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ABSTRACT Sidescan sonars are increasingly used in underwater search and rescue for drowning victims,
wrecks and airplanes. Automatic object classification or detection methods can help a lot in case of long
searches, where sonar operators may feel exhausted and therefore miss the possible object. However, most
of the existing underwater object detection methods for sidescan sonar images are aimed at detecting
mine-like objects, ignoring the classification of civilian objects, mainly due to lack of dataset. So, in this
study, we focus on the multi-class classification of drowning victim, wreck, airplane, mine and seafloor in
sonar images. Firstly, through a long-term accumulation, we built a real sidescan sonar image dataset named
SeabedObjects-KLSG, which currently contains 385 wreck, 36 drowning victim, 62 airplane, 129 mine and
578 seafloor images. Secondly, considering the real dataset is imbalanced, we proposed a semisynthetic
data generation method for producing sonar images of airplanes and drowning victims, which uses optical
images as input, and combines image segmentation with intensity distribution simulation of different regions.
Finally, we demonstrate that by transferring a pre-trained deep convolutional neural network (CNN), e.g.
VGG19, and fine-tuning the deep CNN using 70% of the real dataset and the semisynthetic data for training,
the overall accuracy on the remaining 30% of the real dataset can be eventually improved to 97.76%, which is
the highest among all the methods. Our work indicates that the combination of semisynthetic data generation
and deep transfer learning is an effective way to improve the accuracy of underwater object classification.

INDEX TERMS Object classification, underwater search and rescue, sidescan sonar image, semisynthetic
data generation, deep transfer learning.

I. INTRODUCTION
Sidescan sonars can provide high resolution images of the
seabed even in zero-visibility water, which makes it very
useful in a variety of military and civilian applications
such as mine-countermeasures, ocean mapping, offshore oil
prospecting, and underwater search and rescue [1]–[3]. For
underwater search and rescue, sidescan sonars have been
widely used to detect drowning victims, wrecks and airplanes
lying on the seabed or lakebed.

For long searches, such as the search for Malaysian Air-
lines Flight 370, the sonar operators, who stare at the dis-
play screen to see if there is the desired object, may feel
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very tired after a period of work and miss potential target
object. Therefore, it is essential to use some intelligent image
processing methods to help people find possible objects and
correctly identify the desired objects. Sidescan sonar image
segmentation methods [4]–[10], which can distinguish the
highlight object region, the accompanied shadow region and
the remaining sea-bottom reverberation region, can be used
to mark all the suspicious objects and alert the operator.
Although some of the objects marked by the segmentation
methods are of interest to people, most are meaningless for a
special search task. Therefore, object classification or recog-
nition is another important issue for underwater search.

Currently, underwater object classification or recogni-
tion methods are mainly focusing on mine classifica-
tion, i.e., detecting all possible mine-like objects (MLOs)
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and classifying each of the objects as mine or not-
mine [11]. Before the rise of deep learning [12], many
model-based approaches using a prior knowledge or
data-driven approaches have been proposed for identifying
MLOs. By comparing an extracted set of features from an
MLO to a set of training data, some approaches can work
well when the test data are very similar to the training
dataset [13]–[16]. Using the information from both highlight
region shadow regions or multi-view templates can help
to improve the classification accuracy [16]. Reed et al. [2]
combined the Hausdorff distance of the synthetic shad-
ows to the real object shadow with highlight and size
information to produce a membership function, and then
adopted Dempster–Shafer information theory to classify
the objects using both mono-view and multi-view analysis.
Cho et al. [17] tried to improve the recognition accuracy
by using multi-angle view mine simulation and template
matching. Away from model-based approaches, local feature
descriptors without prior knowledge, such as the Haar-like
feature [18], the Haar-like and local binary pattern (LBP)
features [3], the combination of Haar features and learned
features from a human operator’s brain electroencephalogram
(EEG) [19] have also been proposed for mine recognition.
The extracted features are usually combined with some state-
of-the-art machine learning approaches, such as boosting [18]
and support vector machines (SVMs) [20]. The features must
be carefully selected, and the classifier should be adjusted
when the training data is imbalanced [21].

