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ABSTRACT The ongoing efforts in grid modernization, which is accompanied by upgrading distribution
grids through employment of advanced distribution grid technologies, further provide the necessary tools to
employ Conservation Voltage Reduction (CVR) and Volt-VAR Optimization (VVO) programs and ensure
that the system is operating continuously at an optimized voltage. This paper provides an overview of
CVR/VVO deployments by several electric utilities within the U.S. The paper looks at three major areas:
(i) type of the initiative, including pilot, plan, program, study, and test case; (ii) year(s) of the application;
and (iii) methodology used for CVR factor assessment. When available, a more detailed discussion on
the initiative is provided. Based on the studied cases, it is concluded that majority of utilities use either
a regression-based or a comparison-based method. The day-on/day-off approach is common within both
methods in which CVR is applied every other day to generate CVR-on and CVR-off data that can be used
for comparison and model fitting.

INDEX TERMS Conservation voltage reduction, demand reduction, distribution network, energy saving,
volt-VAR optimization.

I. INTRODUCTION
Conservation Voltage Reduction (CVR) and Volt-VAR Opti-
mization (VVO) enable electric utilities to reduce energy
and peak demand by lowering the voltage at the distribu-
tion system. This is a cost-effective way to improve system
energy efficiency and to provide benefits to customers. The
fundamental principle in CVR is that the acceptable voltage
band can be operated in the lower half (114–120 Volts based
on ANSI standard [1]), without causing any harm to con-
sumer appliances.Many customer devices draw less energy at
lower voltages resulting in energy savings [2]. The U.S. DOE
reports savings from 1 to 4% based on prior implementation
of CVR and VVO programs [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Ravindra Singh.

Assessment and verification of CVR effects has always
been a technical challenge in its application, considering
that there is a lack of benchmark load consumption mea-
surement during the CVR period. In addition, distinguishing
the changes in load and energy consumption due to voltage
reduction from other impact factors is a challenging task but
is required for quantifying CVR effects. CVR effects can
be evaluated by a CVR factor, which is an indicator of the
relationship between energy savings and changes in voltage
from CVR operations. The CVR factor (CVRf ) is defined as
the ratio between the percentage change in energy and the
associated percentage change in voltage, i.e.,

CVRf =
Percentage of change in energy consumption

Percentage of change in voltage
(1)

Utilities may need to collect a substantial amount of data of
load and voltage over an extended period of time and for each
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CVR-enabled circuit to be able to estimate the CVR factor.
However, there have been cases that utilities have calculated
the CVR factor for a selected number of circuits and used the
result, commonly an averaged CVR factor, for other circuits
in their service territory.

This paper provides an overview of CVR/VVO deploy-
ments by several electric utilities within the U.S. The paper
looks at the type of the initiative, year(s) of the applica-
tion, and the methodology used for CVR factor assessment.
When available, a more detailed discussion on the initiative,
e.g., the number of feeders with CVR/VVO deployments and
electric utility’s future plans, is provided. VVO uses CVR
techniques to reduce energy and peak demand, so the scope of
this paper is limited to the existing and planned CVR assess-
ment initiatives. In particular, the methods used for CVR
factor assessment are reviewed and discussed. The calculated
energy savings and CVR factors by each utility are further
providedwhen available. The paper does not include the cases
that do not provide information on their methodology.

The rest of the paper is organized as follows. Section II
provides a review of the most common methodologies in
CVR factor assessment. Section III provides a summary of
studied cases associated with practical CVR/VVO deploy-
ments. Section IV concludes the paper.

II. METHODOLOGY REVIEW
The electric utilities primarily leverage three CVR assess-
ment methods as discussed in the following.

A. COMPARISON-BASED METHODS
The comparison-based methods leverage operational data
under CVR-on and CVR-off conditions and accordingly
determine the CVR factor by comparing these two cases.
These two cases are called ‘treatment’ and ‘control’, respec-
tively. There are two general categories for comparison-based
methods, correlated-feeder and correlated-weather.

1) CORRELATED-WEATHER APPROACH
Correlated-weather approach compares operation of a feeder
under the CVR-on (treatment) and CVR-off (control) con-
ditions. Under the treatment condition, CVR is applied to a
test feeder, and under the control condition normal voltage
is applied to the same feeder but during another time period
with similar weather conditions. Comparison between the
measurements in these two tests helps calculate the CVR
factor. In this approach, day-pairing is carried out to find the
baseline day for an on-day. The baseline day can be any of
the off-days with the same operating conditions including
primarily load and temperature, and sometimes other factors
(such as same season, day of the week, snow, and humidity)
as for on-day.

2) CORRELATED-FEEDER APPROACH
Correlated-feeder approach compares operation of a feeder
under the CVR-on (treatment) with another CVR-off
feeder (control) at the same time. The control feeder should

be strongly correlated to the treatment feeder in terms of
feeder characteristics and load composition. In this approach,
control feeder is chosen based on its similarity and correlation
to the treatment feeder in terms of customer and load char-
acteristics, load shapes and level, and power factor, among
other factors. In selecting the control feeder, the experts in
utilities should consider customer and load characteristics
and ensure that treatment and control pairings are generally
adjacent. Other considerations can be made to ensure that all
pairings are in a single jurisdiction (or geographically close
to each other) and many factors which affect consumption
(e.g., economic factors) are similar between pairings in each
customer class to decrease variability. Some studies show
that residential customer load profiles are very similar to
each other in terms of their shape and level in treatment and
control feeders, while non-residential customer load profiles
are very similar to each other in terms of their shape, but they
differ in terms of the level of usage. This observation demon-
strates that load composition in matched feeders should be
similar especially for feeders with non-residential customers.
Correlated-feeder approach is a faster and clearer approach
than correlated-weather approach. However, finding corre-
lated feeders is commonly a challenging task.

A correlation analysis can be further used to find strongly
correlated pairs of feeders. Correlation is a statistical measure
of how much two datasets are close and dependent to each
other. The most familiar measure of dependence between two
quantities is the Pearson product-moment correlation coef-
ficient, or ‘‘Pearson’s correlation coefficient’’, commonly
called simply ‘‘the correlation coefficient’’. It is obtained by
dividing the covariance of the two variables; i.e., X, Y; by the
product of their standard deviations; i.e., σX , σ Y ; as in (2).

ρX ,Y = corr =
cov (X,Y)
σXσY

=
E [(X − µX ) (Y − µY )]

σXσY
(2)

where µX , µY , E , and cov are the expected value of X,
the expected value of Y, the expected value operator, and
covariance function, respectively. corr is a widely used alter-
native notation for the correlation coefficient. The Pearson
correlation is defined only if both standard deviations are
finite and positive. Pearson correlation can be rewritten as
in (3):

ρX ,Y =
E (XY)− E (X)E (Y)√

E
(
X2)
− E (X)2

√
E
(
Y2)
− E (Y)2

(3)

The absolute value of Pearson correlation coefficient of two
datasets is a value within [−1, 1] interval. The correlation
coefficient of +1 shows a perfect direct (increasing) linear
relationship (correlation), while−1 means a perfect decreas-
ing (inverse) linear relationship (anti-correlation). Other val-
ues in the open interval (−1, 1) indicate the degree of linear
dependence between the variables. As the correlation coeffi-
cient approaches zero, there is less of a relationship (closer to
uncorrelated). The closer the coefficient is to either −1 or 1,
the stronger the correlation between the variables.
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FIGURE 1. Comparison-based methods.

