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ABSTRACT Taking carbon emissions into account in decision-making on distribution network operations
contributes to achieving the goal of promoting energy conservation and emissions reduction. The focus
of this paper is to research multicapacity hierarchical location-routing robust optimization in distribution
network design under carbon trading policies. First, this problem is described as a mixed integer nonlinear
programming model. Then, based on strong duality theory, the nonlinear model is transformed into a linear
robust equivalent model. Finally, GUROBI software is used for numerical calculation and analysis. The
results suggest the following: carbon trading policies have a carbon abatement effect; with a decrease in
the carbon emissions cap and an increase in carbon trading prices, carbon emissions undergo a ladder-like
downward trend; uncertain fluctuations in freight units will influence the optimal decision-making patterns
of enterprises; and making more vehicles available will reduce carbon emissions. The government should set
a reasonable carbon emissions cap according to market conditions. Enterprises could adopt robust control
parameters on the basis of their decision-making preferences and consider the impact of carbon trading
policy in formulating and adjusting an optimal decision-making scheme.

INDEX TERMS Carbon emissions, carbon trading, green location-routing problem, robust optimization.

I. INTRODUCTION
China, the world’s largest emitter of CO2, is facing increasing
pressures to conserve energy and reduce emissions. Control-
ling carbon emissions and promoting sustainable develop-
ment have become important policy objectives of the Chinese
government [1]. Currently, feasible regulation measures of
carbon emissions reduction include carbon emissions trading
policies and carbon tax policies. Some studies have examined
the trend of China’s carbon emission reduction regulation
policies. Some studies believe that the implementation of the
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carbon tax in the short term and carbon trading in the long
term is more in line with the future situation of China [2].
More studies believe that carbon tax and carbon trading are
not opposite in nature, and the comprehensive application of
the two is a better choice for environmental regulations [3].
The parallel and comprehensive application of carbon trading
and a carbon tax together should be considered [4]. The
carbon tax can be introduced when an appropriate oppor-
tunity arises while actively promoting the carbon emissions
trading mechanism [5]. Although there are some differences
in researchers’ views, there is a consensus that carbon trading
policies will play an important role for some time to come.
China was one of the first countries to conduct research on
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and practice carbon emissions permit trading. In 2013, China
initiated its first carbon emissions trading pilot projects in
seven provinces and cities. In December 2017, taking the
power generation industry as a pilot setting, China launched
a national carbon emissions trading system. Carbon emis-
sions trading is also an internationally recognized means to
promote carbon emissions reduction. Practices adopted in
the United States, the United Kingdom, Australia and other
countries have proven that carbon emissions trading policies
have positive effects on carbon emissions reduction [6]. The
China Carbon Pricing Survey of 2015 co-published by the
China Carbon Forum (CCF) and International Consulting
Firm (ICF) projects that China’s carbon emissions will peak
in 2030. Thus, the next decade will be a critical period for
China’s carbon abatement trajectory. China must accelerate
its establishment of a national carbon emissions trading mar-
ket, promote a deterrent mechanism for emissions, and urge
enterprises to accelerate green transformation [7].

Location and routing decisions about the operation of
distribution networks also concern CO2 emissions, which
have a direct impact on the environment. Over the past
decade, the impact of environmental issues in the context of
optimization has been studied extensively (Koç [8]). Under
carbon trading policies, a government regulates enterprises
to adjust location and inventory decision-making by control-
ling CO2 emissions and eventually cutting carbon emissions.
Therefore, carbon trading is likely to affect the distribution
network of enterprises in terms of location and inventory
decision-making. Based on the implementation of China’s
carbon trading policies, our aim is to analyze sustainability
issues with the location-routing problem (LRP) under carbon
trading policies and to provide some insights.

In examining the green facility location problem (GFLP),
researchers have gradually shifted from focusing on eco-
nomic factors to considering both economic and environ-
mental factors. For instance, Zhang et al. [9] proposed a
method for determining the optimal location and scale of
a logistics park based on the bi-level programming model
while considering both economies of scale and the impact
on the design of logistics networks. The design of a supply
chain network considering CO2 emissions was also exam-
ined by Elhedhli and Merrick [10]. The model established
by the authors is a nonconvex optimization problem, a type
of problem that is difficult to solve directly. Therefore,
a Lagrange relaxation algorithm was designed to decompose
the original problem into several single-resource volumet-
ric FLP to produce a solution, and the calculation gap was
measured as less than 1%. Considering carbon emissions
factors, Xiao et al. [11] considered the location-allocation
problem involved in the design of a four-level reverse logis-
tics network, constructed a mixed integer linear program-
ming model, and used LINGO software to solve the model.
Xiao et al. [11] expandedmultilevel multicommodity FLP on
the basis of carbon emissions trading prices and procurement
costs and analyzed the impact of different carbon trading
prices on supply chain costs and allocation. Yang and Lu [13]

compared the location-allocation problem of multicapac-
ity facilities under four different carbon emissions policies,
established corresponding mixed integer linear programming
models, and conducted a numerical calculation of models
with CPLEX software. The above works do not consider
routing decision-making.

Unlike the traditional vehicle routing problem (VRP),
the green vehicle routing problem (GVRP) takes into account
negative externalities such as CO2 emissions and reduces
costs and carbon emissions by optimizing the operation
scheme. Fuel consumption models and calculation methods
of traffic emissions and energy consumption have been used
to describe environmental factors that should be considered
in GVRP modeling. The GVRP was first introduced by
Erdogğan and Miller-Hooks [14]. The authors proposed
a mixed-integer-linear programming (MILP) formulation
and two heuristics. Lin et al. [15] and Demir et al. [16]
summarized related models and algorithms of the GVRP.
In terms of modeling approaches, GVRPs can be categorized
into 3 types: deterministic GVRP (DGVRP), the stochastic
GVRP (SGVRP), and the robust GVRP(RGVRP). (i) The
DGVRP. The DGVRP has been most widely studied by pre-
vious researchers. Kara et al. [17] first expanded the capac-
itated vehicle routing problem (CVRP) and investigated
the CVRP with minimal energy consumption, which was
described as an integer linear programming model. The
proposed model is solved by CPLEX. Assuming that carbon
emissions are related to time and loads, the transmission
ratio is defined as the main factor that affects vehicle emis-
sions in addition to factors of distance, load and velocity.
Ashtineh and Mir [18] studied the GVRP with alternative
fuels by establishing a mixed integer programming model
and evaluated the economic and environmental performance
of alternative fuels in a VRP. Macrina et al. [19] incorpo-
rated velocity, acceleration, deceleration, load and other
factors into the comprehensive energy consumption model,
designed a GVRP model of a hybrid fleet that includes
electric vehicles and traditional diesel locomotives, and
developed an embedded large neighborhood search heuristic
algorithm. Atashi et al. [20] investigated the time-dependent
green weber problem (TD-GWP). Montoya et al. [21] pro-
posed a multispace sampling heuristic for the GVRP.
The pollution-routing problem (PRP) was developed as
a successful application of the GVRP and was coined
by Bektaé and Laporte [22]. The time window constraints
of consumers are usually taken into account in the PRP.
Raeesi and Konstantinos [23] presented a multiobjective
PRP with a time window while considering the objective
function of minimum vehicle rental costs, minimum total fuel
consumption and the shortest routing time. Demir et al. [24]
designed the dual-objective PRP model with the goal of
minimizing total fuel consumption and achieving the short-
est routing time and developed the corresponding adaptive
neighborhood search algorithm. Andelmin and Bartolini [25]
modeled the GVRP as a set partition problem and
proposed an accurate algorithm. Franceschetti et al. [26]
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TABLE 1. Features of the GLRP.

