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ABSTRACT In this article, the direction of arrival estimation (DOA) of strictly noncircular sources with
unknownmutual coupling is considered for wireless sensor array network (WSAN), and then a joint weighted
block sparse recovery algorithm based on weighted subspace fitting (WSF) is proposed for DOA estimation..
In the proposed method, two block sparse representation models associated with the WSF principle are
firstly constructed to remove the influence of unknown mutual coupling. Then, combining the advantages
of noncircularity, a joint weighted block sparse recovery scheme is proposed to estimate DOA, in which
the noncircular MUSIC-like (NC MUSIC-Like) spectrum function is utilized to form a weighted matrix for
enhancing the solutions sparsity. Finally, the desired DOAs can be achieved with the help of the reconstructed
block sparse matrix. Extensive experiments are simulated to verify that the proposed method can achieve
superior estimation performance under the condition of unknown mutual coupling.

INDEX TERMS DOA estimation, noncircular sources, unknown mutual coupling, weighted block sparse
recovery, weighted subspace fitting.

I. INTRODUCTION
Wireless sensor array network (WSAN) technique is widely
applied in the field of communications and radar during
the last decades [1]. As a vital research branch and hot
spot, direction-of-arrival (DOA) estimation for WSAN has
drawn remarkable attention. It gets well utilized in many
fields, such as radar, medical diagnosis, sources location,
etc. [2], [3]. It’s evident that much work has been done on
DOA estimation, accompanied by a series of corresponding
high-resolution estimation algorithms [4]–[7]. According to
distinct principles of estimating DOA, it can be deemed that
there are two main categories for existing methods, which
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are subspace-based algorithms and sparse signal recovery
(SSR) algorithms, respectively. The conventional subspace-
based algorithms are famous for its high-resolution capability
in the past few years. Among them, multiple signal clas-
sification (MUSIC) algorithm [4] and estimation of signal
parameters via rotational invariance techniques (ESPRIT)
algorithm [5] can be regarded as classical representatives of
the subspace-based methods. However, they are all rely on
the eigenvalue decomposition (EVD) of covariance matrix,
which indicates that those subspace-based methods may be
unable to work properly in the challenging environment,
such as limited snapshots or/and low signal-to-noise ratio
(SNR) [6], [7]. After that, SSR technique are consider-
ably applied in DOA estimation [8]–[13], which including
l1-SVD (singular value decomposition) algorithm [8], sparse
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Bayesian learning (SBL) based algorithm [9] and their corre-
sponding variants [10], [11]. Compared with the traditional
subspace-based algorithms, many experiment results have
illustrated that SSR-based methods do much better than tra-
ditional subspace-based methods [12], [13].

Obviously, these methods mentioned above presuppose
that the radiation signals are complex circular. Nevertheless,
with the further study of signal inherent properties, noncir-
cular sources have emerged and occupied an increasingly
important position in angular estimation region [14], [15].
And amplitude modulation (AM), binary phase shift keying
(BPSK) are commonly noncircular sources. The main dif-
ference between noncircular sources and circular sources is
weather the corresponding elliptic covariance matrix would
tend to be zero. For noncircular sources, its elliptic covari-
ance matrix is non-zero, which indicates that the information
utilization can be significantly improved via exploiting the
elliptic covariance matrix information as much as possible.
Then, based on noncircular sources, much related studies for
DOA estimation have been implemented [16]–[21]. On the
one hand, a novel noncircular MUSIC-like (NC MUSIC-
like) algorithm is proposed [16], in which the augmented
date model is established by the received data and its cor-
responding conjugate data form. Simulation results are well
declared that the noncircularity can be adopted to improve
detection ability. Following this idea, an improved root NC
MUSIC-like method [17] and conjugate ESPRIT-like meth-
ods [18] are further presented to address the problem of
large-scale spectral peak search of MUSIC-based methods.
Furthermore, as shown in [19], the most challenged scenario
where the circular and strictly NC sources (the noncircu-
larity rate ρ of signals is maximum. i.e. ρ = 1) coex-
ist is considered. On the other hand, the problem of DOA
estimation for noncircular sources is well solved from the
perspective of sparse recovery [20], [21]. In [20], a joint
sparsity-aware scheme is structured by taking the noncircu-
larity into account. The similar work is also done in [21],
while the weighted constraint measure is further adopted by
the latter to enhance the sparsity of the solutions.

