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ABSTRACT Convolutional neural network-basedmethods are attracting increasing attention in steganalysis.
However, steganalysis for content-adaptive image steganography in the spatial domain is still a difficult
problem. In this paper, a new convolutional neural network-based steganalysis approach was proposed with
two contributions. 1) By adding more convolutional layers in the lower part of the model, we proposed a
new arrangement of convolutional layers and pooling layers, which can process the local information better
than the existing CNN models in steganalysis. 2) By adding the global average pooling layer before the
softmax layer instead of using global average pooling before the fully connected layer, the global average
pooling was placed in a better position for steganalysis. Two state-of-the-art steganographic algorithms in
the spatial domain, namely, WOW and S-UNIWARD, were used to evaluate the effectiveness of our model.
The experimental results on BOSSbase showed that the proposed CNN could obtain better steganalysis
performance than YeNet across all tested algorithms when the payloads were 0.2, 0.3, and 0.4 bpp.

INDEX TERMS Content-adaptive image steganography, convolutional neural networks, local information,
steganalysis, spatial domain.

I. INTRODUCTION
Image steganography is the technique of hiding secret data
within an ordinary, non-secret image in order to avoid detec-
tion. At present, one of the most secure steganographic
schemes for digital images is content-adaptive steganography
(or adaptive steganography), in which distortion functions are
heuristically defined to constrain the embedding changes in
those parts of the image that are difficult to model, and then,
syndrome-trellis code (STC) is used to minimize the embed-
ding distortion [1]. Adaptive steganography can be applied to
both the spatial domain and the JPEG domain. The current
typical spatial adaptive steganographic algorithms include
HUGO [2], WOW [3], S-UNIWARD [4] and HILL [5].

In steganalysis for spatial adaptive steganography, the spa-
tial rich model (SRM) and its several variants are important
methods [6]. The SRM is based on the concept of a rich
model, which consists of a large number of diverse submodels
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formed by joint distributions of neighboring samples, and the
samples are obtained by quantizing the image noise residuals,
which are computed using linear and nonlinear high-pass
filters. The projection spatial rich model (PSRM) is one of the
variants of the SRM, and it projects the neighboring residual
samples onto a set of random vectors and takes the first-
order statistics of the projections as the feature [7]. By using
projection, the features in the PSRM can potentially capture
the dependencies among a large number of pixels.

Corresponding to the rapid developments in computer
vision [8]–[12], convolutional neural networks (CNN) have
attracted great interest in steganalysis [13]–[28]. However,
steganalysis for content-adaptive image steganography in
the spatial domain is still a difficult problem. In their pio-
neering works, Tan and Li [16] proposed a CNN initial-
ized with unsupervised learning and obtained better results
than the subtractive pixel adjacency matrix (SPAM) [29].
Qian et al. [17] proposed a CNN with a high-pass filter layer
and Gaussian activation function to accommodate the differ-
ences between computer vision (CV) tasks and steganalysis.
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Among these components, the high-pass filter layer came
from the SRM, which enhanced the weak embedding noise
signal and reduced the influence of the image content. In addi-
tion, the Gaussian activation function improved the fitting
ability of the CNN. This model achieved a result comparable
to that of the SRM. Inspired by [17], Xu et al. [18], [19]
designed a CNN model (denoted as XuNet) for steganalysis
in the spatial domain. The model possessed the following
characteristics: 1) Batch normalization (BN) [30] layers were
used; 2) The absolute value function and tanh activation
function were used in the first and second layers; 3) The
kernel size of the convolutional layers in the deep part of the
networks was decreased, such that the kernel sizes of the first
two convolutional layers were 5 × 5 and those of the other
convolutional layers were 1× 1; 4) The kernel sizes of most
average pooling layers were set to 5 × 5; and 5) A high-
pass filtering layer was used for preprocessing. The results
showed that a well-designed CNN had the capacity to achieve
better detection performance compared with feature-based
steganalysis. Ye et al. [20] designed a CNN-based stegana-
lyzer (denoted as YeNet) and obtained superior performance
over other steganalysis methods, in which 1) A truncated
linear unit (TLU) activation function was introduced. 2) To
capture weak steganographic signals, the weights of the first
layer were initialized with the 30 basic high-pass filters used
in the SRM. 3) A selection-channel-aware structure was used.
4) Data augmentation was adopted to further improve the
performance.