Deep learning, which uses neural networks (NNs) involv-
ing more than two layers, can exploit feature representations
learned exclusively from data and therefore provide an end-
to-end scheme for a special task instead of hand-crafting
features [22]. Since Hinton [23] integrated the restricted
Boltzmannmachine into a deep neural network, deep learning
has seen a wave of success in many fields of application. For
instance, by interleaving multiple convolutional and pooling
layers, convolutional neural networks (CNNs), have shown
great advantages in object classification [24]–[26], object
detection [27], [28], and semantic segmentation [29], [30],
sometimes even able to surpass human ability. Recently,
CNNs have also been applied to MLOs or marine vessels
detection [31]–[37] and seafloor classification [38]–[40],
and have been proven to be more effective than traditional
methods.

The classification methods mentioned above are mainly
concerned with MLOs or seafloor classification. However,
there is an increasing demand for humanitarian searching and
rescuing drowning victims, wrecks and airplanes. Motivated
by this, in this paper, we focus on a new classification task
of multi-class objects including drowning victims, wrecks,
airplanes, mines and seafloor. Because both the wrecks and
airplanes have much higher shape complexity than MLOs
and seafloor, this classification task is more challenging.
It is natural to choose powerful CNNs for this challenging
task, but we must first solve the problem of lack of dataset.
For object classification of optical images, the ImageNet

dataset has played a very important role; for object classi-
fication of SAR images, the MSTAR dataset can be used,
and a ship dataset has recently been released on Github by
Wang et el. [41], [42]. However, no public dataset is avail-
able for underwater object classification, which severely
restricts the development of underwater object classification.
That is why we first build the real sidescan sonar image
dataset named SeabedObjects-KLSG, which currently con-
tains 385 wreck, 36 drowning victim, 62 airplane, 129 mine
and 578 seafloor images.

Although our dataset contains as many data as possible,
it is still a small one. It is believed that training a CNN
from scratch usually needs more than 5000 samples per class
to achieve a satisfactory result [12]. Transfer learning can
play an important role when the training dataset is small.
It is to be expected that the most used fine-tuning strategy
in transfer learning can perform well on the SeabedObjects-
KLSG dataset. Moreover, can we further improve the classify
accuracy using some easy-to-implement methods, such as
generating semisynthetic data for training?

Based on the above analysis, the main contributions and
work of this paper are given as follows.

1) To urgently promote underwater objects classification
in sidescan sonar images, especially civilian objects
classification, a real sidescan sonar image dataset
named SeabedObjects-KLSG is built, which can be
used to identify wrecks, drowning victims, airplanes,
mines and seafloor.

2) Considering the real dataset is imbalanced, we pro-
posed a semisynthetic data generation method for
producing sonar images of airplanes and drowning vic-
tims, which uses optical images as input, and combines
image segmentation with intensity distribution simula-
tion of different regions.

3) By transferring a pre-trained deep convolutional neural
network (CNN), e.g. VGG19, and fine-tuning the deep
CNN using 70% of the real dataset and the semisyn-
thetic data for training, the overall accuracy on the
remaining 30% of the real dataset can be eventually
improved to 97.76%, which is higher than fine-tuning
using only the real dataset and other three methods.

II. DATASET AND METHODS
A. UNDERWATER OBJECT DATASET OF SIDESCAN SONAR
IMAGE
For humanitarian underwater search and rescue, drowning
victims, wrecks and airplanes are concerned by people.
With the great support from several sonar equipment
suppliers including Lcocean, Hydro-tech Marine, Klein
Marine, Tritech, and EdgeTech, and through a decade of
accumulation, we have eventually built a real object dataset
of sidescan sonar images, in which each image consists of
a single object, namely drowning victim, wreck, airplane,
mine, or pure seafloor. The dataset is named SeabedObjects-
KLSG, and currently includes 385 wreck images, 36 drown-
ing victim images, 62 airplane images, 129 mine images, and
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FIGURE 1. Samples from the SeabedObjects-KLSG dataset. Samples in the first and second rows, in the third row, in the fourth row, and in
the fifth row are wrecks, airplanes, mines, drowning victims, and seafloors, respectively.