It’s worth noting that these methods mentioned above are
all based on the ideal steering matrix. Whereas, in prac-
tice, the distance between sensors will be decreased as the
number of sensors increases if the array aperture is fixed,
which means that the closely spaced antennas would appear
the unknown mutual coupling effect. Then the performance
of those aforementioned algorithms would be considerably
compromised due to disturbed array manifold. In order to
deal with this problem, many calibrated methods have been
designed [22]–[28]. In [22], with the help of auxiliary arrays,
an ESPRIT-like method is exploited via considering the
particular banded complex symmetric Toeplitz structure of
mutual coupling matrix (MCM). While the additional array
compensation is needed, which leads to great inconvenience
in reality. Then by applying a parameterized operation to the
actual disturbed array manifold, a novel block-structure steer-
ing matrix is deduced to avoid the unknown mutual coupling

effect [23]. Unfortunately, this subspace-based method is still
limited by snapshots and SNRs although without losing the
array aperture. Moreover, from the sparse recovery aspect,
the particular selection matrix is put forward to eliminate
the interference of unknown mutual coupling [24], [25].
But they all suffer from array aperture loss. Furthermore,
the parameterized operation utilizing the entire array aper-
ture is re-applied to SSR region [26]. Meanwhile, based on
the above parameterization idea, two weighted block sparse
recovery algorithms are further presented in data domain
and correlation domain, respectively [27], [28]. While it can
be observed that above methods only consider noncircular
sources or unknown mutual coupling.

In this article, considering both noncircular sources and
unknown mutual coupling in WSAN, a weighted subspace
fitting (WSF) framework via block sparse representation is
presented to estimate DOA. Firstly, based on the principle
of WSF, two block-structured sparse data models are struc-
tured to deal with the influence of unknown mutual coupling
without losing the array aperture. Then, combining the non-
circularity, a joint weighted block sparse recovery framework
is established for DOA estimation. The extensive experiment
results illustrate that the proposed method not only works
normally with unknown mutual coupling but also is superior
to others.
Notation: (·)H , (·)T , (·)∗, diag{·} and blkdiag{·} denote

conjugate-transpose, transpose, conjugate, diagonalization
operation and block diagonalization operation, respectively.
IM is an unit matrix with M × M dimension. 6M stands
for an M × M dimensional exchange matrix with ones on
the anti-diagonal and zeros elsewhere. || · ||0, || · ||1, || · ||2
and || · ||F represent l0-norm, l1-norm, l2-norm and Frobenius
norm, respectively. det| · |,E[·] and tr{·} mean determinant
operations, mathematical expectation and trace operation,
respectively.

II. DATA MODEL
In this section, the data model for strictly noncircular signals
inWSAN under the condition of unknownmutual coupling is
formulated. Combining noncircular sources, the augmented
signal model is firstly formulated by the original received
data and its corresponding conjugate form. Then the effect of
unknown mutual coupling is well avoided via parameterizing
the steering vector.

A. NONCIRCULAR AUGMENTED DATA MODEL
WITH UNKNOWN MUTUAL COUPLING
Suppose that there is a uniform linear array (ULA) composed
of M sensors in WASN, and each of sensors is separated
by half-wavelength. K far -field narrowband and independent
NC signals {sk (t)}Kk=1 with distinct direction {θk}

K
k=1 incident

to the ULA. t represents the sample snapshot. And the first
sensor is selected as the reference standard. Then the received
data at the t-th snapshot can be depicted as

z(t) = Asd (t)+ e(t) (1)
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where z(t) = [z1(t), z2(t), . . . , zM (t)]T denotes the received
data from the array. sd (t) = [sd,1(t), sd,2(t), . . . , sd,K (t)]T

means the noncircular source vector. A = [a(θ1), a(θ2), . . . ,
a(θK )] ∈ CM×K represents the ideal array manifold matrix
which is made up of distinct steering vectors a(θk ). And
a(θk ) = [1, η(θk ), . . . , ηM−1(θk )]T ∈ CM×1 in which
η(θk ) = e−j2πd/λ sin(θk ). λ stands for the signal wave-
length and d means the distance between adjacent sensors.
e(t) = [e1(t), e2(t), . . . , eM (t)]T ∈ CM×1 denotes the com-
plex Gaussian white noise, whose mean and noise power are
zero and σ 2