studied a PRP with time-varying speed while considering
that traffic congestion significantly limits vehicle speeds
and increases carbon emissions. The method of separable
convex programming was designed by Fukasawa et al. [27]
to solve the PRP, while a branch-and-bound algorithm was
defined by Dabia et al. [28] to solve the PRP. In addition,
Poonthalir and Nadarajan [29], Li et al. [30], Qin et al. [31],
and Shen et al. [32] also researched the green VRP from
different perspectives. (ii) SGVRP. Some researchers have
also studied the SGVRP. Çimen and Soysal [33] investi-
gated a time-dependent GVRP with stochastic vehicle speeds
and proposed an approximate dynamic programming algo-
rithm. Hsueh [34] and Feng et al. [35] presented a GVRP
with stochastic traffic speeds. Hwang and Ouyang [36]
showed that a GVRP with random congestion states on
each link follows an independent probability distribution.
Rabbani et al. [37] developed a stochastic time-dependent
capacitated GVRP model. The authors designed a simu-
lated annealing (SA) algorithm for the proposed model.
(iii) SGVRP. A robust VRP (RVRP) was introduced by
Bertsimas and Simchi-Levi [38] for the SVRP and was
applied when the probability distribution of an uncertain
parameter was unknown. Few studies have been conducted
on the RGVRP. Eshtehadi et al. [39] adopted robust opti-
mizations, such as the soft worst case, the hard worst case
and chance constraints, and provided a PRP with demand
and travel time uncertainty. Tajik et al. [40] presented a
robust PRP with pickup and delivery and introduced a new
robust counterpart of the mixed integer linear program-
ming model to manage uncertainty. Eshtehadi et al. [41] also
illustrated a robust PRP. The authors presented an adaptive
large neighborhood search for the model under demand
uncertainty. The above works do not consider location
decision-making.

The location-routing problem (LRP) involves the integra-
tion of the FLP and VRP. The basic LRP solves problems
associated with determining the location of a facility and

with dispatching a vehicle fleet from a facility to pro-
vide services to a given set of customers while minimiz-
ing location and routing costs (Drexl and Schneider [42],
Prodhon and Prins [43]). The FLP and VRP affect and
restrain each other, and classic LRP research works
prove that the integrated optimization of the two could
reduce system costs and promote scientific decision-making
(Drexl and Schneider [42]). To the best of our knowledge,
only a few studies (Table 1) have been conducted on
the Green LRP (GLRP). The GLRP was first studied
by Govindan et al. [44]. To minimize total costs and envi-
ronmental impact, a two-objective two-stage LRP model
with time windows was established, and a hybrid multi-
objective optimization algorithm combining particle swarm
optimization with adaptive neighborhood searching was
designed [44]. While incorporating fuel consumption and
CO2 emissions into system costs, Koç et al. [45] studied
the LRP in relation to urban logistics and proposed a
new adaptive large neighborhood search heuristic algo-
rithm. Toro et al. [46] proposed a new model for calculating
greenhouse gas emissions generated from vehicle routing and
studied a capacity-constrained LRP considering environmen-
tal impacts. Their research suggests that using more vehicles
could enhance fuel economy and thus lower emissions, while
emissions can also be reduced by enabling more vehicles on
short routings and prioritizing high-demand customers. The
green city hub location routing problem (GCHLRP), with the
objective of minimizing the cost of strategic investments and
pollution by using CO2 emissions as an indicator, was studied
by Tricoire and Parragh [47]. Dukkanci et al. [48] studied the
green LRP with capacity limitation on the basis of the classic
LRP and PRP. Tang et al. [49] discussed the influence of a
customer’s limited ’carbon behavior’ preferences on the joint
optimization of location-routing inventory. With the goal of
minimizing the total system cost, including the cost of fuel
and CO2 emissions, Koç et al. [8] studied the GLRP with
time widows (GLRPTW) and developed an adaptive large
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neighborhood search metaheuristic. A GLRP in a cold chain
logistics system with low composite costs is constructed
based on fixed costs, transportation, propagation, damage,
and carbon emission costs in Wang et al. [50]. The authors
constructed a hybrid genetic algorithm to solve the model.
Leng et al. [51] studied the GLRP considering simultaneous
pickup and delivery and hard time windows. Leng et al. [52]
proposed a multiobjective regional low-carbon LRP. The
authors sought to minimize service durations, client waiting
times, and total costs. A novel hyperheuristic (HH) method
for addressing a bi-objective model of the GLRP was defined
by Leng et al. [53]. Most examined GLRPs have been deter-
ministic. Only Shen et al. [54] considered fuzzy parameters
in studying the GLRP. The authors studied a fuzzy demand
and open GLRPmodel for emergency logistics. The objective
function included the minimum delivery time, total costs
and carbon emissions, and the authors designed a hybrid
two-stage algorithm to deal with the model.

In conclusion, several studies have been conducted on
carbon emissions in supply chain operation optimization and
have made some progress; however, the following questions
still need to be addressed: (1) As carbon trading becomes an
increasingly discussed topic in political and academic circles,
what influence does carbon trading have on the distribution
network location-routing decision-making of companies in
supply chains? How should governments set carbon caps?
How can enterprises make more favorable decisions under
the influence of carbon trading policies? Existing research
does not provide answers to these questions. (2) Previous
studies on the GLRP are mainly based on deterministic opti-
mization. Only one study has examined the GLRP under
fuzzy requirements [54]. To the best of our knowledge,
there has been little research on the stochastic optimization
and robust optimization of the GLRP. Previous research on
the GVRP mainly focuses on deterministic and stochastic
optimization, and research on the RGVRP has been rare.
Stochastic optimization is more practical than deterministic
optimization, but it still has limitations. First, it is difficult
to determine representative scenarios and their probability
or the probability distribution function of uncertain param-
eters. Second, the decision-making objective of minimizing
expected costs in stochastic optimization is difficult to use
to reflect the risk preferences of decision-makers. Third,
most stochastic optimization models use mixed-integer non-
linear programming, which must be solved by a heuristic
or meta-heuristic algorithm; thus, a global optimal solu-
tion is difficult to obtain. However, robust optimization
remedies the limitations of stochastic optimization modeling
to some extent [55]. On the basis of the traditional sup-
ply chain distribution network LRP (DNLRP), this paper
introduces a box-indeterminate set and two uncertain level
parameters to describe unit freight uncertainty and estab-
lishes a multi-capacity-level LRP robust optimization model
considering carbon trading policies and carbon emissions.
Based on strong duality theory, the mixed integer nonlinear
programming model is transformed into the linear robust