578 seafloor images. All the images are cut from original big
sidescan sonar images, without any processing.

Some samples in the SeabedObjects-KLSG dataset are
shown in Fig. 1. It is worth noting that each type of objects
has its appearance diversity in Fig. 1, e.g. wrecks of different
size and appearance, mines from different manufacturers and
with different shapes (the first three are Manta, KMD-II,
and Rockan, with the shapes of truncated cone, cylinder,
and wedge, respectively), seafloor of different types (the
seafloor images from left to right are rock, mud, sand, sand
waves, sand ridges, and clay, respectively). Because wrecks

and airplanes have more complex appearance, mines have
different shapes, and seafloor have different types, the feature
representation used for our task must be powerful enough to
highly represent each major class. Thrilled by the success of
deep learning, it is natural to use CNNs in our task.

B. CNN AND TRANSFER LEARNING
1) PRINCIPLES OF A CNN
CNN is the leading model in image classification, object
detection, and semantic segmentation. Since LeNet was
proposed by LeCun et al. [43], many excellent CNNs
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FIGURE 2. Structure of a CNN used for classification of K classes. Conv,
Pool, and FC mean convolutional layer, pooling layer, and fully connected
layer, respectively.

have been proposed in recent years, such as AlexNet [24],
VGGNets [25], GoogLeNet [44], and ResNet [26]. A typical
CNN consists of convolutional layers, pooled layers, and
fully connected layers. Fig. 2 gives a structure of a shal-
low CNN, which includes 2 convolutional layers, 2 pooling
layers, 2 fully connected layers (output layer is also a fully
connected layer).

Convolutional layers have the properties of sparse connec-
tivity, weight sharing and translation equivariance, because
each convolution kernel is local and very small, e.g., with a
size of 3 × 3 or 5 × 5, and is shared across the same input-
output connection. The convolutional layers can be calculated
according to the following:

C l
j = σ (

∑M

i=1
Dl−1i ∗ K l

ij + b
l
j) j = 1, 2, ...N (1)

where C l
j is the feature map with index j (totally N feature

maps) in the current layer l; Dl−1i is the channel with index
i (totally M channels) in the previous layer l − 1; K l

ij is the
convolution kernel used to convolve with Dl−1i to generate
C l
j , and b

l
j is the bias; ∗ denotes the convolution operation;

and σ is the activation function.
CNNs usually use the rectified linear unit (ReLU) as the

activation function σ , which can strengthen the nonlinear
representation of features. The pooling layers, which often
use max-pooling, i.e., choosing the maximum value in a local
window as the output value, are used to reduce the size of
the representation to save the computation as well as to make
features a little more robust.

After a series of convolution and pooling operations, mul-
tiple feature maps can be extracted from the input image,
which are flattened and then input to a fully connected layer.
Dropout operation, which makes a neuron ineffective with
probability p in each training iteration, is often adopted in
the fully connected layers of a CNN to prevent over-fitting.
A Softmax is combined with the final output layer to give
the probability of the classification results, and the Cross
Entropy is usually used as the loss function. For the error
backpropagation and more details of CNNs, we invite the
reader to consider the book by Goodfellow [12].

Because many parameters need to be learned in a CNN
(LeNet, the shallowest one among the above mentioned, has
about 60,840 parameters; other CNNs have evenmore param-
eters), a small training dataset is far from enough. An empir-
ical rule is that if training a CNN from scratch, 5000 training

samples per class is usually necessary to achieve an
acceptable result. Obviously, we donnot have that many
data.