e , respectively.
As described in [21], the second-order statistical properties

of noncircular signals satisfy the following expression

E{YYT } = ρejψδ2 = ρejψE{YYH } (2)

where ψ is the noncircular phase. Noncircular rate ρ satisfies
0 < ρ ≤ 1 and relies on the signal modulation type.
In addition, strictly noncircular source with ρ = 1 is consid-
ered in this article, such as AM, BPSK modulation signals.
Then strictly noncircular source vector sd (t) can be further
represented as

sd (t) = ψ1/2s(t) (3)

where s(t) = [s1(t), s2(t), . . . , sK (t)]T ∈ RK×1 denotes the
real-valued version of the incident signal sd (t). The diagonal
matrix 91/2 = diag(ejψ1/2, ejψ2/2, . . . , ejψK /2) is composed
of the phase shift of the impinging sources.

It’s known that unknown mutual coupling may appear
between sensors in reality when spatial electromagnetic field
of the closely spaced sensors interacts with each other.
According to the introduction of [28], a banded complex
symmetric Toeplitzmatrix can be utilized tomodel themutual
coupling matrix (MCM). i.e.

G = Toeplitz([1, g1, . . . , gH−1, 01×(M−H )]) (4)

where {gi}
H−1
i=0 mean the non-zero mutual coupling coeffi-

cients which satisfy g0 = 1 > |g1| >, . . . , > |gH−1| > 0.
And H denotes the maximum distance between sensors over
which the influence of mutual coupling cannot be neglected.
In other words, electromagnetic disturbance may fail to work
when the sensors are far away, so that the residual elements
in MCM can be deemed as zeroes.

Thus, the received data in Eq. (1) in the environment of
unknown mutual coupling can be revised as follows

z(t) = GAsd (t)+ e(t) =
_

Asd (t)+ e(t) (5)

where
_

A = GA = [_a(θ1),
_a(θ2), . . . ,

_a(θK )] is the actual
steering matrix with _a(θk ) = Ga(θk ). It can be found that
compared with the ideal steering vector a(θk ), the actual
steering vector _a(θk ) isn’t of the great structure because of
the existence of non-zero mutual coupling coefficients.

Based on the noncircularity of strictly NC signals, the cor-
responding conjugate form of z(t) in Eq. (5) can be further
written as

z∗(t) = (
_

Asd (t)+ e(t))∗ = G∗A∗ψ∗sd (t)+ e∗(t) (6)

The array aperture of noncircular sources can be virtually
doubled by constructing an extended data model, which indi-
cates that the DOA estimation performance can be further
improved. Based on the above analysis, taking a combination
of the noncircular signal model in Eq. (5) and its conjugate
model in Eq. (6), a novel augmented model of array output
can be constructed as

ẑ(t) =
[

z(t)
6M z∗(t)

]
=

[
_

Asd (t)+ e(t)

6M (
_

Asd (t)+ e(t))∗

]

=

[
GA

6MG∗A∗ψ∗

]
sd (t)+

[
e(t)

6Me∗(t)

]
= D̂sd (t)+ ê(t) (7)

where D̂ =
[

GA
6MG∗A∗ψ∗

]
means a 2M × K dimensional

extended steering matrix, and ê(t) =
[

e(t)
6Me∗(t)

]
∈ C2M×1

stands for an augmented additive white noise matrix.
Then, the covariance matrix of the latest augmented array

output in Eq. (7) can be expressed as

R̂ = E{ẑ(t)ẑH (t)} = D̂R̂sD̂
H
+ σ 2

e I2M (8)

where R̂s = E{sd (t)sHd (t)}, whose rank is deemed as K .
Obviously, R̂ just stays at the theoretical level which is not
suitable for the actual case of finite snapshots number. Hence
considering T snapshots, the sample covariance matrix R̃ can
be obtained to substitute R̂. i.e. Then, the covariance of the
latest extended array output model in Eq. (9) can be