Based on the characteristics of the data, both negative and
positive values of correlation coefficient may have similar
meaning. This is the case for feeder-pairing. In this regard,
it is perfectly fine to use an alternative coefficient called
R-squared (R2). R2 equals the square of the Pearson correla-
tion coefficient as in (4) and has a value within [0,1] interval,
where the closer the R2 coefficient is to 1, the stronger the
correlation between the variables. R2 can be expressed as
a percent value to measure the strength of the relationship
between two variables in a 0-100% scale.

R2 =
(
ρX ,Y

)2 (4)

Based on raw correlation analysis and by defining a proper
threshold for the correlation, each two feeders that have
greater correlation coefficient, or higher R2, compared to
the threshold are picked as correlated feeders. It should be
noted that additional analysis is required to ensure that no
load transfers or other unusual patterns occurred between
treatment and control feeders. Additional analysis can be
done either manually or automatically. In the former, experts/
engineers manually check the data and search for any sign
of load transfers amongst feeders or unusual patterns. For
instance, by checking the number of connected customers to
each feeder during the test period, load transfers can be identi-
fied. In addition, outages and unusual load and voltage spikes
can be referred as unusual patterns. Information about outage
intervals is also commonly available, so outage periods can be
excluded from the data accordingly. Spikes in the data could
be excluded by defining proper cutoff thresholds for load
and voltage. Mentioned procedures can be coded and applied
automatically to the data. Figure 1 shows the flowchart for
comparison-based methods.

3) PROS AND CONS
The major benefit of comparison-based methods is being
straight-forward and easy to implement. However, on the
downside, other factors, such as weather differences in

the correlated-weather approach or load differences in the
correlated-feeder approach, may add noise to the measure-
ments and result in erroneous CVR calculations. Given the
commonly small CVR effect, this noisemay completelymask
the CVR. Moreover, the time-dependency nature of the CVR
factor may be lost as the data is averaged.

Several electric utilities, including Central Lincoln
People’s Utility District, Idaho Power Company, Indianapo-
lis Power & Light Company, Portland General Electric
Company, Sacramento Municipal Utility District, Glendale
Water & Power, Dominion Energy, Kansas City Power and
Light, and Choptank Electric Cooperative use or have used
this method for CVR factor assessment.

B. REGRESSION-BASED METHODS
Regression-based methods model loads as a function of var-
ious factors, such as temperature. This function is com-
monly obtained using a linear regression. The CVR factor
is calculated by comparing the output of the load model
under CVR-on and CVR-off conditions. Commonly used
approaches to estimate the load model in regression-based
methods; i.e., linear regression and Difference in Differences
approaches, are explained as follows:

1) LINEAR REGRESSION APPROACH
By modeling the load as a linear function of temperature,
regression-based methods start with a model estimation as
in (5).

L (MW ) = β01+ β1
[
Tfh1− T

]
+ β2

[
Tfc1− T

]
+ ε (5)

where Tfh and Tfc are the heating and cooling reference tem-
peratures, respectively. Training data for the model are L and
T which represent the vector of measured CVR-off load data
and vector of recorded ambient temperature, respectively.
β0, β1, and β2 are the regressors’ coefficients that need to
be calculated, and ε represents the errors.

To calculate regressors’ coefficients, errors can be mini-
mized based on least squares method as in (6)-(8).

β̂ =
(
XTX

)−1
XTL (6)

X =
[
1Tfh1− TTfc1− T

]
(7)

β̂ =
[
β̂0 β̂1 β̂2

]T
(8)

where β̂ consists of the estimated coefficients. Based on
estimated coefficients, new load consumption without CVR
can be calculated for a new temperature; i.e., T∗.

LN_CVR (MW )= β̂01+β̂1
[
Tfh1−T∗

]
+β̂2

[
Tfc1−T∗

]
(9)

LN_CVR refers to estimated load consumption if CVR is not
applied, while load consumption when CVR is implemented
is measured directly from the feeder; i.e., LCVR. CVR factor
can be calculated as follows:

CVRf =
1L%
1V%

(10)
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where

1L% =
LN_CVR − LCVR

LN_CVR
× 100 (11)

Other variables including voltage, temperature, day of the
week, month, daylight and dark hours, humidity, and solar
intensity also can be considered in the linear model to analyze
their impacts in load consumption and consequently improve
accuracy. Considering voltage and temperature, multivariable
regression can be used to formulate and calculate regres-
sors’ coefficients associated with each variable. Multivariate
regression is often used to detect sensitivities of load to its
impact factors. Equation (12) shows a multivariable regres-
sion model estimation:

L (MW ) = α01+ α1T + α21V + ε (12)

where α1 and α2 are the load-to-temperature (LTT) depen-
dence and load-to-voltage (LTV) dependence, respectively.
1V represents the measured voltage reduction at the substa-
tion transformer. α2 can be used to estimate CVR factor.

The load’s nonlinear relations to its impact factors can
be shown using more complex models, for example by
using a log function instead of a linear function. Similar
to comparison-based methods, regression-based methods can
use treatment and control measurements, where the treatment
feeder’s load is a function of control feeder’s load. Model
estimation in (13) shows the load of a treatment feeder (LTr )
as a nonlinear function of control feeder’s load (LC ).

Log(LTr ) = β0 + β1Log
(
LC
)
+ . . .+ ε (13)

2) DIFFERENCE IN DIFFERENCES APPROACH
Difference in Differences (DID) approach is another statis-
tical regression-based method to estimate CVR factor. This
approach uses observable data (i.e., control feeder’s load,
weather data, and other factors) to mimic an experimental
event (i.e., load of treatment feeder if CVR was not applied).
In other words, the effect of a specific treatment such as
applying CVR on the feeder is calculated through comparison
between the average change over time in the feeder’s load for
the treatment feeder, compared to the average change over
time for the control feeder. Data from pre-/post-treatment are
required in this approach, such as cohort or individual level
data over time. This approach is considerably effective in
removing biases. Biases can exist in post-treatment period
comparisons between the treatment and control group that
could be the result from permanent differences between those
groups, and also biases from comparisons over time in the
treatment group that could be the result of trends due to other
factors impacting the load. Figure 2 shows a graphical expla-
nation of DID. Intervention represents treatment or CVR.

