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ABSTRACT In this paper, Neuro-Fuzzy Friction Estimation Models (NFFEM) are developed to estimate
the joint friction coefficients in a Triple Link Rotary Inverted Pendulum (TLRIP) system and compared
with an Adaptive Friction Estimation Models (AFEM). The different versions of AFEMs and NFFEMs
are generated based on each of the following friction estimation models: Non-Conservative Friction Model
(NCFM), Linear Friction Model (LFM), and Non-Linear Friction Model (NLFM). The aim of this study is
to obtain joint friction models which depend on both velocity and acceleration in a large range of motion
trajectory that involves difficult and sudden large changes. In the proposed NFFEMs, joint velocities and
accelerations of the TLRIP are used as the input variables of the Neuro-Fuzzy system trained by using a
Radial Basis Function Artificial Neural Network (RBANN). Several experiments are conducted on TLRIP
system to verify the NFFEMs. In order to determine the estimation performance of the friction models, total
Root Mean Squared Errors (RMSE) between position simulation results obtained from each joint friction
model and encoders in the experimental setup are computed. Based on the position RMSEs, the NFFEMs
produces much better estimation results than the AFEMs. Among NFFEMs, the neuro-fuzzy nonlinear
friction model (NFNLM) gives the best results.

INDEX TERMS Triple link rotary inverted pendulum (TLRIP), neuro-fuzzy friction estimation and
modelling.

I. INTRODUCTION
A rotary Inverted Pendulum System (RIPS) is one of the most
interesting and popular mechatronic systems that can exist in
many different forms [2]. It is a challenging problem in the
area of control engineering applications in linear and nonlin-
ear control, also can be called ‘‘Furuta Pendulum’’ [3]. Furuta
Pendulum is a simple structure that consists of a high torque
servo motor which rotates in the horizontal plane where the
pendulums are attached to the horizontal arm which is free to
rotate in the vertical plane [4]. The Furuta pendulum system
was developed by K. Furuta at Tokyo Institute of Technology
and was called the ‘‘TITECH pendulum’’ [5]. Due to the
gravitational forces and the coupling arising from the Coriolis
and centripetal forces, the system is underactuated, unstable
and extremely nonlinear [6]. The RIPS include a nonlinearity
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due to the frictions in the joints. RIPS is the most convenient
example to understand the influence of the joint frictions on
the design and performance of feedback controllers that aim
to stabilize the pendulum in the upright position. The frictions
can have high nonlinear values which result in steady-state
errors, limit cycles, and poor performance of the system [7].
It has an influence on the system’s response that should be
considered seriously [8]. Therefore, friction estimation has
the potential to ameliorate the quality and dynamic behavior
of the system [9].

In [1], the AFEMs were developed to estimate the friction
coefficients for TLRIP system. In this AFEM approach,
the joint accelerations of the TLRIP were classified into
three groups: low, medium and high. The adaptive friction
coefficients were optimized according to this acceleration
classification. In this paper, the NFFEMs were developed
using Neuro-Fuzzy (NF) system. The joint velocities and
accelerations of the TLRIP as the input variables were applied
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to NF. Membership functions of input and output variables
and fuzzy rules in the fuzzy estimation system were trained
using a Radial Basis Function Artificial Neural Network
(RBANN). The variable friction coefficients of NFFEMs
were estimated and verified through several simulation and
experimental results. These proposed friction estimation
models are compared with AFEMs in [1]. This work has three
important contributions to the literature. Firstly, all friction
models in the literature depend only on velocity, however,
the friction model developed here depends on both velocity
and acceleration. This approach has enabled us to obtain a
two-dimensional friction model. Secondly, the coefficients
of all friction models in the literature were constant when the
physical quantities changes. On the other hand, the coeffi-
cients of the friction models in this work vary depending on
the state of the velocity and acceleration. Hence, this friction
model allows for better estimation of the effects of friction
in different velocity and acceleration conditions. Thirdly,
much of existing papers in the literature have studied only the
frictions of the linearmotionwhich depends on linear velocity
and force. This paper examines frictions on the joints which
have hard rotational motions. This paper is organized as
follows: An analytical model and a numerical mathematical
model based on Matlab/SimMechanics of the TLRIP are
presented in section II. Section III presents the frictions’
estimation models. In Section IV, the Neuro-Fuzzy friction
estimation model is presented. The experimental results
have verified the effectiveness of the proposed approach in
Section V. Finally, Section VI summarizes the conclusion of
the work.

