve is more useful in applications based on
PLF, such as Chance-constrained optimization, the average
root mean square (ARMS) [28] is introduced to quantitatively
indicate the accuracy of the CDF approximation:

ARMS =

√
N∑
i
(CMC,i − Ci)2

N2
× 100% (28)

where CξMC,i and C
ξ
i refer to the ith value on the CDF curves

of the MCSM and evaluated methods, respectively; N2 is the
number of points at which the CDFs have been evaluated.

To demonstrate the performance of CDF approximation in
the tail area, the absolute difference between the CDF values
obtained via MCSM and the evaluated method at quantiles
of 1%, 10%, 90%, and 99% are introduced.

Detailed data on CDF approximation performance are
listed in Table 5. Evidently, the proposed method is superior
with respect to all indices.

Table 6 shows the time consumed by the proposed method;
although it is longer than that taken for the UDR and CM, it is
significantly shorter than that taken for MCSM, showing that
BDR has the potential to meet the timeliness requirements of
online analysis.

VI. CONCLUSION
Currently and in the future, dealing with the uncertainties and
complicated probability distributions involved in the utiliza-
tion of RESs is a challenge for power system engineering.
To ensure computational accuracy and efficiency in PLF cal-
culations, a new PLF method based on BDR and the Johnson
system is proposed in this study. The proposed method uses
BDR to calculate the moments of the ORVs, thus avoid-
ing the difficulties that PEM-based methods encounter in
estimating high-order moments. Furthermore, the probability
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distributions of the output variables are approximated by
the Johnson system; in this manner, the defects of the
series expansion-based method are eliminated. The proposed
method can achieve a better performance in terms of accu-
racy or efficiency than PEM, CM, or MCSM when consider-
ing correlated, highly discrete, and non-Gaussian IRVs.

In the future, other computationally efficient methods such
as principal component analysis or parallel computing can
be studied and combined with the proposed method to fur-
ther enhance efficiency. Nonlinear correlation theories, such
as the copula theory may also combine with the proposed
method to enhance accuracy and adaptability. The method
may also prove useful for other PLF-based applications, such
as probabilistic optimal load flow and chance-constrained
optimization.
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