R̃ =
1
T

∑T

t=1
ẑ(t)ẑH (t) (9)

Then applying the eigenvalue decomposition to R̂ in Eq. (9),
yields

R̃ =
∑2M

m=1
γmυmυ

H
m = Es3sEHs + Ee3eEHe (10)

where {γm}2Mm=1, {υm}
2M
m=1 are the eigenvalues and its corre-

sponding eigenvectors, respectively. In addition, these eigen-
values satisfy γ1 ≥ γ2 ≥ , . . . , ≥ γK > γK+1 =

, . . . , = γ2M . 3s = diag{γ1, γ2, . . . , γK },3e =

diag{γK+1 , γK+2, . . . , γ2M }. Es = [υ1,υ2, . . . ,υK ] rep-
resents the signal subspace and relates to the K largest eigen-
values. Similarly, Ee = [ υK+1,υK+2, . . . ,υ2M ] is regard as
noise subspace [29].

B. PARAMETERIZATION OF THE ARRAY MANIFOLD
UNDER THE CONDITION OF UNKNOWN
MUTUAL COUPLING
It has been pointed that the signal subspace Es spans the
same subspace as that of array manifold matrix D̂ [30], which
means that the expression can be obtained as follows

Es = D̂U =
[

GA
6MG∗A∗ψ∗

]
U (11)

where U is a K × K dimensional column full rank matrix.
Whereas it’s difficult to build an over-complete dictionary
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for sparse representation model because of the coexistence of
unknown noncircular phases and non-zero mutual coupling
coefficients, which indicates that these negative effects must
be dealt with. Thus, following the parameterized operation
in [23], the actual array manifold _a(θ ) can be turned into a
calibrated block-structure vector to get rid of the influence of
unknown mutual coupling. i.e.

_a(θ ) = Ga(θ ) = �(θ )0(θ ) (12)

where

�(θ ) = blkdiag{�1,�2,�3} ∈ CM×F (13)

0(θ ) = [λ1(θ ), . . . , λH−1(θ ), τ (θ ), σ1(θ ), . . . , σH−1(θ )]T

(14)

with �1 = diag{1, η(θ ), . . . , ηH−2(θ )} ∈ C(H−1)×(H−1),

�2 = {η
H−1(θ ), ηH (θ ), . . . , ηM−H (θ )}T ∈ C(M−2H+2),

�3 = diag{ηM−H+1(θ ), ηM−H+2(θ ), . . . , ηM−1(θ )} ∈
C(H−1)×(H−1) withF = 2H−1. λd (θ ) = 1+

∑H−1
i=1 giηi(θ )+∑d−1

i=1 giη
−i(θ ), σd (θ ) = 1 +

∑H−1
i=1 giη−i(θ ) +

∑H−d−1
i=1

giηi(θ ), τ (θ ) =
∑H−1

i=1−H g|i|η
i(θ ). Besides, τ (θ ) is deemed

as non-zero since the occurrence probability of the partic-
ular event τ (θ ) = 0 is very low [23]. Hence, applying
Eq. (12) to Eq. (7), the augmented model in Eq. (7) can be
re-expressed as

ẑ(t) =
[

z(t)
6M z∗(t)

]
=

[
B1

6MB∗1∗ψ∗

]
sd (t)+

[
e(t)

6Me∗(t)

]
= Ds(t)+ ê(t) (15)

where D =

[
B1

6MB∗1∗ψ∗

]
∈ C2M×K denotes the

novel calibrated augmented array manifold matrix. B =
[�(θ1),�(θ2), . . . ,�(θK )] ∈ CM×KF is the block steering
matrix with respect to DOA information and free of the
unknown mutual coupling coefficients. In addition, it has a
distinct difference between the new calibrated steering vector
�(θ ) and the actual array manifold _a(θ ). After taking this
parameterized operation, the non-zero unknown mutual cou-
pling coefficients are transferred to the latter block diagonal
matrix 1 = blkdiag{0(θ1),0(θ2), . . . ,0(θK )} ∈ CKF×K .

III. JOINT WEIGHTED BLOCK SPARSE
RECOVERY BASED ON WSF
In this section, a joint weighted block sparse recovery algo-
rithm is put forward to estimate DOA, where the WSF prin-
ciple is utilized to compose the constraint of block sparse
recovery. Moreover, a weighted matrix is further imposed on
the joint block sparse recovery scheme to obtain the higher
sparsity.