2) TRANSFER LEARNING
In case of small samples, we can resort to transfer learning.
By transferring the knowledge from the source domain to
the target domain, transfer learning can help to overcome the
difficulty of insufficient data. If a domain is represented by
D = {χ,P(X )}, where χ is the feature space and P(X ) is the
edge probability, and a task is represented by T = {y, f (x)},
where y is the label space and f (x) is the target prediction
function, the definition of transfer learning can be formally
defined as follows [45]:

Given a learning task Tt on domain Dt , we can get the
help from for another learning task Ts on domain Ds. Trans-
fer learning aims to improve the performance of predictive
function ft for the task Tt by discovering and transferring
knowledge fromDs and Ts, whereDs 6= Dt and/or Ts 6= Tt .
Considering the relationship between the source domain

and the target domain, transfer learning methods can be
divided into four major categories [45]: instance-based,
feature-based, parameter/model-based, and relation-based.
Model-based deep transfer learning [46]–[49] is the most
popular one, and fine-tuning pre-trained models learned from
large benchmark datasets in source domains, has been proven
to be more effective than direct transfer learning [41], [49].
The key to the success of model-based deep transfer learning
is that low-level and middle-level features represented by a
deep CNN is generic for different tasks [48], [49].

In this paper, to solve the problem of insufficient data,
we also use fine-tuning. After pre-training a CNN model on
the large dataset of ImageNet, we transfer all the trained lay-
ers except the final fully connected layer with Softmax classi-
fication and add a new output layer with 5 outputs to construct
a new CNNmodel; then we fine-tune the whole model on the
training dataset of SeabedObjects-KLSG. After fine-tuning,
we can finally test the performance of the fine-tuned CNN.
The whole process is shown in Fig. 3. Because VGGNet is
more suitable for transfer learning, VGG19 is used in this
paper, the structure of which is given in Fig. 4.

3) SEMISYNTHETIC DATA GENERATION
It is very rare that we can obtain sidescan sonar images
containing meaningful objects such as drowning victims,
airplanes, etc. Therefore, despite our persistent efforts for
more than 10 years, the SeabedObjects-KLSG dataset, which
we believe contains the largest numbers of wrecks, drowning
victims and airplanes, is still small and imbalanced. Although
transfer learning of a pre-trained CNN using ImageNet can
compensate data inadequacy, imbalance of real training data
may still cause more misclassification. Considering this,
we try to simulate more sonar images of drowning victims,
airplanes and mines, and then add these synthetic data to
the training dataset, to see if they can help to improve the
classification performance of a CNN.
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FIGURE 3. Deep transfer learning used in this paper. We first pre-train a
CNN model on the dataset of ImageNet, then transfer most layers with
weights and fine-tune the pre-trained CNN on the training dataset of
SeabedObjects-KLSG, and finally test the fine-tuned CNN on the testing
dataset of SeabedObjects-KLSG after fine-tuning.

FIGURE 4. Structure of VGG19. VGG19 includes 16 convolutional layers (in
five groups) with 3 × 3 kernel, and 3 fully connected layers, totally
19 layers with parameters.

Several excellent sonar image simulationmodels [50]–[55]
have been proposed for producing complete synthetic sonar
images, which usually include three-dimensionalmodeling of
objects and seabed, ray tracing, waves scattering calculation
using the Kirchhoff approximation, etc. A precise model
should also take into consideration transducer directivity and
motion characteristics, and we recommend the work by Bell
to the reader for sidescan sonar image simulation [50]. It will
be difficult and take a long time to implement such a precise
simulation model. Considering this, a simple semisynthetic
data creation scheme to generate MLO sidescan images has
been proposed by Barngrover [3], and proven to be effective.

The above methods, except the method proposed by Barn-
grover, are all based on simulation, and require complicated
calculation. Although the current simulation methods can
be well used in the simulation of mine targets with several
simple and regular shapes, it is difficult for them to simulate

airplanes with different complex shapes. Considering that
the major shape information of an object is the most impor-
tant for underwater object recognition, a semisynthetic data
generation method is proposed and adopted here, the pro-
cessing flow chart of which is given in Fig. 5. Different
form the method proposed by Barngrover which moves the
mine object in a sonar image to different positions, the pro-
posed method uses an optical image to extract the major
shape of an object, such as an airplane, simulate the object
and shadow regions according to the probability distribution
function matching of a reference sonar image, and randomly
select the background from the reference image. Firstly, the
input optical object image is segmented and the object is
highlighted, then the corresponding shadow region is created
by translation. Meanwhile, after the segmentation of a ref-
erence sonar image, the intensity distributions of the object
and shadow regions of the reference image can be modelled
by Weibull probability distribution function (PDF), which is
defined by:

WX (x;min,C, α)=
C
α

(
(x− min)

α

)C−1
exp

(
−
(x− min)C

αC

)
(2)

where C and α are the shape and scale parameters, respec-
tively; min is the minimum value of X . Although Rayleigh
and other distribution models can be adapted to sonar images,
the Weibull PDF has been proven to very effective in describ-
ing the intensity x within the shadow and reverberation
regions [5].