Although DID is intended to mitigate the effects of selec-
tion bias, depending on how the treatment group is chosen,
this methodmay still be subject to certain biases such as omit-
ted variable bias. To ensure that the estimated coefficients
from the regression model are unbiased, Fixed Effects (FE)

FIGURE 2. Graphical explanation of DID technique. Intervention here is
treatment or CVR.

routine can be used, which assumes that the unobservable
factor in the error term is related to one or more of the model’s
independent variables, and accordingly removes the unob-
served effect from the error term prior to model estimation
(using a data transformation process). In FE approach it is
assumed that the means of each group is fixed rather than
being random.

The FE regression allows controlling for time-invariant
unobserved individual characteristics that can be correlated
with the observed independent variables. Consider a rela-
tionship between a vector of observable random time-variant
variables Xit and a dependent random time-variant variable
Lit as in (14):

Lit = βXit + µi + εit (14)

where µi is an unobserved random variable (individual
effect), i = 1, . . . , N is used for observations, and εit is the
stochastic error uncorrelated with Xit . When µi is a time-
invariant variable correlated with X , regressors’ coefficients
β cannot be estimated by using Ordinary Least Squares
(OLS), as the standard assumption of no correlation between
the error term and the regressors is violated. The FE regres-
sion suggests subtracting the time mean (i.e., average over
time) of each variable in the model and rewriting the model
as in (15) and then estimating the transformedmodel by OLS.
The upper bar denotes the time mean of respective variables.

Lit − L̄i = β
(
Xit − X̄i

)
+ (µit − µ̄i)+ (εit − ε̄i) (15)

As µi is a time-invariant variable, then µi − µ̄i = 0. This
procedure drops the unobserved variable µi from the model,
so the model can be rewritten as (16). Based on this new
model, regressors’ coefficients β can be estimated by OLS.

L̃it = βX̃it + ε̃it (16)

where L̃it = Lit − L̄i, X̃it = Xit − X̄i, and ε̃it = εit − ε̄i.
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3) AUTOMATED CVR PROTOCOL NO. 1
Regional Technical Forum (RTF) [4] Protocol No. 1 has been
the most established regression-based methodology, although
currently deactivated. This methodology has been used by
several electric utilities. It should be noted that deactivation
status does not imply that the protocol’s method is unreli-
able [5]. The proposed method by the automated CVR pro-
tocol No. 1 measures and verifies energy savings from CVR
voltage reductions and experimental data produced by alter-
nating the voltage set-points on a set of distribution circuits
on successive days. The data, collected through extended
cycling, are used in time-series and statistical analysis to
estimate energy savings.

To estimate energy savings, other factors that affect load
such as climate variations and customer behavior, are elimi-
nated and the system is operated at different voltage levels on
alternating days. The initial verification period is considered
to be one year, where in the first 3 months CVR is applied
every other day (day-on/day-off), followed by 9 months of
continuous automated CVR application. Three out of these
9 months are then selected, based on season and geographic
weather patterns, to operate the system so that on alternate
days the system is at full voltage reduction, and the next
day at the controlled nominal midpoint. The energy saving
is accordingly determined by comparing energy use on sim-
ilar days at different voltage levels, which is done through
time-series and robust statistical analysis, as well as tempera-
ture compensation methods. Calculated CVR factors are ver-
ified during similar periods in following periods by running
alternating days with full end-of-line voltage reduction and
2 volts above full end-of-line voltage reduction for two- to
four-week periods.

4) PROS AND CONS
A benefit of regression-based methods is that physical inter-
pretations are potentially embedded in the regression models,
so electric utilities can understand the model behavior based
on impact factors. As a disadvantage, regression models may
have estimation errors that are higher than the CVR effects,
thus masking the effect. Moreover, these models are mostly
linear while the loads are known to be nonlinear in nature.

Several electric utilities, including American Electric
Power, East Kentucky Power, Ameren Illinois Company,
Potomac Electric Power Company, Commonwealth Edison
Company, West Penn Power Company, Avista Utilities,
Pacific Gas and Electric Company, Southern California
Edison, Puget Sound Energy’s, and Indiana Michigan Power
Company use or have used this method for CVR factor
assessment.

C. SIMULATION-BASED METHODS
Simulation-based methods simulate the load consumption in
case of CVR-off. These methods employ system models and
power flow calculations, and load models that are a function
of voltage, time and weather factors. The CVR factor is

FIGURE 3. Simulation-based methods.

calculated through the difference analysis between power
flow results and measured load consumption. Figure 3 shows
the flowchart of simulation-based methods.

Simulation-based methods calculate feeder’s load using a
real-time power flow engine to estimate what would have
occurred on the feeder without CVR. It then calculates the
energy reduction by comparing the measured system’s load
under CVR-on, with the simulated baseline model.

1) PROS AND CONS
Simulation-based methods show high precision if the load
models are highly accurate, while further allowing the sys-
tem to run continually. However, it may be inefficient to
build models for all existing and emerging load components.
Application of aggregated load models at the circuit level is
a potential solution. The developed models are further not
adaptive to dynamic changes of feeders and load behaviors.
In addition, the power flow model requires a load-voltage
sensitivity (CVR factor) that is unknown until the analysis
is complete. Constant CVR factor can be used for the power
flow model, and by refining the CVR factor, energy savings
would be calculated based on new CVR factor.

Few electric utilities, including Avista Utilities have used
this method for CVR factor assessment.

D. REQUIRED DATA IN CVR ENERGY SAVING ASSESSMENT
Depending on the method, various data are needed for CVR
energy saving assessment. Data need to be recorded in a
proper time interval; i.e., 1- to 60-min. Common data used
in discussed methods consist of:

• SCADA data: time-series values of real power, reactive
power, voltage, and current from each voltage regulating
device on the CVR substation/feeder,

• Interval energy (kWh) and voltage specific to each cus-
tomer service point,

• Feeder characteristic data, such as conductor length,
rated load, load factor, feeder conditioning data,
regional, and customer-type load composition data,

• Weather data for each substation zip code; including
temperature and humidity,

• Indicator of CVR status for each interval, i.e., ‘‘on/off’’,
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• Precise time stamp of all collected data; including year,
month, day of week, and hour.

III. STUDIED CASES
This section provides a summary of 26 studied cases, all
associated with practical CVR/VVO deployments of electric
utilities within the U.S.

A. AMERICAN ELECTRIC POWER (AEP)
AEP has deployed VVO on approximately 172 circuits, out
of the 6,000 circuits on its system, as of March 2019, and
has proposed 1600 more circuits for VVO implementation
across the company’s service territory. AEP has experience of
working with three vendors: Cooper Yukon VVO, GE VVO,
and Utilidata AdaptiVoltTMVVO. AEP Ohio started its VVO
program in 2014 by using Utilidata AdaptiVolt system and
achieved an energy savings of 4.27% using a day-on/day-off
basis. The other AEP company, Kentucky Power Com-
pany (KPCo), retained AEG Applied Energy Group to assess
energy savings obtained fromVVO implementation as part of
its Integrated Resource Plan (IRP, 2017-2031). Public Service
Company of Oklahoma (PSO) is the other AEP company
that expanded its CVR program using data from its AMI
to better determine problems that may affect power quality
for customers. PSO has currently implemented this on 52
circuits.