equivalent model, and the model’s optimal solution is
calculated with GUROBI software. Finally, through numer-
ical calculation and a sensitivity analysis of key parame-
ters, implications for management are obtained to provide
decision-making references for governments and enterprises.
In summary, we know the following: (i) Carbon trading will
play an increasingly important role in the policy level of
environmental regulation, so it is necessary to consider the
impact of carbon trading policies when making LRP deci-
sions. (ii) At present, research on the GLRP is based on
deterministic optimization, so it is necessary to consider the
uncertainty of key parameters in studying the robust GLRP.
These two points are the main motivations behind this paper.
The contributions of our study can be summarized as fol-
lows: (i) We formally define the GLRP under carbon trading
policies. (ii) We propose a mixed integer linear programming
formulation for the GLRP, andwe reformulate the GLRPwith
a well-known robust approach. (iii) We carry out a sensi-
tivity analysis on key parameters and provide management
insights.

The remainder of this paper is structured as follows.
Section II presents the studied problem settings and descrip-
tions and a mathematical formulation. Computational exper-
iments are presented in Section III followed by conclusions
in Section IV.

II. METHODOLOGY
A. PROBLEM DESCRIPTION
An optimization design problem of a three-level distribution
network will be solved. The network consists of several fac-
tories, distribution centers and demand points. The location
and scale of factories are determined. Candidate distribu-
tion centers have capacity limitations, and multiple capacity
levels are available. In a multi-capacity-level FLP, in addi-
tion to the decision-making variable of the facility location,
the capacity level also belongs to the set of decision-making
variables [13]. Through the overall optimization of facil-
ity locations, quantities and capacities, imbalances between
facility resources and customer needs can be reduced. The
location and demand of demand points are known, and each
demand point is met by only one vehicle [56], [57]. Vehi-
cles also have capacity limitations, with only one vehicle on
each itinerant routing, and each vehicle needs to return to
the distribution center after completing the distribution task.
Carbon emissions generated from distribution networks are
based on the locations and operation of distribution centers,
transportation/distribution from factories to distribution cen-
ters, and distribution from centers to demand points.

The following decisions need to be made: (1) deter-
mine the locations, number and capacity levels of open
distribution centers; (2) determine the distribution of freight
volumes, including the freight volume transported from fac-
tories to distribution centers and from distribution centers
to demand points; and (3) determine the distribution routing
from distribution centers to demand points.
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B. EXPLANATIONS OF PARAMETERS AND VARIABLES
The sets are as follows

I Set of distribution centers
M Set of factories
J Set of demand points
V Set of transport vehicles
K Set of capacity levels

The parameters are as follows

fik Construction cost allocation of establishing a
distribution center with capacity level k in
candidate distribution center i

hj Demand at demand point j
γik Unit operatio cost of establishing a distribution

center with capacity level k at candidate
location i

cik Maximum capacity of establishing a distribution
center with capacity level k at candidate
location i

dmi Transportation distance from factory m to
distribution center i

bmi, blj Freight of per unit product and per unit distance
c Vehicle idling cost of per unit distance
c0 Fixed departure cost per vehicle
dlj Transportation distance from node i to node j
capv Maximum carrying capacity of vehicle v
H A large number

Decision variables

qmi Number of products transported from factory m to
distribution center i

qlj Number of products transported from node l to
node j

xljv If vehicle v travels from node l to node j, this
variable takes the value 1, and otherwise it takes
the value 0

Xik If a distribution center with capacity level k is
established at node i, this variable takes the value 1,
and otherwise it takes the value 0

C. BASIC MODEL OF THE DNLRP
The basic model of the DNLRP is written asModel I. Model I
is as follows:

minZ1 =
∑
i∈I

∑
k∈K

fikXik +
∑
i∈I

∑
k∈K

γikcikXik

+

∑
m∈M

∑
i∈I

bmidmiqmi +
∑

l∈(I∪J )

∑
j∈J

bljdljqlj

+

∑
i∈I

∑
j∈J

∑
v∈V

cdjixjiv +
∑
i∈I

∑
j∈J

∑
j∈V

c0xijv (1)

Subjective to
∑

l∈(I∪J )

∑
j∈J

hjxljv ≤ capv, v ∈ V (2)

∑
l∈(I∪J )

∑
v∈V

xljv = 1, ∀j ∈ J (3)

∑
i∈I

∑
j∈J

xijv ≤ 1, ∀v ∈ V (4)

∑
l∈(I∪J )

xljv −
∑

l∈(I∪J )

xjlv = 0, ∀j ∈ J , v ∈ V

(5)∑
m∈M

qmi ≥
∑
j∈J

qij, ∀i ∈ I (6)

∑
l∈I+J ,l 6=r

qlr −
∑

j∈J ,j6=r

qrj = hr , ∀r ∈ J (7)

∑
k∈K

Xik ≤ 1 (8)∑
m∈M

qmi ≤
∑
k∈K

cikXik , ∀i ∈ I (9)∑
j∈J

qij ≤
∑
k∈K

cikXik , ∀i ∈ I (10)

qmi ≤ H
∑
k∈K

Xik , ∀m ∈ M , i ∈ I (11)

qlj ≤ H
∑
v∈V

xljv, ∀j ∈ J , l ∈ (I ∪ J ) (12)

xijv ≤
∑
k∈K

Xik , ∀i ∈ I , j ∈ J , v ∈ V (13)

xijv = 0, ∀i ∈ I , j ∈ I , v ∈ V (14)∑
j∈J

xijv =
∑
j∈J

xjiv, ∀i ∈ I , v ∈ V (15)

Xik ∈ (0, 1), ∀i ∈ I , k ∈ K (16)

xllv ∈ (0, 1), ∀j∈J , l∈ (I ∪ J ), v∈V (17)