Intensity distributions of object and shadow regions of
the synthetic image are then simulated according to the two
Weibull PDFs generated by the object and shadow regions of
the reference image, respectively. Finally, the background of
the simulated sonar image is randomly selected and copied
from the reference image, and the semisynthetic image can
be downsampled in the azimuth direction to take into account
ship speed. For object segmentation of the object image,
many famous segmentation methods can be used, e.g., Chan-
Vese model; for segmentation of noisy sonar images, several
sonar image segmentation methods can be used, such as [1],
[4]–[9] and our previous work in [10].

Some semisynthetic sidescan sonar images of airplanes
and drowning victims are given in Fig. 6. The semisynthetic
sonar images have the major shapes of airplanes or drown-
ing victims, and look like real sidescan sonar images. For
simulating sonar images of mines, the shapes of which are
regular and simple, the first two steps in Fig. 5 are replaced by
three-dimensional modeling and ray tracing. Some simulated
mine images are also given in Fig. 6.

III. EXPERIMENTAL RESULTS
A. EXPERIMENT SETTINGS
To demonstrate the effectiveness of the proposed method
using both deep transfer learning and semisynthetic training
data, the experimental results of the proposed method will
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FIGURE 5. Flow chart of the generation of semisynthetic sidescan sonar images. Shape of an object is from an object image, intensity distributions
of object and shadow regions are simulated in accordance with those of a reference image, respectively, and the background is randomly selected
and copied from the background of the reference image.

FIGURE 6. Some semisynthetic sidescan sonar images of airplanes, drowning victims and mines. The first and second rows are airplanes
and drowning victims, respectively; and the third and fourth rows are wedge and cylinder mines, respectively.

be compared with the method using BOF descriptor [56]
on SIFT features [57] and SVM classification, the method
using a shallow CNN trained from scratch [40], the gcForest

method using Deep Forest [58], the method using deep learn-
ing of small datasets [59]. All the methods used for compar-
ison have been demonstrated to be effective on small-scale
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training data: Before the rise of deep learning, the SIFT-based
descriptors usually perform best among various local descrip-
tors [60], and SVM can work well with only small sam-
ples [61]; the gcForest method is highly competitive to deep
neural networks and can work well even when there are only
small-scale training data; the method in [59] transfers all the
layers of a pretrained VGG16 network except the last two
full connect layers, add a new fully connected layer, and then
fine-tunes it to achieve good performance on small datasets.

All the programs except that for the gcForest method are
written in MATLAB R2018b environment with the Deep
Learning Toolbox, and run on a GPU with GTX1080Ti.
The computer used is installed with Intel Core i7-7800X
3.5 GHz CPU, 64G RAM, and Ubuntu18.04 operating sys-
tem. Among all the CNNs, VGG19, which has been proven
to be more effective in transfer learning, is preferred by the
proposed method. To significantly save the training time of
CNNs, several pre-trained deep learning toolbox models on
ImageNet can be downloaded from the MATLAB Central,
thanks to the work of the MATLAB Deep Learning Toolbox
team. The program for the gcForest method is developed with
Python 2.7.

For each class in the SeabedObjects-KLSG dataset, 70%
and 30% of the images are randomly selected as training sam-
ples and testing samples, respectively. Therefore, the num-
bers of training wreck, drowning victim, airplane, mine and
seafloor images are 270, 25, 43, 90, and 405, respectively;
and the numbers of testing wreck, drowning victim, air-
plane, mine and seafloor images are 115, 11, 19, 39, and
173, respectively. To eliminate possible influence of sample
partitioning on the performance of the classifier, a hold-out
scheme was used to randomly create 10 datasets to test the
classifier. To minimize the impact of random initialization
of parameters, repeated tests of 10 times are conducted on
each dataset and the average is taken as the result of the
classification on this dataset. The average of the results on
the 10 datasets is taken as the final result. The numbers of the
semisynthetic drowning victim, airplane and mine images are
170, 198 and 207, respectively. All the semisynthetic sonar
images will also be used for training to see if they can improve
the classification accuracy.