A. THE FRAMEWORK OF WSF
Based on the above analysis, it can be concluded that the
signal subspace Es still stays the same subspace as the novel
augmented steering matrix D, which indicates that Eq. (11)
can be revised as

Es =
[

GA
6MG∗A∗ψ∗

]
U =

[
B1

6MB∗1∗ψ∗

]
U = DU (16)

However, Eq. (16) may fail to work when noise presents,
since the spanned space of the signal subspace Es is not a
same space range as those of the new calibrated augmented
array manifold matrix D. Based on [30], a WSF framework
can be constructed to tackle this problem as follows

[Eθ, EU ] = argmin
θ,U

||EsW 1/2
− D(θ )U ||2F (17)

where D(θ ) is a calibrated augmented steering matrix param-
eterized by θ . W ∈ CK×K represents a weighted matrix,
which is positive definite and varies with distinct algorithms.
What’s more, it effects the asymptotic characteristics of the
fitting estimation error. Thus, based on the above analysis,
many previous DOA estimation algorithms can be treated
as variants of the general WSF method. In [30], it has been
shown that forD(θ ) andEsW1/2, the matching degree of their
space ranges can be measured by minimizing U when D(θ )
is fixed. And the optimal weighted matrix is further given as
Wopt = (3s − σ̃

2
e IK )

23−1s , which can achieve the lowest
asymptotic fitting estimation error variance. σ̃ 2

e represents the
estimated noise variance and can be calculated by averaging
the 2M − K smallest eigenvalues corresponding to the noise
subspace. Then, applying the optimal weighted matrix Wopt
to Eq. (17), yields

[Eθ, EU ] = argmin
θ,U

||EsW
1/2
opt − D(θ )U ||

2
F (18)

As shown in [31], one of the key points of the subspace
fitting issue is to separate D(θ ) and U . And U can be treated
as an auxiliary parameter because the new extended steering
matrix D(θ ) is parameterized by the desired DOA informa-
tion. When the D(θ ) is fixed, the least squares solution of U
can be depicted as

U = (D(θ ))†EsW
1/2
opt (19)

Bringing Eq. (19) back into Eq. (18), yields

Eθ = argmin
θ

tr{P ⊥

D(θ )
EsWoptEHs } = argmin

θ

N (θ ) (20)

where P ⊥

D(θ )
= I2M − PD(θ ) = I2M − D(θ )(DH (θ )D(θ ))−1

DH (θ ) means the orthogonal projection matrix of D(θ ).

B. JOINT BLOCK SPARSE RECOVERY
Based on the optimal weighted matrix Wopt , multiplying
W1/2

opt with Eq. (16), yields

EsW
1/2
opt = DUW1/2

opt =

[
B1

6MB∗1∗ψ∗

]
UW1/2

opt (21)

It’s known that over-complete basis is crucial if the above
subspace fitting issue is solved from sparse recovery perspec-
tive. Whereas, it’s impossible for Eq. (21) to successfully
establish an over-complete basis because the unknownmutual
coupling coefficients and noncircular phases coexist. In order
to address this problem, Eq. (21) can be regarded as two
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independent parts. i.e.[
Es1W

1/2
opt

Es2W
1/2
opt

]
=

[
B1UW1/2

opt

6MB∗1∗ψ∗UW
1/2
opt

]
=

[
BU1w
B2U2w

]
(22)

where Es1 and Es2 are made up of the first and last K rows
of Es, respectively. B2 = 6MB∗ and U1w = 1UW1/2

opt ,
U2w = 1

∗ψ∗UW1/2
opt . It’s obvious that U1w and U2w are all

block matrices. On the other hand, since Eq. (21) is split into
two independent parts of Eq. (22), the fitting framework in
Eq. (20) also needs to be revised as

Eθ1 = argmin
θ

tr{P ⊥

B(θ )
Es1WoptEHs1} = argmin N1(θ )

Eθ2 = argmin
θ

tr{P ⊥

B2(θ )
Es2WoptEHs2} = argmin N2(θ ) (23)

whereP ⊥

B(θ )
= IM−PB(θ ) = IM−B(θ )(BH (θ )B(θ ))−1BH (θ ),

P ⊥

B2(θ )
= IM − PB2(θ ) = IM − B2(θ )(BH2 (θ )B2(θ ))−1BH2 (θ ).