The objective function (1) refers to the minimum total cost
of the system, in which the first item is the facility construc-
tion cost, the second item is the operation cost of the distri-
bution center, the third item is the transportation cost from
the factory to the distribution center, the fourth item is the
transportation cost from the distribution center to the demand
point, the fifth item is the vehicle idling cost, and the sixth
item is the fixed departure cost. Constraint (2) is the capacity
constraint of a vehicle. Formula (3) ensures that only one
vehicle is serving any demand point. Constraint (4) requires
that each vehicle serves at most one distribution center. For-
mula (5) indicates that a vehicle cannot stay at a node. Con-
straint (6) denotes that the quantity of products transported
into the distribution center must not be less than the quantity
transported out of the distribution center. Formula (7) ensures
that the demands of all demand points are met. Constraint (8)
shows that each distribution center has at most one capacity
level. Constraints (9) and (10) are capacity limitations placed
on inbound and outbound transportation to and from the
distribution center, respectively. Constraints (11)-(13) denote
that the distribution center performing the task must be open.
Formula (14) states that a vehicle cannot travel from one
distribution center to another, reducing the search scale of
the solution space. Formula (15) denotes that each routing
starts and ends at the same distribution center. Formulas (16)
and (17) are binary variable constraints.
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D. THE DNLRP MODEL UNDER CARBON
TRADING POLICIES
Under carbon trading policies, carbon emissions rights are
traded in the market as a commodity. Each enterprise has a
certain emissions cap, and when an enterprise’s emissions
do not exceed its emissions cap, the saved emissions can
be sold to other enterprises; conversely, when emissions
from an enterprise exceed its emissions cap, the emissions
balance must be purchased from other enterprises. There-
fore, carbon trading policies will affect enterprise costs and
carbon emissions. Referring to the carbon footprint param-
eter setting method provided in [13], the distribution net-
work LRP model under carbon trading policies is built as
model II. In model II, a carbon trading mechanism was
added to analyze the impact of carbon trading policies on
the design of distribution networks. Compared with model I,
the objective function (18) of model II increases the trans-
action cost of carbon emissions and adds a carbon emission
constraint (19).
_

f ik Construction carbon emissions allocation for establish-
ing a distribution center with capacity level k in candi-
date distribution center i

_
γ ik Per unit operational emissions from distribution center i

with capacity level k
_

b Per unit emissions of transportation
_c unit emissions of transportation
L Emissions caps
e+ Externally purchased emissions
e− Emissions for sale
p Carbon trading price

Model II is as follows.

minZ2 =
∑
i∈I

∑
k∈K

fikXik +
∑
i∈I

∑
k∈K

γikcikXik

+

∑
m∈M

∑
i∈I

bmidmiqmi

+

∑
l∈(I∪J )

∑
j∈J

bljdljqlj

+

∑
i∈I

∑
j∈J

∑
v∈V

cdjixjiv

+

∑
i∈I

∑
j∈J

∑
v∈V

c0xijv + p(e+ − e−) (18)

∑
i∈I

∑
k∈K

_

f ikXik +
∑
i∈I

∑
k∈K

_
γ ikcikXik +

∑
m∈M

∑
i∈I

_

bdmiqmi

+

∑
l∈(I∪J )

∑
j∈J

_

bdljqlj

+

∑
i∈I

∑
j∈J

∑
v∈V

_cdjixjiv + (e− − e+) = L (19)

Constraints (2)-(17) are also established.

Equation (18) is the objective function, indicating the min-
imum total system costs under carbon trading policies. Con-
straint (19) refers to the carbon emissions constraint, which
is that a certain emissions cap L is granted to each enterprise
under carbon trading policies. The enterprise arranges pro-
duction on the basis of emissions cap L. If the actual emis-
sions are greater than L, then the enterprise has to buy
e+ units of emissions from outside sources. If the actual
emissions are less than L, the enterprise can sell e− units
of emissions to outside sources. The costs incurred by car-
bon trading p(e+ − e−) are included in the total system
costs.

E. ROBUST OPTIMIZATION MODEL OF THE DNLRP
UNDER CARBON TRADING POLICIES
In real conditions, due to the impacts of congestion, oil price
fluctuations, labor cost changes and other factors, the unit
freight blj and bmi exhibit obvious uncertainties. Therefore,
based on the nominal model II, considering the indeterminacy
of the unit freight, the box-indeterminate set is introduced to
depict unit freight blj and bmi, and the robust optimization
method is used to establish the robust LRP optimization
model of distribution network optimization design under car-
bon trading policies [58].

We define the unit freight as b̃lj ⊆ [blj − aljulj, blj +
aljulj], the unit freight of the nominal model as blj, and the
disturbance quantity of the freight in alj = εlblj as alj,
where εl is the disturbance ratio and ulj is the indeterminate
factor. The disturbance ratio εl can be obtained based on
historical data and statistical methods and can also be esti-
mated based on causal analysis, time series prediction and

other methods. U1 =

{
:
∑

l∈I+J

∑
j∈J

ulj 6 01, 0 6 ulj 6 1

}
,

where 01 represents the indeterminate level parameter of
the unit freight and is used to objectively measure the
degree of conservatism in the constraints. In addition,
01 reflects the risk preferences of decision-makers such
that the larger 01 is, the more conservative the model is.
01 is equal to 0, which means that the decision-maker
is not risk-averse at all. The decision-maker chooses the
indeterminate level parameter 01 according to his risk pref-
erence to minimize the total cost of the system. In practi-
cal decision-making scenarios, group decision-making and
other methods can also be used to determine the indeter-
minate level parameter 01 and the disturbance ratio εl to
avoid the knowledge limitations and idiosyncratic traits of
individual decision-makers and promote the scientificization
of decision-making. Because indeterminacy exists only in
the objective function, robust LRP optimization model III
of the box-indeterminate set is formulated. The robust opti-
mization model III takes into account the uncertain fluc-
tuation of unit freight blj and reflects the risk aversion of
decision-makers.
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Model III is as follows:

minZ3 =
∑
i∈I

∑
k∈K

fikXik +
∑
i∈I

∑
k∈K

γikcikXik

+

∑
m∈M

∑
i∈I

bmidmiqmi

+

∑
l∈(I∪J )

∑
j∈J

bljdljqlj

+

∑
i∈I

∑
j∈J

∑
v∈V

cdjixjiv

+

∑
i∈I

∑
j∈J

∑
v∈V

c0xijv

+ p(e+ − e−)

+ max
u∈U1

∑
l∈(I∪J )

∑
j∈J

(blj + aljulj)dljqlj (20)

Additionally, constraints (2)-(17) and (19) are established.
The objective function (20) represents the minimum total

system costs that increase the uncertain transportation cost
from distribution centers to demand points on the basis of
equation (18).

When01 = 0, the robust LRP optimizationmodel III of the
box indeterminate set is equivalent to the nominal model II.
Objective formula (20) of model III contains the inner layer
maximization problem (21), which can be transformed into
a robust equivalent model that is easier to solve by means of
the strong duality theory.

max
u∈U1

∑
l

∑
j

(blj + aljulj)dljqlj

=

∑
l

∑
j

bljdljqlj + max
u∈U1

∑
l

∑
j

aljuljdljqlj (21)

The linear programming problem with inner layer maxi-
mization is as follows.

max
u∈U1

∑
l

∑
j

aljuljdljqlj (22)

Conditional on

ρlj + θ1 > aljdljqlj, ∀l ∈ I + J , j ∈ J (23)

ρlj, θ1 > 0, ∀l ∈ I + J , j ∈ J (24)

According to the strong duality principle, the problem is
equivalent to (25), in which θ and ρlj are dual variables.

min ρlj + 01θ1 (25)

Conditional on

ρlj + θ1 > aljdljqlj, ∀l ∈ I + J , j ∈ J (26)

ρlj, θ1 > 0, ∀l ∈ I + J , j ∈ J (27)

Equation (25) is the objective function of the dual problem
of the inner maximization problem. Equation (26) and equa-
tion (27) are the constraints of the dual problem of the inner
maximization problem.