AEP affiliate operating companies show a range of
0.7-1.2% of energy demand reduction for each 1% volt-
age reduction. CVR program for AEP Ohio showed that
3-5% reduction in voltage, yields 2.9% energy reduction,
while 3-4% drop in voltage, causes 2-3% peak demand
reduction [6]–[11].

B. CENTRAL LINCOLN PEOPLE’s UTILITY DISTRICT
(Oregon ELECTRIC UTILITY)
Central Lincoln People’s Utility District implemented a CVR
pilot in 2014 in partnership with Landis+Gyr, the District’s
AMI vendor, and Dominion Voltage Inc. (DVI) as energy
solutions partner. The pilot benefitted from the DVI’s then-
recently patented voltage control methodology called EDGE
which uses AMI data and encompasses planning, operation
and validation functions.

After sufficient summer and winter operating data were
collected, the validation phase began in January 2014. Pairs
of hours with similar weather conditions were found using
EDGE Validator. Each pair had two data points, associated
with CVR-on and CVR-off cases (including data during or
prior to the pilot). For each pair of hours, the percent change in
load was divided by the percent change in voltage to calculate
the respective hourly CVR factor. The entire group of CVR
factors were statistically analyzed to determine the overall
CVR factor. From that, the overall change in voltage was
used to calculate the total energy savings. Table 1 shows
the energy savings and calculated CVR factors of this CVR
program [12].

TABLE 1. Customer savings.

C. EAST KENTUCKY POWER (EKPC)
EKPC is currently piloting Conservation Voltage Optimiza-
tion (CVO) in two substations. The energy savings are
assessed using a regression analysis based on two hourly
substation energy (kWh) logs With and Without CVO. The
savings are estimated to be 50 kW demand impact (0.3%
more demand reduction) for Downline Regulator CVO and
310 kW demand impact (2% more demand reduction) for
Feeder Regulation [13].

D. AMEREN ILLINOIS COMPANY (AIC)
Ameren has implemented a VO pilot in 2012-2013 and
launched its VO program in 2017, while the first few years
of VO program focused on better understanding current mar-
keted VO technologies and solutions. Ameren is currently
applying VO program in the system and plans to implement it
on 1,047 circuits by the end of 2024. Ameren worked with the
Electric Power Research Institute (EPRI) to provide analysis
support for its VO Pilot. EPRI used regression methods to
create voltage-sensitive models of test-feeder loads based on
either weather variables or a suitably comparable feeder. Dis-
cussion with EPRI about Ameren’s VO pilot allowed EPRI
and Ameren to determine that the best method to perform the
analysis of the project was to utilize the Comparable Circuit
Regression methodology. Comparable Circuit method pro-
vides a model that utilizes comparable feeder load, voltage-
state, and time variables. The CVR factor is then calculated
from the voltage-state variable.

Tables 2 and 3 show the energy savings for two of the tested
circuits. The last column in these two tables shows average
kW savings per each percent of voltage reduction. The CVR
test was performed in two sets: a) voltage reduction of 2% in a
set of days during a selected month, and b) voltage reduction
of 4% in another set of days during the samemonth; Then kW
savings obtained from these two sets are averaged to give the
average kW savings per % of voltage reduction.

The implementation for the VO program 2018-2025
included the installation of new voltage regulator controllers
with two-way radio communications, installation of voltage
sensors at end of-line locations, modifications to the LTC
controller at the University substation in Peoria, Illinois,
to provide remote control capabilities, and implementation
of automatic voltage control using Ameren’s ADMS system.
The energy and demand savings of VO program are planned
to be evaluated by Opinion Dynamics starting in 2019 using
two different approaches: a) Algorithmic Approach, that esti-
mates savings based on results from Ameren’s pilot study
and a survey of the literature that assumes a CVR factor
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TABLE 2. University substation monthly CVR results.

TABLE 3. Mt. Zion substation Rt. 121 Monthly CVR Results.

of 0.80, and b) On/Off Regression Approach, that develops
a regression model using VO-on and VO-off testing data
that will be used to obtain seasonal and annualized savings
estimates. The results of the two approaches will be compared
and the on/off regression approach results will be used to
validate the algorithmic approach [14], [15].

E. COMMONWEALTH EDISON COMPANY (ComEd)
ComEd has planned to install VVO on a total of 2,958 feeders
at 450 substations for its voltage optimization program over
the 2018-2025 timeframe. Navigant was selected to evaluate
the energy savings of this program. For 2018, as the data was
not sufficient, Navigant suggested that saving estimates be
based on the best information available at the time, which
included empirical estimates developed from other ComEd
VO feeders, and empirical estimates developed in other juris-
dictions that are available in the published literature. In this
regard, by considering CVR factor of 0.8, Navigant proposed
a statistical modeling method for energy baseline prediction.

It should be noted that the CVR factor of 0.8 is consistent with
the result that ComEd identified by analyzing measured data
during a pilot VO project at one of its substations, i.e., Oak
Park substation. In addition, this value is the same as the
Commission-approved CVR factor applicable to Ameren Illi-
nois. This method consisted of data cleaning, model selection
and tuning, and impact estimation. Data cleaning is done to
remove incorrect data and fill missing data, while the goal of
model selection and tuning is to generate models that can be
utilized to simulate following three states:

- VO-enable state: estimating the feeder load and voltage
assuming that VO had been enabled for the entire year,

- Feeder conditioned state: estimating the load and voltage
assuming that feeder conditioning had been completed
prior to the start of 2018,

- VO and feeder conditioned state: estimating the load and
voltage assuming that VOhad been enabled for the entire
year and feeder conditioning had been completed prior
to the start of 2018.

Feeder conditioning in these states refers to various steps
undertaken on a VO-on feeder prior to deployment and may
includemodifying LTC controls, capacitor banks, and voltage
regulators, as well as load balancing, phase balancing, and
reconductoring.

Several approaches were considered to model the men-
tioned states by taking the available data into account,
including structural linear regression models, simple CVR
factor-based approaches, and supervised machine-learning
approaches. Amongst these approaches, the machine-
learning methods was selected because of their ability to
consider multiple, complex model specifications, including
lagged terms and interaction terms, and make more accurate
predictions. A Random-Forest approach was used to estimate
the voltage models, and a Gradient-Boosted Decision Trees
approach was used to estimate the load models. The general
specification for these models is shown in (17).

Xit = f (load − shape, weather, VO status, FCstatus,

feeder characteristics, Events, 1 LRs) (17)

where i and t are the feeder and time interval indices, respec-
tively. Xit is the interval load or voltage measured on feeder i
during time interval t . Interval power is measured at feeder
heads at the substation, while voltage is measured as the
load-weighted average of interval voltage readings from the
AMI meters at the customer-ends on each feeder. VO status
indicates VO-on and VO-off time intervals. Events comprises
a set of binary flags for load-shifting event within time
interval t . FC status refers to whether time interval t falls
before, during, or after the feeder conditioning phase, and
1LR comprises a set of binary flags indicating load-regime
changes.