II. MATHEMATICAL MODELS AND SIMULATION
In this section, an analytic mathematical model and numeric
simulation model (SimMechanics) of the TLRIP is explained
in detail. The TLRIP is composed of a horizontal armwhich is
controlled by a torque servo motor, attached to three vertical
arms [10]. A balance mass mounted on the horizontal arm
to maintain the balance inertia of the system. The angle of
the horizontal arm (θ1) and the angles of three vertical arms
(θ2, θ3 and θ4) in TLRIP are illustrated in Figure 1. The three
rotary pendulums have two equilibrium points in upright and
downward positions. The motion equations of the TLRIP
system are obtained by Newton-Euler equations [11]. The
kinematic parameters and coordinate systems of the TLRIP
based on the Denavit-Hartenberg (DH) convention method
are shown in Figure 1. Model parameters and variables are
given in Table 1. The physical parameters and DH parameters
of the TLRIP are given in Table 2 and Table 3, respectively.

The dynamic torque equations of the TLRIP can be written
in a matrix form, as follows:

M (θ) θ̈ + C
(
θ, θ̇

)
+ τf

(
θ, θ̇

)
+ G (θ) = τi (1)

where θ, θ̇ and θ̈ are the vectors of joint angles, the angular
velocities and the angular accelerations respectively. M (θ)

is the mass matrix, C
(
θ, θ̇

)
is the Coriolis and Centripetal

force vector, τf
(
θ, θ̇

)
is the friction torque vector, G (θ) is the

FIGURE 1. Kinematics parameters of the TLRIP.

TABLE 1. Model parameters and physical variables of the TLRIP.

TABLE 2. Mass and inertıa parameters of the TLRIP.

TABLE 3. D-H parameters of the TLRIP.

gravity vector and τi is the command torque vector [12]. The
matrix expression in the dynamic equation (1), the following
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parameters are employed:

h1 = L21m1, h2 = L21m2, h3 = L21m3, h4 = L21m4

h5 = L22m2, h6 = L22m3, h7 = L22m4, h8 = L23m3

h9 = L23m4, h10 = L24m4, h11 = L1L4m4, h12=L1L3m4

h13 = L1L3m3, h14 = L2L3m3, h15 = L2L4m4

h17 = L3L4m3, h18=m2 + 2m3 + 2m4, h19 = m3 + 2m4

h20 = L1L3, h21 = L1L2, h22 = L2L3, h23 = L3gm3

h24 = L3gm4, h25 = L4gm4, h26 = L2g, h27 = L3g (2)

The elements of the mass matrix become as follows:

M11= Izz1 + Izz2 + Izz3 + Izz4 +
h1
4
+ h2 + h3 +

h5
8
+ h3

+
h17 cos θ4

2
−
h19h22 cos(2θ2+θ3)

2
+
h15 cos(θ3+θ4)

2

−
h15 cos (2θ2+θ3+θ4)

2
−
h17 cos (2θ2 + 2θ3+θ4)

2

− cos (2θ2+2θ3)×
(
Izz3
2
+
h8
8
+
h9
2

)
+
h6
2
+
h7
2
+
h8
8

− cos (2θ2)×
(
Izz2
2
+
h8
8
+
h6
2
+
h7
2

)
+
h19h22 cos θ3

2

− cos (2θ2+2θ3+2θ4)×
(
h10
8
+
Izz4
2

)
+
h9
2
+
h10
8

(3)

M12 =
h18h21 cos (θ2)

2
−
h11 cos (θ2 + θ3 + θ4)

2

−
h19h20 cos (θ2 + θ3)

2
(4)

M13 = − cos (θ2 + θ3)×
(
h13
2
+ h12

)
−
h11 cos (θ2 + θ3 + θ4)

2
(5)

M14 = −
h11 cos (θ2 + θ3 + θ4)

2
(6)

M22 = Izz2 + Izz3 + Izz4 +
h5
4
+ h7 +

h8
4
+ h9 +

h10
4

+ h17 cos (θ4)+ h17 cos (θ4)+ h15 cos (θ3 + θ4)