Then, formula (21) and formula (25) are substituted into
formula (20), and the nonlinear robust model is transformed
into the deterministic linear robust equivalent model IV.

Model IV is as follows:

minZ4 =
∑
i∈I

∑
k∈K

fikXik +
∑
i∈I

∑
k∈K

γikcikXik

+

∑
m∈M

∑
i∈I

bmidmiqmi

+

∑
l∈(I∪J )

∑
j∈J

bljdljqlj

+

∑
i∈I

∑
j∈J

∑
v∈V

cdjixjiv

+

∑
i∈I

∑
j∈J

∑
v∈V

c0xijv

+ p(e+ − e−)+
∑

l∈(I∪J )

∑
j∈J

bljdljqlj

+

∑
l∈(I∪J )

∑
j∈J

ρlj + 01θ1 (28)

At the same time, constraints (2)-(17), (19), (26), and (27)
are established.
Thus, the objective function (28) is equivalent to equa-

tion (20), which also represents the minimum total system
costs.
Similarly, if unit freight b̃mi ⊆ [bmi − amiµmi, bmi +

amiµmi], then bmi is the unit freight of the nominal model, ami
is the disturbance quantity of the freight, ami = εmbmi, where
εm is the disturbance ratio, andµmi is the indeterminate factor.
U2 =

{
:
∑∑

µmi ≤ 02, 0 ≤ µmi ≤ 1
}
, where 02 repre-

sents the indeterminate level parameter of the unit freight.
The linear equivalent model V of the robust LRP optimization
problemwith two kinds of indeterminate freight parameters is
formulated. Model V is a mixed integer linear programming
model, which can be solved by GUROBI, CPLEX and other
operations research software.
Model V is as follows:

minZ5 =
∑
i∈I

∑
k∈K

fikXik +
∑
i∈I

∑
k∈K

γikcikXik

+

∑
m∈M

∑
i∈I

bmidmiqmi

+

∑
l∈(I∪J )

∑
j∈J

bljdljqlj

+

∑
i∈I

∑
j∈J

∑
v∈V

cdjixjiv

+

∑
i∈I

∑
j∈J

∑
v∈V

c0xijv

+ p(e+ − e−)+
∑

l∈(I∪J )

∑
j∈J

bljdljqlj

+

∑
l∈(I∪J )

∑
j∈J

ρlj + 01θ1
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+

∑
m∈M

∑
i∈I

bmidmiqmi

+

∑
m∈M

∑
i∈I

τmi + 02θ2 (29)

It is conditional on

τmi + θ2 > amidmiqmi, ∀m ∈ M , i ∈ I (30)

τmi, θ2 > 0, ∀m ∈ M , i ∈ I (31)

Additionally, constraints (2)-(17), (19), (26), and (27) are
established.

The objective function (29) minimizes the total system
costs, which increases the uncertain transportation cost from
factories to distribution centers on the basis of equation (28).
Similarly to equation (26) and equation (27), equation (30)
and equation (31) are constraints of the dual problem of the
corresponding inner maximization problem.

F. ROBUST OPTIMIZATION MODEL OF THE DNLRP
WITH STOCHASTIC DEMAND UNDER CARBON
TRADING POLICIES
A scenario-based two-stage stochastic programming model
was established. Assume that the demands were stochas-
tic and involved different scenarios. Under real conditions,
the demand scenarios were reflected in off-season and
peak-season product sales. Let S denote the set of scenarios,
where s ∈ S, ωs represents the probability of scenario s,
and hjs indicates the demand at demand point j under sce-
nario s. Clearly, location decision-making was not related
to the scenarios (because a distribution center needed to
be established before the scenario occurred), and routing
decision-making was related to the scenarios (because rout-
ing decision-making was related to scenario-based demand).
Therefore, the location variable Xik remained unchanged
while the transportation volume qmis, qljs and vehicle routing
variable xljvs included the subscript s. Model VI is as follows:

minZ6 =
∑
i∈I

∑
k∈K

fikXik +
∑
i∈I

∑
k∈K

γikcikXik

+

∑
l∈(I∪J )

∑
j∈J

ρlj + 01θ1 +
∑
m∈M

∑
i∈I

τmi + 02θ2

∑
s∈S

ωs



∑
m∈M

∑
i∈I

∑
s∈S

bmidmiqmis

+

∑
l∈(I∪J )

∑
j∈J

∑
s∈S

bljdljqljs

+

∑
i∈I

∑
j∈J

∑
v∈V

∑
s∈S

cdjixjivs

+

∑
i∈I

∑
j∈J

∑
v∈V

∑
s∈S

c0xijvs

+p
∑
s∈S

(es+ − es−)

+

∑
l∈(I∪J )

∑
j∈J

∑
s∈S

bljdljqljs

+

∑
m∈M

∑
i∈I

∑
s∈S

bmidmiqmis



(32)

∑
l∈(I∪J )

∑
j∈J

hjsxljvs 6 capv, v ∈ V , s ∈ S (33)

∑
l∈(I∪J )

∑
v∈V

xljvs = 1, ∀j ∈ J , s ∈ S (34)

∑
i∈I

∑
j∈J

xijvs 6 1, ∀v ∈ V , s ∈ S (35)

∑
l∈(I∪J )

xljvs−
∑

l∈(I∪J )

xjlvs=0, ∀j∈J , v∈V , s∈S

(36)∑
m∈M

qmis >
∑
j∈J

qijs, ∀i ∈ I , s ∈ S (37)

∑
l∈I+J ,l 6=r

qlrs −
∑

j∈J ,j6=r

qrjs=hrs, ∀r ∈ J , s ∈ S

(38)∑
k∈K

Xik 6 1 (39)∑
m∈M

qmis 6
∑
k∈K

cikXik , ∀i ∈ I , s ∈ S (40)∑
j∈J

qijs 6
∑
k∈K

cikXik , ∀i ∈ I , s ∈ S (41)

qmis 6 H
∑
k∈K

Xik , ∀m ∈ M , i ∈ I , s ∈ S (42)

qljs6H
∑
v∈V

xljvs, ∀j∈J , l∈ (I∪J ), s∈S (43)

xijvs6
∑
k∈K

Xik , ∀i∈ I , j∈J , v ∈ V , s ∈ S (44)

xijvs = 0, ∀i∈ I , j∈ I , v∈V , s ∈ S (45)∑
j∈J

xijvs =
∑
j∈J

xjivs, ∀i ∈ I , v ∈ V , s ∈ S

(46)

xljvs ∈ (0, 1), ∀j ∈ J , l ∈ (I ∪ J ), v ∈ V , s ∈ S(47)