Bootstrapped cross-validation is then used to tune themod-
els. Based on this technique, a series of k models are fitted
to different bootstrapped resamples drawn with replacement
from a subset of the dataset. For each bootstrap resample,
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20 percent of the data was randomly selected and held back
to permit out-of-sample prediction model testing. After fit-
ting the models, predictions were made using the hold-out
validation samples, by comparing each of the k model pre-
dictions produced to the hold-out sample data. After fit-
ting each model to the bootstrap resamples drawn from the
training data set, the counterfactual simulations were pro-
duced. Simulations of load and voltage for 2018 were made
at 30-minute time intervals for three scenarios: pre-feeder
conditioning, post-feeder conditioning/pre-VO, and VO-on.
Three annualized load and voltage profiles were calculated
for entire 2018 based on the scenarios and differencing these
profiles yielded the impact of VO without feeder condition-
ing, feeder conditioning without VO, and both VO and feeder
conditioning.

For 2019, ComEd used a constant CVR factor of 0.8 in
energy savings calculations. Energy savings are obtained by
multiplying the constant CVR factor to the energy baseline as
well as voltage reduction percentage. To estimate the counter-
factual energy consumption and voltage reduction from the
counterfactual voltage profiles, a clustering algorithm is used
based on the temperature, season, time of the day, day type,
and VO status. The energy baseline is then obtained from the
sum of the annual energy consumption utilizing the actual
energy measurement during VO-off condition (this includes
the actual measurements prior to VO activation during the
given program year) and a calculated VO-off value for VO-on
condition. VO-off energy consumption calculation for VO-on
condition will be calculated as in (18):

EVO−off =
EVO−on

1− (CVRf ×1V )
(18)

where EVO−off is the calculated VO-off energy consump-
tion for VO-on condition, while EVO−on is the actual
measured energy consumptions during VO-on condition.
1V and CVRf also denote voltage reduction and CVR factor,
respectively [16]–[18].

F. IDAHO POWER COMPANY (IPC)
In 2007, IPC was involved in the Northwest Energy Effi-
ciency Alliance (NEEA) CVR demonstration project. After
that, IPC implemented three CVR programs. IPC initially
began the CVR project in 2009. The project focused on
feeders where CVR could be implemented at minimal cost by
simply changing the settings on distribution substation trans-
former load tap changers (LTC) (referred to here as ‘‘one con-
trol point’’). For this project, the CVR energy reduction was
calculated by using the CVR factor identified in the NEEA
study (0.55) and applying it to the loads over the entire base
year of 2009. After the initial project, the CVR Enhancement
Project began with project design in early 2014 and equip-
ment installation in late 2014/early 2015. The selected power
by the IPC was similar to that described in the EPRI’s Green
Circuit Distribution Efficiency Case Study document for vali-
dating CVR energy savings. Among 264 potential candidates,
CVR was implemented on 30 feeder circuits. This was done

TABLE 4. Summary of commercial and residential CVR factor.

by implementing new LTC settings. A comparison-based
(correlated-feeder) method was used in which aggregated
AMI data on separate treatment transformers were compared
with a set of control transformers to produce CVR factors for
each customer class and weather zone. A 2-day-on/2-day-off
protocol was used to allow for the load to recover from the
voltage change as it was thought that a day-on/day-off cycling
protocol wouldn’t allow for the load to fully recover before
switching into a different operating voltage.

The effects of CVR were determined on commercial and
residential customers in all six company-identified weather
zones, including Boise, Twin Falls, Pocatello, McCall,
Ontario, and Ketchum. One treatment transformer in each
weather zone was studied for each rate class. Additionally,
one transformer dedicated to irrigation loads was studied.
Data collection was performed on all treatment and control
transformers for an entire year. Control transformers were
selected in a way to be similar to treatment transformers in the
same weather zone, having sufficient residential, commer-
cial, or industrial (in this case irrigation) customers above the
line regulators on each associated feeder. Control and treat-
ment transformer loads were matched as closely as possible
for each customer class. Additionally, control transformers
were chosen such that they were geographically close to each
other to decrease weather-caused variability.

For the final CVR program, two CVR factors; i.e., res-
idential and commercial, were calculated for each feeder,
as shown in Table 4. The commercial CVR factor for Ontario
Weather Zone is 0.19 which is relatively small, considering
the small size of commercial sample (77 customers) com-
pared to the residential sample (431 customers). In addition,
residential CVR factor for McCall Weather Zone is 5.75 and
this extreme result was caused by the LTC settings and is
subject to further studies [19]–[21].

G. POTOMAC ELECTRIC POWER COMPANY (PEPCO)
PEPCO piloted a CVR program in 2012-2014 and used a
regression-based method for CVR factor assessment based
on treatment and control substations. To match treatment and
control substations, customer and load characteristics were
considered to ensure that treatment and control pairings are
generally adjacent. All pairings were in a single jurisdic-
tion, assuring that factors that affect consumption, such as
economic factors and weather, are similar between pairings.
Seven substation pairs were identified (14 feeders in total) by
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FIGURE 4. Comparisons for consumption profile of residential and non-residential control
and treatment groups using hourly AMI data for the peak analysis [22].

PEPCO’s experts to have closely matched customer and load
characteristics. These treatment and control substation pairs
were generally adjacent to each other and the communities
that they served were similar in nature in terms of homes.
Moreover, since all the treatment and control substationswere
in the PEPCO Maryland service territory, many factors that
may affect consumption, such as rates and economic factors,
were similar between treatment and control substations.

As the impact of CVR could vary between residential and
non-residential customers, for both peak hours and conserva-
tion savings, CVR analyses was broken down between peak
and all other hours, and was also done for residential and
non-residential customers separately. An ex-post comparison
of control-treatment pairings on pre-treatment period (June-
August 2013) were carried out to validate the control group.
Figure 4 shows the comparisons for consumption profile of
residential and non-residential control and treatment groups
using hourly AMI data for the peak analysis.

As shown in Figure 4, the residential treatment and control
group load profiles were very similar to each other in terms
of their shapes and levels, which implies that the residential
control group customers reasonably represented the residen-
tial treatment customers (in case of CVR-off). However, for
the non-residential customer load profiles, the groups are
similar to each other in terms of their shapes, but different
in the level of usage. To estimate the parameters in regression
model, Difference in Differences (DID) technique was used
through a panel data regression analysis. The usage of the
treatment and control group customers before and after the
CVR treatment were compared using a regression model,
while accounting for other factors that could potentially
confound the estimated impact such as weather conditions,

DSM program participation, and AMI activation. The most
important factor to account for in this regression is the
impact of weather conditions on the electricity usage of
the customers. A temperature humidity index (THI) which
combines dew point and dry bulb temperatures into one
variable was used in this case. In addition, customer partic-
ipation and enrollment in utility demand-side management
programs were accounted for, as the participants of these
programs reduce their electricity usage after the installa-
tion/implementation of demand-side management measures.
To ensure that the estimated coefficients from the resulting
model were unbiased, the Fixed Effects (FE) estimation rou-
tine was used, which assumes that the unobservable factor in
the error term is related to one or more of the model’s inde-
pendent variables, and accordingly removes the unobserved
effect from the error term prior to model estimation (using a
data transformation process).