+ cos (θ3)× (h14 + 2h16) (7)

M23 = Izz3 + Izz4 + cos (θ3)×
(
h14
2
+ h16

)
+
h8
4
+ h9

+
h10
4
+ h17 cos θ4 +

h15 cos (θ3 + θ4)
2

(8)

M24 = Izz4 +
h10
4
+
h17 cos θ4

2
+
h15 cos (θ3 + θ4)

2
(9)

M33 = Izz3 + Izz4 +
h8
4
+ h9 +

h10
4
+ h17 cos θ4 (10)

M34 = Izz4 +
h10
4
+
h15 cos θ4

2
(11)

M44 = Izz4 +
h10
4

(12)

M31 = M13, M32 = M23, M41 = M14

M42 = M24, M43 = M34 (13)

The mass 4× 4 matrix is as follows below

M (θ) =


M11 M12 M13 M14
M21 M22 M23 M24
M31
M41

M32
M42

M33
M43

M34
M44

 (14)

The elements of Coriolis and centrifugal force are given as
follows:

c11 =
1
2

(
h21θ̇22 sin θ2 × h18

)
−

1
2

(
h22θ̇1θ̇3 sin θ3 × h19

)
+

1
4
×
(
θ̇1 sin (2θ2+2θ3)×

(
θ̇2+θ̇3

)
×(4Izz3+h8+4h9)

)
+

1
4
×
(
θ̇1 sin (2θ2 + 2θ3 + 2θ4)× (h10 + 4Izz4)

×
(
θ̇2 + θ̇3 + θ̇4

))
−

1
2

(
h15θ̇1 sin (θ3+θ4)×

(
θ̇2+θ̇3

))
−
1
2

(
h15θ̇2θ̇4sinθ4

)
+

1
2

(
h17θ̇1 sin (2θ3 + 2θ3 + θ4)×

(
2θ̇2+2θ̇3 + θ̇4

))
+

1
2

(
h15θ̇1 sin (2θ3 + θ3 + θ4)×

(
2θ̇2 + 2θ̇3 + θ̇4

))
+

1
4

(
θ̇1θ̇2 sin (2θ2)× (4Izz2 + h5 + 4h6 + 4h7)

)
+

1
2

(
h22θ̇1θ̇3 sin (2θ2 + θ3)×

(
2θ̇2 + θ̇3

)
× h19

)
+

1
2

(
h11 sin (θ2 + θ3 + θ4)×

(
θ̇2 + θ̇3 + θ̇4

)2)
+

1
2

(
h20 sin (θ2 + θ3)×

(
θ̇2 + θ̇3

)2
× h19

)
(15)

c21 = −
1
8
×

(
θ̇21 sin (2θ2 + 2θ3)× (4Izz3 + h8 + 4h9)

)
−

1
2

(
h15 sin (θ3+θ4)×

(
θ̇3+θ̇4

)
×
(
2θ̇2 + θ̇3 + θ̇4

))
−

1
8
×

(
θ̇21 sin (2θ2 + 2θ3 + 2θ4)× (h10 + 4Izz4)

)
−

1
8

(
θ̇21 sin (2θ2)× (4Izz2 + h5 + 4h6 + 4h7)

)
−

1
2

(
h22h19θ̇3

2 sin θ3 ×
(
2θ̇22 + 2θ̇23

))
−

1
2

(
h17θ̇24 sin (θ4)×

(
2θ̇2 + 2θ̇3 + θ̇4

))
−

1
2

(
h17θ̇21 sin (2θ2 + 2θ3 + 2θ4)

)
−

1
2

(
h15θ̇21 sin (2θ2 + θ3 + θ4)

)
−

1
2

(
h22h19θ̇21 sin (2θ2 + θ3)

)
(16)

c31 = −
1
8
×

(
θ̇21 sin (2θ2 + 2θ3 + 2θ4)× (h10 + 4Izz4)

)
−

1
8

(
θ̇21 sin (2θ2 + 2θ3)× (4Izz3 + h8 + 4h9)

)
+

1
4
×

(
h15 sin (θ3 + θ4)×

(
θ̇21 + 2θ̇2

2
))