ρlj + θ1 > aljdljqljs, ∀l ∈ I + J , j ∈ J , s ∈ S

(48)

ρlj, θ1 > 0, ∀l ∈ I + J , j ∈ J (49)

τmi + θ2 > amidmiqmis, ∀m ∈ M , i ∈ I , s ∈ S

(50)

τmi, θ2 > 0, ∀m ∈ M , i ∈ I (51)

Xik ∈ (0, 1), ∀i ∈ I , k ∈ K (52)∑
i∈I

∑
k∈K

_

f ikXik +
∑
i∈I

∑
k∈K

_
γ ikcikXik

+

∑
m∈M

∑
i∈I

∑
s∈S

_

bdmiqmis +
∑

l∈(I∪J )

∑
j∈J

∑
s∈S

_

bdljqljs

+

∑
i∈I

∑
j∈J

∑
v∈V

_cdjixjivs+es−−es+=L, ∀s ∈ S

(53)

The objective function (32) represents the minimum total
system cost and further integrates the transportation costs
and their fluctuating values under different random demand
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TABLE 2. Related parameters of demand points in group 1.

TABLE 3. Related parameters of candidate distribution centers in group 1.

TABLE 4. Distribution center-related parameters at different capacity levels.

scenarios based on equation (29). Constraints (35)-(38),
(40)-(48), and (50) all contain the subscript parameters of
scenario s, which are the expressions of the corresponding
constraints in model V under scenario s. The other constraints
of model VI are the same as those of model V.

III. NUMERICAL CALCULATION AND ANALYSIS
A. PARAMETER VALUES
The robust optimization problem of the distribution net-
work LRP under carbon trading policies is a new, integrated
decision-making problem that lacks standardized examples.
In this paper, two groups of examples are provided. Accord-
ing to the scale of demand points, 5 examples are designed for
each group. Group 1 adopts the distribution network structure
cited in [59], which includes 2 factories, 15 candidate distri-
bution centers and 30 demand locations. Factory coordinates
are [16, 24] and [80, 80], respectively, and related parameters
of other network nodes are shown in Table 2 and Table 3.
Carbon footprint parameters, vehicle load parameters and
demand parameters are drawn from [13] and [49], and robust
control parameters are drawn from [58]. Additionally, accord-
ing to the characteristics of the example described in this
paper, the values of relevant parameters are given as follows:

The maximum number of vehicles available is |V | = 6.
According to the 2018 freight rates of the China Post Group
and distribution enterprises, including China Post, China
National Materials Storage and Transportation Corporation,
and SF Express, we can assume that the freight per unit of
product and per unit of distance is bmi = blj = 0.02CNY/ton-
km. According to the standards of the China Development
Gateway, the per-unit amount of transportation emissions is
_

b = 0.3 tons/km, and the per-unit amount of emissions
generated from vehicle idling is _c = 4 tons/km. The cost of
vehicle idling per unit of distance is c = 0.04 CNY, the fixed
departure cost per vehicle is c0 = 40 CNY/vehicle, the maxi-
mum carrying capacity of a heavy-duty semi-trailer is capv =
150 tons, the carbon trading price is p = 0.06 CNY/ton,
and the indeterminate level parameters are 01 = 02 = 1,
εl = εm = 0.05. Table 4 shows the capacity level of the
distribution center and construction cost allocation, per-unit
operation cost, carbon emissions allocation and per-unit oper-
ational emissions allocation parameters. The parameters of
group 2 were moderately improved on the basis of group 1 to
test the reliability of model VI (i.e., the two-stage stochastic
programmingmodel).We assume three types of demand, cor-
responding to the off season, normal season and peak season.
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TABLE 5. Distribution center-related parameters at different capacity levels.

FIGURE 1. Results of location-routing decision making (Example 5 of
group 1).

Under scenario 2, the demand of demand points is generated
randomly and evenly in the range [200 350], and then it
expands downward and upward by 20% to obtain the demand
of scenarios 1 and 3, respectively. Candidate distribution cen-
ters, demand points and factories were generated randomly
in the coordinate plane of 100*100. In group 2, parameters
such as the location of various nodes and demand point
requirements are randomly generated to make the network
structure, and examples can be extended more in the general
setting. The settings of other parameters were the same as
those of group 1.

It was found that the main network structure parameter
affecting the target value is the number of demand points.
Therefore, according to the number of demand points, five
calculation examples with different scales in each group were
set, and the carbon emissions cap L applied to the calculation
examples of different scales was set as 5000, 6000, 7000,
8000 and 9000.

B. CALCULATION RESULTS
The solver GUROBI 8.0.1 was used to calculate the model.
The calculation results of five examples tested on group 1 are
shown in Table 5, and the location-routing decision-making
results of two examples are shown in Figures 1 and 2.

FIGURE 2. Result of location-routing decision making (Example 3 of
group 1).

FIGURE 3. Result of location-routing decision making under scenario 1
(Example 4 of group 2).

Figures 3 to 5 reflect location-routing decision making under
three different demand scenarios for Example 4 of group 2.

C. THE IMPACT OF CARBON TRADING POLICIES
To analyze the impact of carbon trading policies on enterprise
decision-making, the LRP model I without considering car-
bon trading policies and the LRPmodel II considering carbon
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TABLE 6. Comparisons of LRP decision-making results considering and not considering carbon trading policies for group 1.

FIGURE 4. Result of location-routing decision making under scenario 2
(Example 4 of group 2).

trading policies were calculated and compared. The results
are shown in Table 6 and Figure 6. In this study, the carbon
emissions cost was defined as the carbon trading cost, and
when carbon emissions costs were found to be negative,
this reflected the generation of corporate profits by selling
carbon trading rights. Costs other than carbon emissions were
defined as location and operation costs. It should be noted that
the calculation results of model I do not include carbon emis-
sions and carbon emissions costs. By calculating the optimal
solution of model I and substituting it into model II, carbon
emissions, carbon emissions costs and actual total costs of the
decision-making solution determined under carbon trading

FIGURE 5. Result of location-routing decision making under scenario 3
(Example 4 of group 2).

policies were obtained. The computational results show that
carbon trading policies can effectively reduce the carbon
emissions of enterprises, with carbon emissions reduction
ratios of 5.68%, 1.20%, 9.00%, 1.27% and 0.71%. As seen
from Table 6 and Figure 3, although location and operation
costs were lower under the decision-making scheme not con-
sidering carbon trading policies (model I), the influence of
carbon trading policies was neglected, resulting in an increase
in carbon emissions costs and total costs for enterprises, and
increases in proportions of the total cost were recorded as
2.84%, 0.76%, 2.29%, 0.32% and 0.42%. Therefore, carbon
trading policies had a distinct carbon emission-abating effect.
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TABLE 7. Comparisons of LRP decision-making results considering and not considering carbon trading policies for group 2.