By adding statistical moments of the feature maps to the
fully connected classifier part of YeNet, Tsang et al. proposed
amodel to better steganalyze images with arbitrary sizes [21].
Couchot et al. proposed a hybrid method combing the CNN
and SRM + ensemble classifier (EC), which incorporates
the advantages of the CNN model for high steganography
payloads and the advantages of the SRM + EC for low
steganography payloads [22]. Zeng et al. proposed a steganal-
ysis method by using multiple CNNs to fit the substructure
of the rich feature model [23]. Aiming at the problem of the
severe fluctuation of the loss during training, Songtao et al.
studied the setting of the BN parameters [24]. Yang et al.
proposed a CNN combined with a channel selection mech-
anism [25]. Sedighi et al. designed a CNN with a Gaussian
activation function to implement histogram features [26].
Yedroudj et al. proposed a model to combine some advan-
tages of XuNet and YeNet. The model contains 30 high-pass
filters, a TLU activation function, fewer convolutional layers,
and a scale module [27]. Zeng et al. proposed a model for
color images. In the structure, different color bands were first
passed through independent channels and then merged in a
deeper part of the model [28].

In this paper, a new CNN-based steganalysis method is
proposed. On the one hand, the arrangement of the con-
volutional layer and pooling layer suitable for steganalysis
is discussed, and in order to capture the weak stegano-
graphic signals of images, more convolutional layers are
incorporated in the lower part of the network to enhance the

ability to process image details. On the other hand, global
average pooling (GAP) is introduced to reduce the number
of parameters of the networks and enable the networks to
simultaneously process different scale inputs. An appropriate
position of the global average pooling layer for steganalysis
is also discussed. Setting the global pooling layer just before
the softmax layer, which was rare in other CNNs, is pro-
posed. In the experiment on the BOSSbase dataset, different
steganography methods, namely, WOW and S-UNIWARD,
with different payloads are used to evaluate the effectiveness
of the proposed model. The results show that the proposed
model is mostly better than the current best deep learning-
based steganalysis method.

II. THE PROPOSED NETWORKS
In this section, the proposed arrangement of the convolutional
layers and pooling layers is introduced. Then, the global
average pooling layer and its position are described. Finally,
the details of the architecture are presented.

A. ARRANGEMENT OF CONVOLUTIONAL LAYERS AND
POOLING LAYERS
In this section, some arrangements of CNN models in com-
puter vision and steganalysis will be compared with the
arrangement of the proposed CNN. In fact, there are some
common structures for the CNN, such as convolutional
layers and pooling layers. A convolutional layer always
contains a convolution operation and an activation func-
tion to increase the nonlinearity of the network, and some-
times, a BN layer is included before the activation function.
The convolution operation usually includes 4 dimensional
parameters (kernel_length, kernel_width, input_channels,
and output_channels). For the 4 dimensional parameters,
kernel_length×kernel_width is the kernel size of a convolu-
tional layer, which is usually 3×3, 5×5 or 7×7. It has been
indicated that a convolutional layer with a kernel size of 5×5,
7 × 7 or larger can be replaced by stacking multiple convo-
lutional layers with a kernel size of 3 × 3 [12]. Therefore,
to facilitate the comparison between models with different
convolutional kernel sizes, when a convolutional layer with
a kernel size larger than 3× 3 is used, we convert the number
of convolutional layers into the corresponding number of 3×3
convolutional layers, in which one convolutional layer with a
kernel size of 5 × 5 is replaced by 2 layers, and one 7 × 7
convolutional layer is converted into 3 layers. In general, the
pooling layer will reduce the scale of the feature maps and
result in the loss of detailed image features. Some models
use the convolutional layer with a stride=2 to reduce the
scale of the feature maps instead of a pooling layer. It can be
seen that whether using pooling or a stride=2, the structure
from the lower layers to the deeper layers can be divided
into multiple parts according to the scale of the feature maps.
In this paper, the arrangement of the convolutional layers and
pooling layers of the model is denoted as (n1, n2, n3, n4, n5),
where n1 represents the number of convolutional layers,
in which the scale of the feature maps is equal to that of the
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TABLE 1. Differences in the arrangement of VGG, XuNet, YeNet, and the proposed networks.

original image. n2, n3, n4 and n5 respectively represent the
number of convolutional layers, in which the scales of the
feature maps are 1/4, 1/16, 1/64, or 1/256 of the original
image. From Table 1, it can be found that in computer vision,
more attention is paid to the deeper part of the networks. For
example, the arrangement of VGG is (2, 2, 3, 3, 3), while
the numbers of convolutional layers in the different parts of
ResNet are (3, 0, 6, 8, 12). In steganalysis, there are more
convolutional layers on the lower part of the networks, such
as (2, 2, 1, 1, 1) in XuNet, and the numbers of convolutional
layers in YeNet are (3, 2, 2, 2, 2, 2).