P ⊥

B(θ )
and P ⊥

B2(θ )
are the orthogonal projection matrices of

PB(θ ) and PB2(θ ), respectively.
Then the entire spatial range from −90◦ to 90◦ can be dis-

cretized into L parts. Let θ̄ = {θ̄1, θ̄2, . . . , θ̄L} be a sampling
grids set which covers all the possible targets. And L satisfies
L � M > K , which means that the noncircular sources
own the spatial sparsity. Then, Eq. (22) can be sparsely
expressed as [

Es1W
1/2
opt

Es2W
1/2
opt

]
=

[
Bθ̄U θ̄1w
Bθ̄2U

θ̄
2w

]
(24)

where Bθ̄ = [�(θ̄1),�(θ̄2), . . . ,�(θ̄L)] ∈ CM×LF and Bθ̄2 =
6MBθ̄ ∈ CM×LF are two over-complete bases, respectively.
And the corresponding block sparse matrices U θ̄1w = [U θ̄11w,

U θ̄21w, . . . ,U
θ̄L
1w] ∈ CLF×K ,U θ̄2w = [U θ̄12w,U

θ̄2
2w, . . . ,U

θ̄L
2w] ∈

CLF×K are all made up of L sub-blocks with F × K dimen-
sion. As the l-th sub-block ofU θ̄1w andU θ̄2w,U

θ̄l
1w andU θ̄l2w are

equal to the (Fl − F + 1)th to (Fl)th rows of U θ̄1w and U θ̄2w,
respectively. Then, two new column vectors are introduced
for conveniently expressing, that are t1 = [t θ̄11 , t

θ̄2
1 , . . . , t

θ̄L
1 ]T

and t2 = [t θ̄12 , t
θ̄2
2 , . . . , t

θ̄L
2 ]T . t θ̄l1 and t θ̄l2 represent the

l2-norm of U θ̄l1w and U θ̄l2w, respectively. And both U θ̄l1w and

U θ̄l2w are non-zero sub-blocks if θ̄l = θk (l = 1, 2, . . . ,L;

k = 1, 2, . . . ,K ), which results in t θ̄l1 and t θ̄l2 being non-zero
as well. Evidently, DOA estimation can eventually be solved
as a problem of block sparse recovery. Thus, for exploiting the
noncircularity of the signals, a jointWSF framework based on
l0-norm penalty via combining the principle of block sparse
recovery can be constructed as

min ||T ||0

s.t. T (l) ≥
√
(t θ̄l1 )

2 + (t θ̄l2 )
2 l = 1, 2, . . . ,L

Es1W
1/2
opt = Bθ̄U θ̄1w, Es2W

1/2
opt = Bθ̄2U

θ̄
2w (25)

However, the Eq. (25) is a NP-hard problem [8], [26].
Taking the practical feasibility of problem into consideration,
l1-norm penalty with lower computational complexity is uni-
versally adopted since it is the optimal convex approximation
of l0-norm constraint. Hence the l0-norm optimization can
eventually be replaced by l1-norm penalty. i.e.

min ||T ||1

s.t. T (l) ≥
√
(t θ̄l1 )

2 + (t θ̄l2 )
2 l = 1, 2, . . . ,L

||Es1W
1/2
opt − B

θ̄U θ̄1w||F ≤ ε1,

||Es2W
1/2
opt − B

θ̄
2U

θ̄
2w||F ≤ ε2 (26)

where ε1 and ε2 are the regularized parameters which asso-
ciate with the upper value of fitting estimation error. Based
on Eq. (23), it can be concluded that the estimation error
of subspace fitting are

√
N1(θ ) and

√
N2(θ ), respectively.