TABLE 8. Sensitivity analysis of p (p unrelated to L) for group 1.

FIGURE 6. Influence of carbon trading policies on LRP decision-making
for group 1.

For enterprises, considering the impact of carbon trading
policies during location-routing operation decision-making
could reduce total system costs. Table 7 and Figure 7 show
the calculation results of the second set of examples con-
sistent with group 1. The results show that in a stochastic
demand environment, carbon trading policies also reduce
carbon emissions, which would prompt enterprises to alter
their optimal decision-making.

D. SENSITIVITY ANALYSIS OF CARBON TRADING
PRICE P AND EMISSIONS CAP L
Under carbon trading policies, two factors influenced
enterprise decision-making, carbon trading prices p and

FIGURE 7. Influence of carbon trading policies on LRP decision-making
for group 2.

emissions caps L. First, the impact of changes in p on
the decision-making results was analyzed. To eliminate the
impact of freight rate changes on the results, the sensi-
tivity of p was analyzed based on model II. Taking the
10-demand-point network as an example, the calculation
results are shown in Table 8. As seen from Table 8 and
Figure 8, higher carbon trading prices could constrain enter-
prises from reducing carbon emissions. However, with an
increase in p, carbon emissions exhibit a ladder-like down-
ward trend. For instance, when p increased from 0 to 0.02,
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FIGURE 8. Cost structure and carbon emissions under different values of
p (p unrelated to L) for group 1.

FIGURE 9. Cost variation under different values of p (p unrelated to L) for
group 1.

carbon emissions reduced by 255 tons. When p increased
from 0.02 to 0.06, carbon emissions decreased by 47.34 tons.
Table 8 and Figure 9 show that optimal decision-making
by an enterprise remains unchanged within a certain range
of p values. For example, when p increased from 0.02 to
0.05, optimal decision-making did not change until the price
increased to 0.06. Within this interval, even if p increased,
enterprises would only increase production costs and not
reduce carbon emissions. Nevertheless, when p increased
to a certain threshold, the carbon emissions cost increased
significantly. Meanwhile, it was necessary for enterprises to
adjust their optimal decision-making and to reduce carbon
emissions and carbon emissions costs to minimize system
costs.

FIGURE 10. Ratio of location and operation costs to carbon emissions
costs (p unrelated to L) for group 1.

Regarding cost structure trends, within a certain range of p,
the carbon emissions cost and total system cost progres-
sively increased because the optimal decision-making results
remained unchanged as well as carbon emissions and location
and operation costs. When p exceeded the threshold and the
optimal decision-making results changed, carbon emissions
costs temporarily fell. Because the decrease in carbon emis-
sions cost is less than the increase in location and operation
costs, the total cost of the system increased. Then, the opti-
mal decision-making results and location and operation costs
remained unchanged, and the carbon emissions cost and total
cost of the system continued to increase until p exceeded
the next threshold, and the optimal decision-making results
changed again. As shown in Figure 10, the ratio curve of loca-
tion and operation costs/carbon emissions costs fluctuated in
a wave-like manner.

The results of our sensitivity analysis of the carbon emis-
sions cap L are shown in Table 9 and demonstrate that
L had little influence on carbon emissions and optimal
decision-making under carbon trading policies. This occurred
because the difference in

L −



∑
i∈I

∑
k∈K

_

f ikXik +
∑
i∈I

∑
k∈K

_
γ ikcikXik

+

∑
m∈M

∑
i∈I

_

bdmiqmi +
∑

l∈(I∪J )

∑
j∈J

_

bdljqlj

+

∑
i∈I

∑
j∈J

∑
v∈V

_cdjixjiv + (e− − e+)


could be adjusted by carbon trading, and the carbon emissions
cost was much greater than location and operation costs; thus,
optimal decision-making and carbon emissions remained
unchanged. However, this reflects decision-making under
conditions in which the carbon trading price p was indepen-
dent of the emissions cap L. Actually, carbon trading prices p
fluctuatedwith different emissions caps L. Therefore, we next
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TABLE 9. Sensitivity analysis of L (p unrelated to L) for group 1.

TABLE 10. Sensitivity analysis of L (p related to L) for group 1.

analyzed the impact of p on enterprise decision-making when
it was related to L. It is assumed that p and L were linearly
related and p = 0.203 − 2.168 ∗ 10−5 ∗ L. For carbon
trading, the lower the emissions cap L, the stricter the gov-
ernment’s emission constraints on enterprises, and the more
the government wants enterprises to reduce emissions. When
the price of carbon trading is higher, the cost of purchasing
emissions for enterprises is higher, which can also constrain
enterprises in terms of reducing emissions. Therefore, under
this assumption, we adjusted L and then changed p and thus
constrained enterprises to reduce emissions from both policy
andmarket perspectives. The assumption guaranteed pwithin
a reasonable range of [0, 0.203]. The objective function of
model II was then transformed into formula (54).

minZ2 =
∑
i∈I

∑
k∈K

fikXik +
∑
i∈I

∑
k∈K

γikcikXik

+

∑
m∈M

∑
i∈I

bmidmiqmi

+

∑
l∈(I∪J )

∑
j∈J

bljdljqlj

+

∑
i∈I

∑
j∈J

∑
v∈V

cdjixjiv

+

∑
i∈I

∑
j∈J

∑
v∈V

c0xijv

+ (0.203− 2.168 ∗ 10−5 ∗ L) ∗ (e+ − e−) (54)

Then, under the condition that the carbon trading price p
is related to the emissions cap L, what was the impact of L
on enterprises’ decision-making? Table 10 shows the results
of our sensitivity analysis of L. Figures 11 and 12 show the
cost structure and carbon emissions under different L and p
values, respectively. It can be observed that with an increase

FIGURE 11. Cost structure and carbon emissions under different L values
(p related to L) for group 1.

FIGURE 12. Cost structure and carbon emissions under different p values
(p related to L) for group 1.

in L, p progressively decreased, enterprises adjusted optimal
decision-making accordingly, and carbon emissions followed
a ladder-like upward trend. The results given in Table 10,
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TABLE 11. Decision-making results based on combinations of different robust control parameters for group 1.

FIGURE 13. Cost structure and carbon emissions under different L values
(p related to L) for group 2.

Figure 11, and Figure 12 show that the amplitude of fluc-
tuations in location and operation costs were small, and the
increase in total costs of the system mainly occurred due to
the increase in carbon emissions costs. Meanwhile, the opti-
mal decision-making of enterprises remained unchanged
within a certain range of L and p fluctuations. This phe-
nomenon indicates that although carbon trading policies had
carbon abatement effects as a whole, this effect was shaped
by market conditions. Therefore, the government should set
a reasonable carbon emissions cap to adjust market prices
according to market conditions and encourage enterprises
to alter their optimal decision-making and reduce carbon
emissions to achieve the optimal carbon abatement effect.