We think that the reason is because, for the steganalysis
task, the embedded steganographic signals are at the pixel
level, so the convolutional layers in the lower part of the
networks are more effective than those in the deeper part of
networks. Therefore, in our proposed model, before the first
pooling layer and between the first and second pooling layers,
there are both four convolutional layers with a kernel size of
3 × 3, and the kernel size of the subsequent convolutional
layer is 1× 1.

Table 1 shows the differences in the arrangement of layers
in VGG, ResNet, XuNet, YeNet and the proposed networks,
where C(k)× n denotes n convolutional layers with a kernel
size of k × k stacked together, and stride 2 means that the
size of the feature maps is reduced by that stride in the
convolutional layer instead of the pooling layer.

B. GLOBAL AVERAGE POOLING LAYER
A global average pooling layer can be used to effectively
reduce the number of networks parameters and prevent over-
fitting [10]. In the existing convolutional neural networks,
there were two common positions for global average pooling
layer. In the networks of [11], the position of the global
average pooling layer was at the last layer just before the
softmax layer. The last convolutional layer generated one
feature map for each category, and the global average pooling
layer calculated the average value of each feature map to
obtain the final output. Another position of the global average
pooling layer can be the second-to-last layer, and it always
follows a fully connected layer. As in many computer vision
networks, the output of the global average pooling was not
equal to the number of categories. Then, a fully connected
layer was used to obtain the final output. The performance
of the two convolutional neural networks with different

positions for the global average pooling layer are compared in
Section III. C.

C. ARCHITECTURE
Our proposed networks (Fig. 1 and Table 2) were composed
of a preprocessing layer, series of convolutional and pooling
layers, a global average pooling layer and softmax layer.

The preprocessing layer of our proposed networks was a
convolutional layer initialized with 30 high-pass filters used
in the SRM [20]. Different from those in [20], the parameters
of the preprocessing layer were untrainable in our networks.
The effect of this change can be seen in Section III. E. Addi-
tionally, the BN layer was added to increase the adaptability
of the preprocessing layer. Last, there was a rectified linear
unit (ReLU) [31] layer following the BN layer.

After the preprocessing layer, the output data were passed
through a series of convolutional layers and pooling layers.
All the convolutional layers in the proposed networks were
equipped with a BN and ReLU activation function. Addition-
ally, zero padding was used to keep the scale of the feature
maps unchanged after the convolutional layer. In addition,
the average pooling layers were used just as in [17]–[20]. The
kernel size of each average pooling layer was 2× 2, and the
stride was 2. In addition to the preprocessing layer, the other
convolutional layers and pooling layers were constructed into
five blocks. The first block contained four convolutional
layers with a kernel size of 3 × 3 and one average pooling
layer, and the number of channels for this block was 30.
The second block also contained four convolutional layers
with a kernel size of 3 × 3 and one average pooling layer.
The first convolutional layer in this block changes the number
of channels from 30 to 60 to increase the diversity of the
features. In the following convolutional layers within this
block, the number of channels was kept as 60. The third
and the fourth blocks contained one convolutional layer with
a kernel size of 1 × 1 and one average pooling layer, and
the number of channels was still 60. The fifth block was
composed of two convolutional layers with a kernel size of
1 × 1. In the second convolutional layer within the fifth
block, the number of channels was changed to 2 to obtain
the required number of channels for classification. A global
average pooling layer was set after the fifth block, which
reduced the size of the feature maps from 16 × 16 to 1 × 1.
After the global average pooling layer, a softmax layer was
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FIGURE 1. The architecture of the proposed convolutional neural networks.

TABLE 2. Architecture.

applied to transform the feature vectors to output probabilities
for each class.

III. EXPERIMENTS
A. DATASETS
The dataset used in our experiments was BOSSbase
v1.01 [32], which contains 10000 8-bit gray images with a
size of 512×512, and it has been widely used in steganalysis.
Because 512 × 512 was a large size for the CNN method,
some cropping methods were used to reduce the size of
the images in the current research. For example, an image
patch with a size of 256 × 256 in the middle of original
image was used in YeNet (denoted as center-cropped256).
Therefore, to facilitate the comparisonwithYeNet, the center-
cropped256 images were used as the cover images, and
the WOW and S-UNIWARD steganography algorithms were
applied. In addition, when comparing our results with XuNet,
the original 512×512 images were used as the cover images,
and the S-UNIWARD steganography scheme was used.