The results showed that a 1.5% reduction in voltage is
estimated to result in a 1.4% and 0.9% reduction in con-
sumption for residential customers and non-residential cus-
tomers, respectively. The results further showed that a 1.5%
reduction in voltage is estimated to result in a 1.1% and 2.5%
reduction in peak consumption for residential customers and
non-residential customers, respectively. PEPCO has contin-
ued its CVR program and plans to expand its CVR pro-
gram through the 2023/2024 timeframe. As of 2018, PEPCO
implemented CVR on approximately 85% of its Maryland
substations [22], [23].

H. WEST PENN POWER COMPANY
West Penn Power Company studied CVR deployment in its
system in 2012-2014 by a reduced voltage of 1.5% doing
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in a day-on/day-off approach for one week in spring and
summer, and a week-on/week-off approach for two weeks in
winter. It used regression-based method based on the differ-
ence in energy usage in treatment and control substations for
CVR factor assessment.

Results showed a range of CVR factors, with an average
of 0.86. CVR factors for winter, spring, and summer were
calculated as 0.64, 1.11, and 0.85, respectively [22] and [24].

I. INDIANAPOLIS POWER AND LIGHT COMPANY (IPL)
Simultaneous comparison between treatment and control
load profiles improves the accuracy and eliminates uncer-
tainty of weather corrections, and this is what IPL adopted
for carrying out its CVR program in 2012-2014. Further-
more, it was observed that repeating the tests on several days
and treating different representative groups further improves
confidence in the load response. Also, careful monitoring of
individual circuits during a CVR test assures the results do
not inadvertently include emergency load transfers, power
outages, etc.

IPL applied the CVR for a few short periods (two detailed
tests over five near peak days) in 2012 and 2013 and com-
pared drop in usage during those periods to predict an impact.
The aggregate CVR factor was estimated to be 0.85 in
2012 and 0.75 in 2013. IPL chose to use a CVR factor
of 0.8 until additional tests justify changes [22], [25].

J. PHILADELPHIA ELECTRIC COMPANY (PECO)
PECO, an Exelon Company, implemented an Energy Effi-
ciency and Conservation Plan in two phases in 2009-2012 and
2013-2016. PECO formed a CVR working group, consisting
of PECO personnel, Navigant, and representation from the
state-wide evaluator to develop a protocol for CVR assess-
ment. The CVR working group focused on development an
enhanced version of theNEEACVRprotocol, adapted for use
at PECO for energy and demand savings, through research,
data collection, statistical sampling, and objective reviews.
The working group estimated separate protocols for energy
and demand savings, and developed an EM&V protocol that
follows Option C as described in International Performance
Measurement and Verification Protocol where savings are
determined by measuring energy use at the whole-facility or
sub-facility level.

Option C requires a regression analysis to account for inde-
pendent variables such as temperature. The evaluation team
performed a statistical regression analysis study using hourly
loads and voltage data collected for substation transformers
and circuits treated under the CVR program. The data set
for this analysis included hourly loads and voltage values for
the weeks immediately prior and after the voltage reduction
week, for the entire group of stations and circuits treated in the
program. The data was further used to statistically estimate an
average system-wide CVR factor. The regression model used
to calculate this factor considers average hourly heating and
cooling degree days to control for weather-related influences
on change in hourly energy consumption, metered voltage,

and CVR factor for energy measuring the average percentage
change in MWh, for every one-percentage change in voltage
over all hours on the PECO system. Alternative model speci-
fications were tested, including different segmentations of the
data, to test the robustness of the calculated CVR factor.

The CVR factor was ultimately calculated as 1.08 and the
overall impact of the program was estimated to be around
320 GWh/year [26]–[28].

K. PORTLAND GENERAL ELECTRIC COMPANY (PGE)
PGE piloted a CVR project in 2014. The CVR was applied in
a day-on/day-off operation basis to provide a data comparison
between CVR-off and CVR-on modes.

The results for winter and summer seasons and for two
different substations show a range of energy reduction from
0.87% kWh to 0.99% kWh per 1% voltage reduction. PGE
is making progress on its CVR program as an integrated
function of grid modernization and anticipates meeting its
1 MWa (average MW) 2020 target [20], [29].

L. SACRAMENTO MUNICIPAL UTILITY DISTRICT (SMUD)
SMUD piloted a VVO/CVR test in 2010-2014. CVR and
VVOwere used in conjunction with each other. CVR used the
LTC within the substation. Operators could remotely lower
the voltage output at the substation while substation and line
capacitor banks provided voltage support on the distribution
lines. In order to test both the CVR and VVO benefits,
SMUD carefully designed the tests so that there were days
when only CVR or VVO was implemented, days when both
were enforced, and days when neither was active. CVR tests
were conducted at three different voltage reduction levels
(CVR Level 1-3). Each level represented a corresponding
percentage voltage reduction set-point change in the LTC on
the power transformer. The energy saving was carried out by
comparing matched days with and without CVR.

In summer 2011, SMUD CVR program resulted in an
estimated 2.5 percent reduction of peak demand on one of
the pilot substations (In addition, two separate regression
methods produced similar results). SMUD has continued to
deploy volt-VAR optimization technologies throughout the
SGIG program and estimates a 1 percent average load reduc-
tion across 14 substations and approximately 1.5 MWh of
energy savings per day [30], [31].

M. DUKE ENERGY OHIO
Duke Energy Ohio piloted integrated VVO in a few locations
in Ohio territory from 2008 to 2016. Previous studies indi-
cated energy savings from 0.50% to 0.79% for a 1% drop in
voltage, with common mode values of 0.65%. These three
constant CVR factor values (0.50, 0.65, and 0.79) were used
by MetaVu Inc. in low case, base case, and high case esti-
mates, respectively. System energy reduction was estimated
to be between 1.00% and 1.58% with 8760-h operation.
As of 2018, Duke Energy Ohio has planned to expand its
VVO program [32]–[34].
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N. XCEL ENERGY
Xcel Energy piloted a Distribution Voltage Optimiza-
tion (DVO) in 2011-2012. The demand and energy savings
were verified in two ways during this project: a) DVO was
conducted in week-on/week-off basis, and EPRI verified the
demand and energy savings using its statistical models, and
b) Savings were verified through the DVO Software Platform
used in the pilot projects, using its power flow basedmeasure-
ment and verification engine. The results of both methods
were then compared. Initial results were close but over the
longer period of time the results varied by approximately
40 percent.