−
1
2

(
h17θ̇24 sin (θ4)×

(
2θ̇2 + 2θ̇3 + θ̇4

))
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+
1
4

(
h22h19 sin (θ3)×

(
θ̇21 + θ̇

2
2

))
−

1
2

(
h17θ̇21 sin (2θ2 + 2θ3 + θ4)

)
−

1
4

(
h15θ̇21 sin (2θ2 + θ3 + θ4)

)
−

1
4

(
h22h19θ̇21 sin (2θ2 + θ3)

)
(17)

c41 = −
1
8
×

(
θ̇21 sin (2θ2 + 2θ3 + 2θ4)× (h10 + 4Izz4)

)
+

1
4

(
h17 sin (θ4)×

(
θ̇1 + 2θ̇2 + 4θ̇2θ̇3 + 2θ̇23

))
+

1
4
×

(
h15 sin (θ3 + θ4)×

(
θ̇21 + 2θ̇2

2
))

−
1
4

(
h17θ̇21 sin (2θ2 + 2θ3 + θ4)

)
−

1
4

(
h15θ̇21 sin (2θ2 + θ3 + θ4)

)
(18)

Also, the elements of the gravity vector are below:

g11 = 0 (19)

g21 = −
1
2
(h27h19 sin (θ2 + θ3))−

1
2
(h26h18 sin (θ2))

−
1
2
(h25 sin (θ2 + θ3 + θ4)) (20)

g31 = −(sin (θ2 + θ3))×−
(
h23
2
+ h24

)
−

1
2
(h25 sin (θ2 + θ3 + θ4)) (21)

g41 = −
1
2
(h25 sin (θ2 + θ3 + θ4)) (22)

τf 11, τf 21, τf 31 and τf 41 are the components of the friction
vector. The dynamic differential equationmodel of the TLRIP
can be expressed by matrix form as follow:

M11 M12 M13 M14
M21 M22 M23 M24
M31
M41

M32
M42

M33
M43

M34
M44



θ̈1
θ̈2
θ̈3
θ̈4

+

c11
c21
c31
c41



+


τf 11
τf 21
τf 31
τf 41

+

g11
g21
g31
g41

 =

τ

0
0
0

 (23)

In order to examine the effects of the inertia of the vertical
arms in the TLRIP, the dynamic equations of the TLRIP were
solved in different inertia cases. In the first case, the iner-
tia tensor of the links is neglected in the dynamic model.
In the second case, only the component Izz of the inertia
tensor is considered for each link. In the last case, full inertia
tensor iiI is taken into consideration in the dynamic model.
Figure 2 shows the joints’ positions of the TLRIP obtained
by the three different dynamic simulation models for the
initial condition of, θ1 = 0◦, θ2 = 20◦, θ3 = 30◦ and
θ4 = 40◦ The simulation results of the dynamic equations
with only the component Izz of the inertia tensor and the
full inertia tensor iiI are almost the same in low velocities of

FIGURE 2. Comparison of the joint positions of the TLRIP under different
usages of the inertia.

the arms. On the other hand, the dynamic model where the
inertia is neglected is not acceptable. In order to have a more
simplified dynamic model in the equilibrium control of the
TLRIP, only the component Izz of the inertia tensor can be
employed. On the other hand, the accurate dynamic model in
swing-up control of the TLRIP is very important to compute
the total energy of the pendulum. Therefore, the full inertia
tensor iiI should be taken into consideration in the dynamic
model of the pendulum with a complex structure. In order
to compare the analytic mathematical model, the numeric
dynamic model of the TLRIP was developed by using the
MATLAB/SimMechanics toolbox.