Training options are also very important, and must be
carefully selected for better results. For the proposed method,
by trail-and-error, the solver of stochastic gradient descent
with momentum (sgdm) is used, and the momentum is set
to 0.9; the initial learning rate α = 0.0001, and the rate
is multiplied by a factor of 0.1 every time 5 epochs has
passed; a batch size of 32 is adopted; a dropout scheme
with probability p = 0.5 is used in the two fully con-
nected layers before the final output layer. To accelerate the
parameter learning of the newly added final fully connected
layer, the multiplier for the learning rate of the weights and
that for the for the learning rate of the biases are 10 and
20, respectively. For the shallow CNN, by trail-and-error,
a batch size of 16 is adopted for better results. For the method
in [59], we use the same parameters as in [59]: fine-tuning

TABLE 1. Overall accuracy of different methods.

is learned by a stochastic gradient descent, with a learning
rate of 0.0001 and a moment of 0.99; and only one fully
connected layer with 32 hidden units is used with a dropout
probability p = 0.5. For the gcForest method, the number of
estimators and the number of maximum layers are both set to
100, and four typical types of classifiers are used, which are
RandomForestClassifier, XGBClassifier, ExtraTreesClassi-
fier, and LogisticRegression. For the method using BOF
descriptor on SIFT features and SVMclassification, the open-
source VLFeat 0.9.21 (www.vlfeat.org) can be used and the
size of BOF is set to 300. The test dataset is also used for
validation in the training process, and the training will be
terminated when the validation accuracy is stable.

B. EXPERIMENTAL RESULTS
The overall accuracy (OA), which is the percentage of all the
correct positive classifications and can represent the overall
classification performance, is first used to evaluate the per-
formance of different methods. The OA results on the test
datasets of all the five methods are given in Table 1, with each
method has two OA results: one is achieved by using only the
real sonar images for training, and the other is achieved by
using both the real and the semisynthetic sonar images for
training.

From Table 1, we can see that:
1) among all the five methods, fine-tuning a transferred

VGG19 deep learning model performs the best, which
can finally achieve an OA of 97.76% if both the real
and semisynthetic sonar images are used for training;

2) fine-tuning a transferred VGG16 model without trans-
ferring the last two fully connected layers is the second
best, which can achieve an OA of 96.08%;

3) for our classification task which involves objects with
complex shapes, training a shallow CNN from scratch
and then using it for classification will not perform very
well, the OA result of which is the lowest among the
five methods, and lower than the traditional method
using BOF descriptor on SIFT features and SVM
classification;

4) the gcForest method, which also have a deep structure,
does perform a little better than training a shallow CNN
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FIGURE 7. Training a shallow CNN from scratch using the real training dataset. The dark blue line represents the accuracy change
of each training batch (batch size is 16) with iteration, while the black line represents the accuracy of the whole validation dataset.

from scratch, but it cannot outperform the two methods
using transfer learning.

5) using the semisynthetic sonar images for training,
the OA results of the five methods can all be further
improved, which indicates the effectiveness of the pro-
posed semisynthetic sonar image generation method.

The reason why fine-tuning a transferred VGG19 deep
learning model can perform well is that by pretraining
VGG19 on ImageNet which include abundant objects,
the trained VGG19 have learned enough features for iden-
tifying different kinds of objects, and by fine-tuning the
transferred VGG19 model, the weights are quickly adjusted
to be more suitable for sidescan sonar images. The reason
why training a shallow CNN from scratch will not perform
very well here is that it cannot be used to distinguish complex
shapes, which usually need a much deeper model, and that it
still has a lot of different weights to learn. For comparison,
a training progress of 10 epochs of the shallow CNN and that
of the pre-trained VGG19 are shown in Fig. 7 and Fig. 8,
respectively. From Fig. 7 and Fig. 8, we can see that while
training a shallow CNN from scratch struggles for conver-
gence in 10 epochs, fine-tuning the transferred VGG19model
can easily achieve fast convergence.