In NCAR substation, it was observed that voltage can be
lowered on average about 2.5%, resulting in energy reduction
range of 1.6-2.7%. Results from the Englewood substation
show a voltage reduction of 1.5% and a CVR factor of 1.7
(2.55% energy saving) in 2011 and 2.7 (4.05% energy saving)
in 2012.

After this pilot, Xcel Energy initiated to start a DVO pro-
gram in which it plans to use the power flow-based method
that can continuously calculate the savings. It will use the
EPRI results of Xcel Energy’s historical pilots (CVR factor
of 0.8) to help refine the CVR factor. Then that CVR factor
will apply the actual usage data by substation to calculate
the savings for each substation where DVO is implemented.
As of 2018, Xcel energy has planned to deploy 4350 VVO
Varentec’s ENGO units as part of its CVR project and it is
expected to cut energy consumption by about 2% [35], [36].

O. AVISTA UTILITIES
Avista Utilities piloted an Integrated Volt-VAR Control
(IVVC) program in 2013-2014. Avista assessed the energy
savings of its pilot based on three methods: a) RTF’s Auto-
mated CVR Protocol No. 1, b) Washington State Univer-
sity (WSU) Voltage Optimization Validation Methodology,
and c) Navigant Regression Methodology. The temperatures
at each substation to which experimental circuits connect
were collected, as well as at the feeder end-of-line locations,
in order to reduce the possibility of confounding due to
localized microclimates and based on the protocol’s recom-
mendation.

The RTF Automated CVR Protocol No. 1 resulted in a
CVR factor of 0.881. The calculated CVR factor by the
Navigant Regression Methodology was 0.833 [37], [38].

P. PACIFIC GAS AND ELECTRIC COMPANY (PG&E)
PG&E piloted VVO in 2013-2016 by using DVI’s EDGE
solution. PG&E contracted with a third-party consultant to
perform the M&V of the VVO pilot circuits. The consultant’s
model utilized regression models for each hour. The model
incorporated SCADA data, smart meter data, weather data,
VVO operation and transition time, as well as solar potential
index as a proxy for solar PV generation impacts not captured
in other variables. The use of smart meter voltage and energy
consumption data supported breakouts of voltage reductions

and energy savings by customer class. It was determined that
further study is needed to determine whether the uncertainty
in the cause of voltage and energy changes during high load-
ing can be addressed through statistical modelling.

The VVO pilot circuits exhibited a CVR factor in the
0.6 to 0.8 range. Across all test periods and pilot banks
(excluding Dinuba), the weighted average CVR factor was
0.7. PG&E has planned to deploy advanced VVO in
2018-2020 [39], [40].

Q. SOUTHERN CALIFORNIA EDISON (SCE)
SCE tested a Distribution VVC (DVVC) under its Irvine
Smart Grid Demonstration project. The DVVC was operated
based on a week-on/week-off approach. When the DVVC
was off, capacitors were returned to their normal settings,
which gave a clear comparison of voltage control in the two
modes. Furthermore, energy consumption for each week was
recorded and temperature was adjusted.

The DVVC operation achieved a two-volt reduction on a
120-volt basis and reduced voltage fluctuations. The average
CVR ratio observed over 32 weeks of testing was 1.56. Aver-
age voltage reduction while running DVVCwas 1.58% in the
test year (2014) compared to the base year (2012). Average
energy savings while running DVVC was 2.53% in the test
year (2014) compared to the base year (2012) [38], [41].

R. GLENDALE WATER AND POWER (GWP)
GWP implemented CVR as part of an AMI Initiative Project
in 2014-2015. The pilot realized 2.95% in energy savings
on two feeders over the baseline suggesting that a full-scale
program could save a minimum 14,500 MWh a year, equiva-
lent to net power costs savings of $470,000 to $1.2 million
per year. After its CVR pilot, GWP started working with
DVI to expand its CVR program system wide in 2015. As of
June 2018, average savings per feeder is 2.2% [42], [43].

S. PUGET SOUND ENERGY’s (PSE)
PSE implemented a VO program in 2015-2016. The program
relied on the RTF Protocol No. 1. Energy consumption data
for three selected substations were accessed for the same
period used in the reported savings (July 2014-June 2015 and
July 2015-May 2016). The July 2015-May 2016 period was
analyzed to ensure that no significant changes to the customer
class had occurred since the implementation of the CVR
projects, and it was concluded that no significant changes to
feeder load characteristics were identified.

The applicable VO factor was calculated as 0.475 [44].

T. DOMINION ENERGY
Dominion Energy implemented and evaluated VVO project
in Midlothian, Charlottesville, and Northern Virginia in
2009-2011. The Voltage optimization integrates between the
existingDMSSoftware andAMI and addsDVR (Short-term -
minimal peak day hours - reductions) to CVR and VVO. The
adaptive voltage control is implemented using AMI to collect
the needed customer voltage readings, the DVI’s EDGE to
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control setpoint changes, and a Distribution Management
System (DMS) or SCADA to control the local substation
LTC controller, circuit voltage regulator and/or capacitor.
Evaluation phase read DMS and weather data to calculate
savings. The objective of the Measurement and Verification
phase is to confirm through verifiable statistical analysis that
the expected energy savings by circuit was achieved. The
rigorous statistical method incorporates a paired difference
test that compares daily/hourly samples of the baseline circuit
data (OFF condition) to the CVR circuit data (ON condi-
tion) under matched operating conditions. The results of the
demonstration prove that there are measurable reductions in
energy usage using voltage optimization.

Dominion’s demonstration shows an average of 2.8%
reduction in annual energy. CVR factor of 0.92 was
achieved [45].

U. INDIANA MICHIGAN POWER COMPANY (I&M)
I&M implemented a VVO program in 2014-2015 as part of
Electric Energy Consumption Optimization (EECO). VVO
program used Utilidata’s AdaptiVolt VVO platform installed
at three substations and leveraging real-time data measure-
ment and communications. An on/off procedure was used for
voltage reductions during various parts of the year.

Given the calculated baseline values for voltages and cur-
rents, baseline power demand (MW) for a 5-minute inter-
val when VVO was On were calculated; similarly for the
actual power demand, for each circuit/phase and by type of
day (weekday, weekend). The analysis was conducted for
four scenarios: a) Heating season (January-March, October-
December) weekdays; b) Heating season (January-March,
October-December) weekends; c) Cooling season (June-
September) weekdays; d) Cooling season (June-September)
weekends.

For each station/circuit, the temperature value used for
each hour was the average temperature for that hour over the
number of days in the seasonal period (i.e., either weekdays or
weekends). For each scenario for each station/circuit/phase,
energy savings for a weekday or weekend with typical tem-
peratures was calculated. For each of the two voltage con-
ditions, the 24-hour power demand values were aggregated
to give daily totals for power usage. The percentage savings
from reducing voltage was calculated and divided by the
percentage reduction in voltage to provide the estimate of the
daily CVR factor for a day.