B. IMPLEMENTATION DETAILS
Out of the 10000 pairs of images (cover image and its cor-
responding stego), 5000 pairs were set as training data, and
5000 pairs were set aside for testing to verify the perfor-
mance. The minibatch gradient descent method was used for
training. Each learning batch contained 20 training images,
which were composed of 10 cover images and their corre-
sponding steganographic images. The optimizer used was
Adam [33], in which the learning rate was initialized to
5e-4, and the learning rate decayed 0.91 per 1000 batches.
All parameters were initialized by Glorot and Bengio [34].
An L2 weight decay of 1e-5 was adopted.

C. PERFORMANCE COMPARISON OF MODELS WITH
DIFFERENT GAP POSITIONS
In this experiment, the performance of two networks that set
the global average pooling layers in different positions were
compared. The lower parts of the two networks were the same
as the networks described in Section II. The last four layers
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FIGURE 2. Different positions of the global average pooling layer.
(a) shows the last four layers of the model when global average pooling
is just before softmax, and (b) shows the last four layers when global
average pooling is before the fully connected layer.

TABLE 3. Accuracy of CNN with the GAP in different positions.

of the two networks were different and are shown in Fig. 2.
In the first model, the final four layers of the networks
wereConv(1, 60)-Conv(1, 2)-GAP-Soft max, and the last four
layers of the second model were Conv(1, 60)-GAP-FC(2)-
Soft max. Here, Conv(a, b) represents a convolutional layer
with a kernel size of a × a and an output channel size of b,
and FC(c) represents a fully connected layer with an output
channel size of c.
In TABLE 3, the accuracies of the two networks with

the global average pooling layer at different positions are
presented. The dataset used in this experiment were center-
cropped256, and the steganography scheme was WOW with
a payload of 0.4 bpp. The ‘‘With_BN’’ in TABLE 3 represents
that the last convolutional layer or fully connected layer was
equipped with a BN layer. The experimental results show
that when BN is not used in model (a), there is still an
improvement compared with that of model (b). By adding
BN, the performance of model (a) can be further improved.
Therefore, this experiment showed that setting the GAP
before the softmax layer was helpful for steganalysis.

D. PERFORMANCE COMPARISON OF THE MODELS WITH
DIFFERENT ARRANGEMENTS
In this experiment, we will verify our proposed arrangement
of convolutional layers and pooling layers.

First, the number of arrangements of convolutional layers
and pooling layers is very large. To make the comparison
possible, the compared model has the following limitations.
1) Only several blocks (denote as Nblock ) in the lower part
of the model have convolutional layers with a kernel size of
3 × 3. The kernel size of the other convolutional layers is
1×1. 2) In the firstNblock blocks, the number of convolutional
layers contained in each block is the same, and the number is
denoted as Nlayer . As shown in Fig. 3.

Table 4 shows the results of the models with different
Nblock and Nlayer settings. The dataset used in this experiment
was center-cropped256, and the steganography scheme used
was WOW with a payload of 0.4 bpp. In Table 4, from
the upper left corner to the lower right corner, as the depth
increases, the performance continues to improve, and finally,
the model cannot be trained because it is too deep. In Table 4,
the maximum value was for Nblock = 2, Nlayer = 4 and the
next was for Nblock = 3, Nlayer = 3. It can be seen that the
number of convolutional layers with a kernel size of 3 × 3
that was most suitable for steganalysis was approximately
2×4 = 8 and 3×3 = 9. By comparing themodels with depths
of 8 or 9, including (Nblock = 2, Nlayer = 4), (Nblock = 3,
Nlayer = 3), and ( Nblock = 4, Nlayer = 2), we can find that
the model with more convolutional layers in the lower layer
(Nblock = 2, Nlayer = 4) was better than the model where
convolutional layers were equally placed between the pooling
layers (Nblock = 4, Nlayer = 2 ). This experiment shows
that our proposed arrangement, in which four convolutional
layers are set in each of the initial two blocks, is more adaptive
to steganalysis than other arrangements when convolutional
layers with a kernel size of 3 × 3 are only set in some lower
layers of the CNN model and the number of convolutional
layers with a kernel size of 3 × 3 in each block is the
same.

E. PERFORMANCE COMPARISON WITH
OTHER STEGANALYZERS
In this subsection, we compare the performance of the pro-
posed CNN-based models with some other steganalyzers in
the spatial domain, such as the SRM, YeNet and XuNet.