And as shown in [29], both functions (2T/σ̃ 2
e )N1(θ ) and

(2T/σ̃ 2
e )N2(θ ) asymptotically follow the chi-square distri-

bution with 2K (M − K ) degrees of freedom when θ = θk
(k = 1, 2 . . . ,K ). Thus, the parameter ε1 and ε2 can be
calculated by

√
N1(θ ) ≤ ε1 and

√
N2(θ ) ≤ ε2with a high

confidence interval of 1 − ρ, respectively. In this article,
ρ = 0.01 is selected to carry out the simulation experiments.

C. JOINT WEIGHTED BLOCK SPARSE RECOVERY
It can be concluded that larger coefficients are heavier penal-
ized by l1-norm constraint than those smaller ones, which
indicates that the recovery performance of l1-norm penalty is
limited to some extent. Then according to [21], a NCMUSIC-
like weighted constraint can be further imposed on Eq. (26)
for enforcing the solutions sparsity. Considering the orthogo-
nality between the new calibrated augmented over-complete
basis and extended noise subspace, yields

J(θ̄l, g, ψl) =
[
0H (θ̄l)e−jψl /2 0T (θ̄l)ejψl /2

]
Q(θ̄l)[

0(θ̄l)ejψl /2

0∗(θ̄l)e−jψl /2

]
= d(θ̄l, g, ψl)Q(θ̄l)

dH (θ̄l, g, ψl) → 0 (27)

where

d(θ̄l, g, ψl)=
[
0H (θ̄l)e−jψl /2 0T (θ̄l)ejψl /2

]
(28)

Q(θ̄l) =
[
�(θ̄l) 0
0 6M�

∗(θ̄l)

]H
EeEHe

×

[
�(θ̄l) 0
0 6M�

∗(θ̄l)

]
l=1, 2, . . . ,L (29)

Based on the analysis in the above section, it can be
easily summarized that 0(θ̄l) 6= 0, which means that
d(θ̄l, g, ψl) 6= 0. And Q(θ̄l) ∈ C2F×2F is positive definite
and consistent estimate of the rank deficient matrix. Hence,
for the sake of noncircular sources, the spectrum function of
NC MUSIC-like can be adopted to structure the weights as
follows

q̄l = det{Q(θ̄l)} l = 1, 2, . . . ,L (30)
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Then, exploiting the weights in Eq. (30), the weighted
matrix can be depicted as

Q̄ = diag {Q} (31)

where Q = [Q1,Q2] = [q1, q2, . . . , qL] with ql =
q̄l/max{q̄1, q̄2, . . . , q̄L}. The weights in Q1 associate with
the true DOAs which are smaller than those in Q2 and more
likely to be zero when snapshots is infinite. After taking this
weightedmeasure, whatever larger or smaller coefficients can
be further equivalently punished. Thus, the joint weighted
block sparse recovery scheme can be formulated as

min ||Q̄T ||1

s.t. T (l) ≥
√
(t θ̃l1 )

2 + (t θ̃l2 )
2 l = 1, 2, . . . ,L

||Es1W
1/2
opt − B

θ̃U θ̃1w||F ≤ ε1,

||Es2W
1/2
opt − B

θ̃
2U

θ̃
2w||F ≤ ε2 (32)

Apparently, as a convex optimization problem, Eq. (32) can
be settled by software packages in MATLAB, like CVX [32].
In this way, DOA estimation can eventually be obtained by
searching the spatial spectrum of the recovered block sparse
matrix.

Up to now, a joint weighted block sparse recovery scheme
for strictly noncircular signals with unknownmutual coupling
in WSAN has been achieved. The main steps of the proposed
algorithm can be summarized as follows:

Step.1 Estimate the covariance matrix of the augmented
data in Eq. (7) via Eq. (9).

Step.2 Achieve the signal subspace Es and the noise sub-
space Ee by applying the eigenvalue decomposition to R̂ in
Eq. (9), respectively.

Step.3 Establish the new calibrated augmented steering
matrix Din Eq. (15) via Eq. (12).
Step.4 Formulate Eq. (22) via splitting Eq. (21) based on

WSF principle
Step.5 Construct NC MUSIC-like weighted matrix Q̄ via

Eq. (29), Eq. (30) and Eq. (31).
Step.6 Estimate DOA through the joint weighted block

sparse recovery scheme in Eq. (32).