The MATLAB/SimMechanics model of the TLRIP is
shown in Figure 3. In the simulations, the first horizontal arm
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FIGURE 3. a) MATLAB/SimMechanics model of the TLRIP, b) solid model of the TLRIP.

angle position is fixed at zero position. Therefore, only the
vertical links joints (θ2, θ3 and θ4) are considered for friction
estimation analysis. In this way, the effect of friction on the
shaft of the motor-driven system on the joint dynamics of the
pendulum is prevented. The initial conditions of pendulums’
joint positions (θ2, θ3 and θ4) of MATLAB/SimMechanics,
mathematical model and experience are chosen as follows,
θ2 = 20.56◦,θ3 = 32.21◦ and θ4 = 45◦. The obtained
results from both the MATLAB/SimMechanics model and
the mathematical model match exactly. Figure 4 illustrates
a comparison of the three joint positions obtained from sim-
ulation (analytic mathematical model and the SimMechanics
model without frictions) and experimental results. As can be

FIGURE 4. Comparison of the joint positions obtained from the
mathematical model without frictions, SimMechanics model without
frictions and the real experimental setup.

seen from the figure, position errors of the joints in TLRIP
occurred highly since joint friction dynamics are ignored.
Therefore, the friction models should be determined explic-
itly to obtain the most accurate dynamic model of the pendu-
lums. The friction estimation models in the literature will be
described in the next section.

III. FRICTION ESTIMATION MODELS
The joint frictions are dependent on many physical param-
eters, such as position, velocity and acceleration of the
joints [1]. The changes in the positions, velocities and the
accelerations of the pendulums can change the friction’s char-
acteristics in a complex manner [13]. The dynamic behavior
of the joints’ frictions is simulated with the different models
in the existing literature. Most of these models are defined by
friction coefficients. Therefore, it is necessary to develop an
accurate friction model to estimate the friction’s coefficients
in the joints in accordance with the dynamic behavior of
positions, velocities and accelerations. NCFM, LFM, and
NLFM estimation models were given in the papers [6], [17],
[19]–[21]. To estimate the constant friction coefficients in the
pendulum’s joints of the TLRIP, different friction estimation
models (NCFM, LFM, and NLFM) were examined in detail
in [10]. These friction models consist of different important
components. Each component takes care of certain aspects of
the friction force in the joints [14], [15].

Mostly used friction model in the literature is the gen-
eralized static friction model which depends only on the
velocity (v). It describes only the steady-state behavior of
the friction force Ff in the sliding regime and it is given the
equation below [16].

Ff = σ2v+ sign(v)

(
Fc + (Fs − Fc) exp

(
−

∣∣∣∣ vVs
∣∣∣∣δ
))

(24)

The first term represents the viscous friction force and
the second term equals the Stribeck effect. Fs, Fc, Vs, δ
and σ2 are the static force, the Coulomb force, the Stribeck
force, the shape factor and the viscous friction coefficient,
respectively. this model has the discontinuity at velocity
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reversal which causes errors or even instability during friction
compensation.

A. NON-CONSERVATIVE FRICTION MODEL
NCFM is a classical friction model. It has been used in the
first works related to the control of pendulums to estimate
the friction in the joints, which based only on one type of
friction coefficient [17]. The non-conservative torques due
to natural damping of the pendulums called viscous friction
torque and it is introduced through Rayleigh’s dissipation
function Ð(θi) [6]. The non-conservative friction torque is
given in equation (25).

Fv =
dÐ(θi)
dθi

=
d
dθi

(
1
2
Cpθ̇i

2
)
= Cpθ̇i (25)

where Cp is the viscous friction coefficient and θ̇i is the
angular velocity of the i-th pendulum.

B. LINEAR FRICTION MODEL
LFM is a combination of the Viscous friction presented
in the non-conservative model and another type of friction
called Coulomb friction [18], the LFM, which is presented by
equation (26).

Fl = Fv + Fc (26)

where Fc is the Coulomb frictions and Fv is the viscous
friction torquewhich is proportional to the angular velocity θ̇i,
and given by equation (27) [19].

Fv = Biθ̇i (27)

where Bi are the constant viscous coefficients. The Coulomb
friction is proportional to the normal load force Nf which is
derived as follows:

Nf = mω2l + mg cos (θ) (28)

l is the distance from the pendulum rotation center to themass
center.

The pendulum parameters are given in Figure 5. The
Coulomb frictions Fc is given by equation (29).

Fc = Ci sgn
(
θ̇i
)
.(ml θ̇2i +mg cos(θi)) (29)

FIGURE 5. Pendulum parameters.

where Ci are the dynamic friction coefficients and sgn(.) is
the signum function.