Estimated daily CVR factor ranges from−1.13 to 11.38 for
different station/circuit/phase/season/day of week. Although
the CVR factors seem off the expected range, I&M’s report
mentions that these values are consistent with evidence from
previous studies of the voltage reduction strategy; i.e., EPRI’s
Green Circuits collaborative project and Northwest Energy
Efficiency Alliance (NEEA)’s CVR project.

After this CVR program, I&M continued its CVR deploy-
ment and as of July 2019. I&M has currently approximately

50 distribution circuits with CVR installed in its Indiana
service territory and 3 distribution circuits in its Michigan
jurisdiction. Estimated daily CVR factor for 2018 ranges
from −0.43 to 4.48 [46]–[48].

V. PUBLIC SERVICE ELECTRIC AND GAS
COMPANY (PSE&G)
PSE&G in New Jersey had planned to pilot a VVO program
in 2018, and has already completed phase I of VVO study
for North Bellmore area. PSE&G plans to run the pilot for
a minimum of two years to allow the collection of eval-
uation data during a full range of test conditions: all four
seasons, weekdays and weekends/holidays, and a broad range
of weather conditions. PSE&G and a third-party implemen-
tation contractor will work with an evaluation consultant to
develop a mutually acceptable measurement and verification
plan. VVO impacts are determined by the characteristics of
the individual substations and feeders on which they are
installed, as well as the characteristics of the dominant load
type(s) they are serving. Thus, they are expected to vary
across feeders, seasons, times of day, types of day, system
contingencies, as well as weather conditions. PSE&G is plan-
ning to deliver the interval test data from the pilot to the
independent evaluator in regular basis (weekly or biweekly).
Given the variability of potential volt-VAR approaches and
the need to further study this innovative offering in a pilot
setting, no specific participation or savings estimates are
available at this time. However, based on indicative levels
of energy savings achieved at other utilities, it was estimated
that the energy savings associated with the pilot, depending
on final design, could be in the range of 0.75% to 2.0% of
baseline energy [49].

W. KANSAS CITY POWER AND LIGHT (KCP&L)
KCP&L implemented a VVC demonstration project in 2015.
The evaluation phase was conducted based on a day-on/day-
off approach. The baseline day for an on day could be any of
the off days with the same load, temperature and other char-
acteristics such as the on day. The major criteria to establish
a baseline day were temperature and real power.

Conservative 2.05% drop in voltage resulted in 1.63%
decreases in energy use. KCP&L also studied peak energy
use reduction, achieving 1.13% energy use reduction from a
reduction of voltage of an average of 1.64% over numerous
peak days. It was found that CVR is less effective on high
peak load days. CVR factor for each pair of matched days
was in the range of 0.140-2.073 with an overall CVR factor
of 0.889 [50], [51].

X. CHOPTANK ELECTRIC COOPERATIVE
Choptank Electric Cooperative implemented a system-wide
VVO program, partnering with DVI. The initiative resulted
in an average 3.1 percent voltage reduction and accordingly
a 5 percent reduction in peak demand [52].
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TABLE 5. Summary of studied cases.

Y. NATIONAL RURAL ELECTRIC COOPERATIVE
ASSOCIATION (NRECA)
NRECA implemented VVO program involving several coop-
eratives in 2012-2014. Involved cooperatives were Adams-
Columbia Electric Cooperative (ACEC), Owen Electric
Cooperative (OEC), and Iowa Lakes Electric Coopera-
tive (ILEC). VVO via power factor correction was preferred
strongly to CVR via active voltage regulation. CVR schemes
were primarily SCADA actuated but were initiated by human
operators. The verification scheme was based on testing
across correlated feeders. The benefits of the method were
identified as uniqueness of the pairing algorithm, simplic-
ity of implementation, and weather and day-of-week load
correction were not necessary because the pairs of SCADA
measurements under comparisonwere taken at the same time.
Based on the analyses, for each of the features for which
CVR was implemented, there were multiple other feeders
in the system whose load behavior was strongly correlated
(R2 > 0.9), which could be used as controls. In cases for
which, due to the system design, highly correlated feeders

do not exist, an alternate day treatment verification protocol
was proposed. Results for a single feeder in NRECA project
showed that CVR factor ranges 1.04-1.05 for load levels at
and below 2.2 MW [53].

Z. NORTHWEST ENERGY EFFICIENCY ALLIANCE (NEEA)
NEEA implemented aDistribution Efficiency Initiative (DEI)
Pilot Study involving 14 Pacific Northwest utilities in
2007-2008. The DEI study was intended to quantify the
effects of power consumption in relation to the applied
voltage or CVR. CVR was implemented in day-on/day-off
basis. The results of energy savings were within expected
values of 1-3% total energy reduction, 2-4% reduction in
kW demand, and 4-10% reduction in reactive power demand.
Computer model simulations showed that by performing
selected system improvements, between 10 and 40% of the
total energy savings occurs on the utility side of the meter.
Based on the results of NEEA pilot study CVR factors were
calculated for Avista as 0.93, Clark, as 0.88, Douglas for
two substations, as 0.17 and 1.12, Idaho Power for three
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substations as 0.55, 0.61, and 0.74, PSE for two substations
as 0.8 and 0.85, and SnoPUD as 0.74 [19].

1) SUMMARY OF STUDIED CASES
A summary of the studied cases is provided in the table 5.
It should be noted that although other utilities may have
worked on CVR programs/pilots, sufficient public informa-
tion is not available about their methods of CVR factor calcu-
lation. As the focus of this paper is on CVR factor assessment,
these utilities are not discussed. These utilities include, but
are not limited to, Consolidated Edison (ConEd), FirstEn-
ergy, PacifiCorp, Middle Tennessee Electric Membership
Corporation, Huntsville Utilities, National Grid, Oklahoma
Gas & Electric (OG&E), Jones-Onslow Electric Membership
Corporation (JOEMC), NorthWestern Energy (NWE), and
Evergy (Electric utility through operating companies KCP&L
and Westar Energy).

IV. CONCLUSION
Electric utilities are constantly looking into methods of
increasing system energy efficiency and reducing peak load
to help system operations while supporting end-use cus-
tomers. CVR and VVO are exceptionally effective methods
in achieving this goal by lowering the voltage at the dis-
tribution system. This paper provided a measurement and
verification benchmark of CVR/VVO deployed by several
electric utilities in theU.S. The specific focus of the paperwas
on the electric utilities that discussed their method of CVR
factor calculation and further provided relevant results. The
studies in this paper can be used by other electric utilities as
well as the research community to (i) become familiar with
the most common approaches in CVR factor calculations,
(ii) understand the important factors and common challenges
in CVR factor assessment, and (iii) have a clear idea of the
possible range of CVR factors in practical systems. This
would provide a substantial background for other electric
utilities as they plan and develop their ownCVR/VVO efforts.
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