Figures 13 and 14 show the cost structure and carbon
emissions of model VI under different L and t p values,
respectively. Their graphic features are similar to those shown
in Figures 11 and 12. This indicates that the above conclusion
is valid for the two-stage stochastic programming model.

E. SENSITIVITY ANALYSIS OF ROBUST
CONTROL PARAMETERS
Finally, the sensitivity of robust control parameters was ana-
lyzed. Taking the 10-demand-point network as an example,
linear robust optimization models V and VI were solved
by changing the indeterminate level parameters 01 and 02

FIGURE 14. Cost structure and carbon emissions under different p values
(p related to L) for group 2.

and the disturbance ratios εl and εm of the unit freight; the
optimal decision-making results for combinations of different
robust control parameters are shown in Tables 11 and 12.
The bolded text in Tables 11 and 12 shows how the opti-
mal location-inventory decision-making results changed. The
results show that the greater the indeterminate level parameter
and disturbance ratio, the more obvious the change in the
optimal decision-making results. For instance, in Table 11,
when the indeterminate level parameter 0 was valued at
1 and the disturbance ratio ε was valued at 0.05, the optimal
decision-making results did not change, but when the distur-
bance ratio was valued at 0.06, the optimal decision-making
result changed; when the combination of robust control
parameters included 0 = 5 and ε = 0.04, the optimal
solution changed. In addition, an increase in the indetermi-
nate level parameter and disturbance ratio would lead to an
increase in the total cost of the system.

Therefore, the indeterminate fluctuation of the unit freight
and other parameters affects the optimal decision-making
of enterprises. Because the multi-capacity-level location of
distribution centers reflects a strategic decision-making prob-
lem, once a facility was established, it was difficult to change
within a short period of time. Therefore, when an enterprise
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TABLE 12. Decision-making results based on combinations of different robust control parameters for group 2.

is making a location-routing integration decision, it should
fully consider the indeterminacy of the unit freight and other
parameters and seek more robust decision-making results

F. CHARACTERISTICS OF ROUTING SOLUTIONS
In analyzing the characteristics of routing solutions and their
quantities, it was found that enabling more vehicles could
reduce emissions (Tables 5 and 6); enabling more vehi-
cles on short routings and prioritizing high-demand cus-
tomers could also reduce emissions. For instance, the last
two routings of the 15-demand-point numerical example
shown in Table 5 reduced carbon emissions through the
post-distribution low-demand customer location 3. This con-
clusion echoes those given in literature [41]. This was
observed because enabling more vehicles, reducing routing
lengths and prioritizing high-demand customers can reduce
the average load while vehicles are in motion and thus reduce
carbon emissions. However, it is clear that enabling more
vehicles would increase operation costs; hence, enterprises
need to enable vehicles in a more realistic manner to balance
operation costs with carbon emissions costs.

IV. CONCLUSION
Carbon trading will have a significant impact on LRP deci-
sions for distribution networks. In a real-world distribution
network, operating parameters such as unit freight are uncer-
tain. The research on the uncertain green DNLRP has more

practical application value. Based on the traditional LRP
of supply chain distribution networks, a multi-capacity-level
robust optimization GLRP of distribution network design
under carbon trading policies was studied in this paper. This is
the main theoretical contribution of our investigation. Based
on mixed integer nonlinear programming, the corresponding
mathematical model was constructed. The nonlinear model
was transformed into a linear robust equivalent model by
means of strong duality theory, and calculations and numeri-
cal analysis were carried out using the solver GUROBI. In the
calculations of the GLRP, we conducted different sensitivity
analyses by changing some key parameters, including the
carbon trading price p, the emissions cap L, and robust control
parameters.

Overall, our results show that when considering car-
bon emissions and carbon trading policies, adding ‘‘green’’
factors to the objective function does affect the optimal solu-
tion. From the results of this paper, we can draw manage-
ment insights. First, carbon trading policies have a carbon
abatement effect. For governments, carbon trading is a more
effective measure for reducing carbon emissions. For enter-
prises, carbon emissions trading might make it possible for
them to increase carbon emissions costs and secure addi-
tional benefits from the reduction of carbon emissions. There-
fore, enterprises should fully consider the impact of carbon
trading policies on their decision-making. Second, with a
decrease in carbon emissions caps and an increase in carbon
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trading prices, carbon emissions undergo a ladder-like down-
ward trend. When carbon trading prices relate to emissions
caps, the amplitudes of fluctuations in location and operation
costs are small, and fluctuations in the total system cost are
mainly due to the variation in carbon emissions costs. There-
fore, from amacrocontrol perspective, the government should
set a reasonable carbon emissions cap according to the scale
and structure of the market to avoid excessively increasing
the burden on enterprises while also encouraging enterprises
to alter their optimal decision-making and reduce carbon
emissions to achieve the optimal carbon abatement effect.
For enterprises, to reduce location and operation costs as well
as total system costs, it is necessary to find the threshold of
carbon trading prices under current conditions and maintain
the original optimal decision-making without exceeding the
threshold or even to increase emissions by an appropriate
amount when the threshold is not exceeded. Conversely, low
carbon emissions and low carbon trading costs should be
pursued to reduce overall costs. As a result, governments
and enterprises need to work together to achieve a balance
between economic and environmental benefits, leading to
a win-win situation. Third, the indeterminate fluctuation of
the unit freight will influence the optimal decision-making
of enterprises. Because the indeterminate level parameter in
the robust optimization model measures the conservatism of
decision-makers to some extent, in practice, decision-makers
can choose appropriate robust control parameters according
to their preference and risk aversion and then determine deci-
sion schemes for distribution networks to provide a reference
for government decision-making. The multi-capacity-level
location of distribution centers is a strategic decision-making
problem. Once established, the distribution centers are diffi-
cult to change over a short period of time. Therefore, when
an enterprise designs a network, enterprises should fully
consider the indeterminacy of various parameters and seek a
robust decision-making solution. Although robust optimiza-
tion cannot achieve the optimal solution in a deterministic
scenario, considering critical uncertain information at the net-
work design stage can significantly reduce future emergency
costs. Finally, making more vehicles available while giving
priority to locations with high demand on short routings could
reduce emissions. Therefore, when the carbon trading price
does not exceed the threshold, it is advisable to enable more
vehicles and prioritize high-demand customer locations to
reduce carbon emissions costs and total costs. Conversely,
fewer vehicles should be permitted to reduce location and
operation costs.

This study is limited in that it does not take into account the
time window constraints of the client or vehicle speeds. Fur-
ther research can introduce timewindows and vehicle running
speeds to further study the GLRP under carbon trading poli-
cies. Another avenue for further research would involve inte-
grating inventory decision-making into LRP decision-making
and studying location-inventory-routing problems. More
indeterminate parameters, such as supply, can also be taken

into account in researching the robust GLRP optimization
model under multiclass indeterminate parameters.
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