Although pre-training a deep neural network model
(VGG16, VGG19, etc.) on ImageNet and then fine-tuning
the pre-trained model on the real training dataset can achieve
more accurate results than the other three methods, imbal-
ance of real training data may still cause more misclassifi-
cation, which can be improved by using semisynthetic sonar
images for training. The training progress of fine-tuning the
pre-trained VGG16 (without transferring the last two fully
connected layers) and the pre-trained VGG19 using both real
training dataset and semisynthetic data are given in Fig.9 and
Fig.10, respectively, from which we can see that the conver-
gence is faster and the accuracy of the training batch and
that of the validation dataset are closer, when compared with
Fig. 8.When comparing Fig. 9 with Fig. 10, it can be seen that
fine-tuning the pretrained VGG19 is more stable and accurate
than fine-tuning the pre-trained VGG16 (without transferring
the last two fully connected layers). One reason may be

TABLE 2. Confusion matrix on the test dataset using the VGG19
fine-tuned by only real training dataset.

TABLE 3. Confusion matrix on the test dataset using the VGG19
fine-tuned by both real training dataset and the semisynthetic data.

that the last fully connected layer of a CNN can offer more
transfer adaptation [62]. To further demonstrate the role of the
semisynthetic data, the confusion matrixes on the test dataset
using the VGG19 fine-tuned by only real training dataset and
by both real training dataset and the semisynthetic data are
given in Table 2 and Table 3, respectively.

In Table 2 and Table 3, the number of each wrongly
predicted class is marked in red, and that of the correctly
predicted is marked in blue. From Table 2 and Table 3, we can
see that:

1) among the five object classes, drowning victims and
airplanes are more likely to be misclassified into other
categories, due to less real training samples;

2) due to more samples and less feature complexity,
seafloor images can be represented more effectively
and therefore are all correctly classified in both cases;
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FIGURE 8. Fine-tuning the pre-trained VGG19 using the real training dataset. The dark blue line represents the accuracy change of
each training batch (batch size is 32) with iteration, while the black line represents the accuracy of the whole validation dataset.

FIGURE 9. Fine-tuning the pre-trained VGG16 (without transferring the last two fully connected layers) using both the real training
dataset and semisynthetic data. The dark blue line represents the accuracy change of each training batch (batch size is 32) with
iteration, while the black line represents the accuracy of the whole validation dataset.

FIGURE 10. Fine-tuning the pre-trained VGG19 using both the real training dataset and semisynthetic data. The dark blue line
represents the accuracy change of each training batch (batch size is 32) with iteration, while the black line represents the accuracy
of the whole validation dataset.

3) by adding the semisynthetic data including drowning
victim, airplane and mine images into the training
dataset, misclassification of drowning victims, air-
planes and mines can be effectively reduced.

Although the proposed semisynthetic data generation
method is not strict, it can still be effectively used for training
to improve the final classification accuracy, mainly because

the semisynthetic sonar images preserve the major shape of
an object and comply with the distribution of real sidescan
sonar images.

We have demonstrated that the proposed semisynthetic
data generation method can produce useful data for training
a more accurate deep neural network. Furthermore, it would
be interesting and meaningful to evaluate the quality of
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TABLE 4. Scoring standard of the semisynthetic images and the related
semantic terms.

the generated semisynthetic data. Image quality assessment
can be categorized as subjective versus objective. Subjective
methods are based on psycho-physical experiments involv-
ing human observers. A total of 50 observers, including 42
graduate students who have took the course of digital image
processing, and 8 teachers whose major is image processing,
were invited to assign quality scores to each semisynthetic
sidescan sonar image from an integer scale after training
using the real sidescan sonar images. These scores character-
ize the similarity between the semisynthetic images and real
images and are related to semantic terms, which are defined
in Table 4.