IV. SIMULATION RESULTS
In this section, various simulation trails are carried out simul-
taneously to prove the superiority of the proposed method.
Three methods are selected to compare with our proposed
method, which including l1-SVD methods in [24], BSR
method in [26] and weighted BSR method in [27]. And refer-
ring to [21], the corresponding Cramer-Rao bound (CRB)
for noncircular sources in unknown mutual coupling is
re-deduced and selected as the performance evaluation indi-
cator for all algorithms. Suppose that there are K = 2 strictly
NC sources impinging on a half-wavelength spacing ULA
in WASN. The sensors number of ULA is assumed to be
M = 10 and the desired DOAs can be denoted as θ1 = −2.8◦

and θ2 = 6.9◦. Furthermore, the non-zero coefficients of
MCM can be deemed as c = [1, 0.5725 − j ∗ 0.1024]

with H = 2. The whole space [−90◦, 90◦] is discretized
into multiple grid points with a step size of 0.02◦. The root
means square error (RMSE) is selected to calculate the fitting
estimation error, it takes the following specific form:

RMSE =

√√√√ 1
100K

100∑
i=1

K∑
k=1

(θ̃i,k − θk )2 (33)

where θ̄i,k represents the estimated value of the k-th signal θk
at the i-th Monte Carlo trial. And in this paper, Monte Carlo
trials are implemented 100 times for comparative methods
and proposed method, respectively.

FIGURE 1. The Spatial spectrum of various algorithms.

Fig. 1 depicts the spatial spectrum of various algorithms in
which SNR is set as −5dB and snapshots number is selected
as T = 100. It can be observed that the proposed method has
much sharper peaks and lower sidelobe, which illustrates that
our method performs better in spatial resolution than other
methods. What’s more, compared with the residual methods,
the proposed method is much closer to the desired DOAs,
which indicates that it also outperforms other comparative
methods in terms of accuracy.

FIGURE 2. RMSE versus SNR for various methods.

Fig. 2 and Fig. 3 show the RMSE and PSD versus SNR,
respectively. The corresponding snapshots number is fixed
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FIGURE 3. PSD versus SNR for various methods.

at T = 100. Besides, the probability of successful detection
(PSD) can be calculated by |θk −

_

θ k | < 0.6◦, which means
that the estimated error between the desired DOA θk and the
estimated DOA

_

θ k is less than 0.6◦. Based on Fig. 2 and
Fig. 3, it can be seen that the corresponding RMSE decreases
and PSD increases when the SNR increases, which indicates
that the estimation performance of all algorithms gradually
tends to be ideal. What’s more, the proposed method behaves
better than the residual algorithms since it shares a much
lower RMSE and higher PSD for the entire SNR range. It is
mainly because that the proposed method not only exploits
the noncircularity of the signals, but also uses the optimal
subspace fitting scheme and the weighted measure, which
ensures that the solutions sparsity can be further strengthened.
Besides, the proposed method can firstly achieve 100% PSD
at a relatively low SNR.

FIGURE 4. RMSE versus snapshots for various methods.

Fig. 4 and Fig. 5 express the comparison of RMSE versus
snapshots and PSD versus snapshots, respectively. The cor-
responding SNR is selected as −5dB. As can be seen from
Fig. 4 and Fig. 5, RMSE of all methods remains declining and
PSD stays rising when the number of snapshots continuous

FIGURE 5. PSD versus snapshots for various methods.

to increase. Furthermore, RMSE and PSD of the proposed
method are smaller and higher than those of the comparative
algorithms in the whole selected snapshots range, respec-
tively. Based on the above analysis, it can be easily concluded
that the proposed method has outstanding advantage in esti-
mation accuracy than other comparative algorithms.

V. CONCLUSION
In this paper, inspiring by theWSF principle, a joint weighted
block sparse recovery scheme for strictly noncircular signals
with unknown mutual coupling is constructed for estimat-
ing DOA in WSAN. In the proposed method, the unknown
mutual coupling effect is firstly tackled without losing the
array aperture. Then, aiming at noncircular sources, the joint
weighted block sparse recovery scheme is structured by the
WSF principle to estimate DOA. Moreover, the subspace
fitting error upper value is also presented. Simulation results
have confirmed that the proposed method owns the remark-
able estimation performance for strictly noncircular sources
in unknown mutual coupling.
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