Table 5 shows the performances of our proposed networks,
YeNet and SRM versus two other steganography schemes
(WOW and S-UNIWARD) on the center-cropped256 images.
From the experimental results in Table 5, it can be seen
that the proposed model was better than YeNet when the
steganalysis embedding rate was high (0.4, 0.3, and 0.2 bpp)
but not as good as YeNet when the steganalysis embedding
rate was 0.1 bpp.

In Table 6, the results of the SRM,XuNet and proposed net-
works trained on the 512× 512 dataset versus S-UNIWARD
are presented. From the experimental results in Table 6, it can
be seen that the proposed CNN was better than XuNet versus
S-UNIWARD when the embedding rate was 0.4 bpp and
0.1 bpp.

Because GAP was used in our proposed networks,
the model can accept images with different scales as input.
In Table 7, the accuracy of our CNN trained on center-
cropped256 with a payload of 0.4 bpp usingWOW and tested
on the 512 × 512 dataset with a payload of 0.4 bpp using
WOW are presented. It can be seen that the model trained
on Cent-cropped256 obtained a better result of 89.84% when
transferred to the 512×512 dataset. This result shows that the
model trained on cent-cropped256 has good generalization
ability on the 512× 512 dataset.
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FIGURE 3. The architecture for verifying and the two parameters (Nblock and Nlayer ) of the arrangements. Nblock represents the number of blocks with
3× 3 convolutional layers in the lower part of the networks and Nlayer represents the number of 3× 3 convolutional layers in the first Nblock block.

TABLE 4. Accuracy of the proposed CNN with different Nblock\Nlayer on center-cropped256 versus WOW with a payload of 0.4 bpp.

TABLE 5. Accuracy of SRM\YeNet\proposed networks on center-cropped256 versus WOW and S-UNIWARD.

TABLE 6. Accuracy of SRM\XuNet\ours on the 512× 512 dataset versus S-UNIWARD.

F. EXPERIMENTSFOR SOME STRUCTURAL DETAILS
The experiments in this section were conducted using the
center-cropped256 dataset. The steganography scheme used
was WOW, and the payload was 0.4 bpp.

We compared the model that uses average pooling in
all pooling layers (denoted as ‘‘all avg’’ in Table 8) with
the model that uses maximum pooling in all pooling layers

(denoted as ‘‘all max’’ in Table 8), and the results are shown
in Table 8. It can be seen that using maximum pooling may
result in a slight performance reduction. According to [17],
maximum pooling was more suitable for sparse features, but
steganalysis features were not sparse.

In the proposed model, the number of channels increases
to 60 in the second block (denoted as c-30-60). To verify
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TABLE 7. Transfer accuracy of our CNN trained on center-cropped256 with a payload of 0.4 bpp using WOW and tested on the 512× 512 dataset with a
payload of 0.4 bpp using WOW.

TABLE 8. Different pooling methods.

TABLE 9. Different channel settings.

TABLE 10. The parameters of the preprocessing layer were trainable or
untrainable.

TABLE 11. Different activation functions in the preprocessing layer.

this structure, a comparison with the model whose number of
channels for all convolutional layers were maintained at 30
(denote as c-30) was given. It is found that the performance
can be weakly improved by increasing the number of chan-
nels in the second block.

In the proposed model, the parameters of the preprocessing
layer were set as untrainable. Table 10 compares this model
with the model in which the parameters of the preprocessing
layer were set as trainable. The performance of the trainable
model was slightly below that of the untrainable model.

In Table 11, the models with different activation functions
(ReLU and tanh) in the preprocessing layer were analyzed.
As seen from Table 11, the ReLU can slightly improve the
network performance. We suspect that more convolutional
layers with the ReLU in the proposed model have provided a
sufficient nonlinear capacity, which may reduce the demands
for the nonlinearity activation function such as tanh.

IV. CONCLUSION
In this paper, a new convolutional neural network-based ste-
ganalysis approach for adaptive spatial image steganography
is proposed. The proposed CNN exhibits two characteristics:
1) There is a new arrangement of layers in the networks to
enhance the local processing ability of the networks. Four
convolutional layers with a kernel size of 3× 3 were stacked

before the first pooling layer and between first and second
pooling layers respectively, and the other convolutional layers
in the networks had a kernel size of 1× 1. 2) Global average
pooling is used to reduce the number of parameters in the
networks and prevent overfitting, and by setting the global
average pooling layer before the softmax layer, we obtain a
better position for the global average pooling for steganalysis.
Finally, the experimental results show that the proposed CNN
obtains better performance than that of some of the latest
CNN-based steganalysis methods on the BOSSbase dataset.
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