The average score given by 50 observers for each semisyn-
thetic image is regarded as the quality score of each image.
All the scores belonging to the same category are further
averaged to give an overall evaluation of the quality of this
kind of semisynthetic images, which are given in Table 5.
Average of scores of all semisynthetic images, which shows
the overall quality of the synthesized images, is also given in
Table 5.

In addition to the subjective assessment, an objective
assessment of the semisynthetic samples is also given, which
is based on the Fréchet Inception Distance (FID) [63]. FID
uses the statistics of real samples and compare it to the statis-
tics of synthetic samples, and have been widely used to eval-
uate the quality of synthetic samples of different generative
adversarial networks since it was first adopted byHeusel [64].
Let p(.) be the distribution of the synthetic samples and pw(.)
the distribution of the real samples. The Fréchet Inception
Distance d(.,.), which is the distance between the Gaussian
with mean and covariance (m, C) obtained from p(.) and the
Gaussian (mw, Cw) obtained from pw(.), can be given by:

d2 ((m,C) , (mw,Cw))=‖m−mw‖22

+Tr
(
C+Cw−2 (CCw)

1/2
)

(3)

wherem andmw refer to the feature-wise mean of the real and
generated images; C and Cw are the covariance matrix for the
real and generated feature vectors; and Tr refers to the trace
linear algebra operation.

After fine-tuning an Inception model using all the real
sonar images of airplane, drowning victim andmines, the out-
put of the Average Pooling layer for the real images used for
training can be assumed to follow a multidimensional Gaus-
sian distribution. Meanwhile, if we take the semisynthetic
images as input, the output of the Average Pooling layer will

TABLE 5. Subjective average quality scores given by observers and
objective assessment of FID.

follow a different Gaussian distribution. Then the FID value
can be calculated according to (3) to evaluate the similarity
between the semisynthetic images and the real images, and
the result is given in Table 5.

From Table 5, we can see the average score of all the
semisynthetic images is 4.61, which shows that the overall
quality is very good and close to excellent. It should be
noted that average scores of three kinds of semisynthetic
objects are different: average score of mine images is the
highest, while that of drowning victim images is the lowest.
Observers feel that the shape of mine in semisynthetic images
can be well imagined and is the most real, but they are not
very sure about the shape of drowning victims. The FID
value is 10.087, which demonstrates that the semisynthetic
samples are very similar to the real samples according to the
experiments in [64]. Subjective evaluation is consistent with
objective evaluation, both indicating that the semisynthetic
images are very similar to the real images.

IV. CONCLUSION
To urgently promote underwater objects classification in
sidescan sonar images, especially civilian objects clas-
sification, we built the real underwater object dataset
of SeabedObjects-KLSG. We have demonstrated that
pre-training a deep CNN, e.g., VGG19, and fine-tuning the
transferred CNN can achieve more satisfactory results. Fur-
thermore, we also proposed a semisynthetic sidescan sonar
image generation method, and by adding the semisynthetic
sonar images into the training dataset, we show that the
classification accuracy can be improved. The quality of the
semisynthetic data is also evaluated by subjective scores
assigned by human observers and by objective value of FID,
which both indicate that the semisynthetic images are very
similar to the real images. The proposed method gave an
effective and practical way for underwater object classifica-
tion. Our work indicates that even for a small and imbalanced
dataset, transfer learning is still preferred, and if we can
simulate more data and offer a more balanced dataset for
training, misclassification will be further reduced.

Because data play a vital role in deep learning methods,
the SeabedObjects-KLSG dataset will be open on Github for
research, and it is important for researchers to continually
expand the dataset. Although the proposed semisynthetic
data generation method can help to create more images and
help to improve the final classification accuracy, it will be
better to use a more precise simulation model, which will be
considered in our future work. Although VGG19 has been
preferred in transfer learning, other CNN models, such as
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GoogLeNet and ResNet, can also be used and achieve similar
performance. Besides model-based transfer learning, other
transfer learning methods can also be tried to see if they
can bring benefit. Our work can also be further combined
with deep learning-based object detection methods such as
R-CNN [27], YOLO [28], Faster R-CNN [65] and SSD [66]
to locate and label all the objects in a sonar image consisting
of multi objects.
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