C. NON-LINEAR FRICTION MODEL
The new researches in the field of friction estimation have
found that the frictions in the joints can be affected by several
factors such as temperature, force/torque, position, velocity
and acceleration. Since friction has a complex nonlinear
nature [20], the LFM becomes an oversimplified model in
friction structure. The TLRIP system can move in trajectories
which have high and suddenly changing, position speed,
acceleration and jerk. The LFM cannot cover these character-
istics, especially at sudden motion reversal [21]. Therefore,
the NLFM reflects a better description of the joint friction
characteristics. This model can be described in the following
nonlinear equations (30) [22].

τf = fo + fc sgn
(
θ̇i
)
+ fvθ̇i + fa atan

(
fbθ̇i

)
(30)

where fo the zero-drift error of friction torque, fc is the
Coulomb friction coefficient, fv is the viscous friction coef-
ficient. faatan

(
fbθ̇i

)
present the experimental friction in zero

velocity behavior, which fa and fb are the experimental fric-
tion coefficients. θ̇i is the angular velocity, sgn is the signum
function and atan is the arctangent function, In fact, it appears
that this nonlinear friction model is derived from the gen-
eralized friction model (equation (24)). The only difference
between the two equations (24 and 30), the third term in equa-
tion 24 is modelled with the first and fourth term in equa-
tion (30). The reason for using the arctangent function in
equation (30) is to overcome the discontinuity at zero velocity
equation (24).

D. ADAPTIVE FRICTION MODEL
ZB Hazem et al. [1] developed the AFEM to estimate the
variable joint frictions in TLRIP. More details about the
friction estimation model can be found in [1]. This model
takes into consideration the experimental joint velocity and
accelerations. These accelerations can be grouped into three
categories (low, medium and high). The adaptive friction
coefficients are tuned using pattern search algorithm and
these estimated coefficients were verified experimentally.

In the next section, the proposed Neuro-Fuzzy friction
estimation models will be presented.

IV. IMPLEMENTATION OF NEURO-FUZZY FRICTION
ESTIMATION MODEL
In this work, a fuzzy logic inference system is developed
to estimate the friction coefficients in the pendulum joints
of the TLRIP. For each joint, an FLC (Fuzzy Logic Con-
troller) implemented to estimate the friction coefficients,
Figure 6 depicts the implementation of the FLC in the joints
of the TLRIP. Two inputs of FLC are the joints velocities and
accelerations. The typical steps in developing the FLC system
involve fuzzification, rule formation and defuzzification is
explained briefly in this section.
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TABLE 4. Selection of range for the input and output variables.

FIGURE 6. Simulink implementation of FLC in each joint of the TLRIP.

The input variables such as velocities and accelerations are
suitably partitioned and converted into linguistic variables,
as following (NL-negative medium, Z-zero, PM-positive
medium, PH- positive high, VS- very slow, S-slow, F-fast,
VF- very fast, M- medium). The output variables (friction
coefficients of the models) are partitioned and represented as
fuzzy sets with linguistic terms as following (M- medium,
L-large, VL-very large, H- high and VH- very high). The
maximal absolute experimental velocities and acceleration
of the pendulums’ joints are 1000 deg/s and 8000 deg/s2

respectively. The membership functions and ranges of the
input variables are obtained based on the experimental veloc-
ities and accelerations classification. Also, the membership
functions and ranges of the output variables is obtained rel-
atively from friction coefficients of the Adaptive Friction
Estimation Model (AFEM) given in Tables 7, 8, and 9 in
section 5. The fuzzy rules are the most important part of the
entire method, which affect the output results crucially. They
are set based on the experimental velocities and acceleration
classification knowledge and results obtained theoretically by
the AFEM for each class. An example of the range selec-
tions for the input and output variables in LFM are shown
in Table 4. Gaussian membership functions were used for
graphical inference of the input and the output variables.
As an example of many membership functions of the joints
in the friction models used here, the membership functions of
the first joint in LFM are illustrated in Figure 7. A fuzzy rule

is a standard form of expressing knowledge based on the logic
of IF and Then functions. A set of rules have been constructed
based on the input variables (velocities and accelerations) and
output variables (friction coefficients) for the three joints of
TLRIP. The fuzzy rules used here are given in Table 5. The
FLC rules for each of pendulum joint were obtained based on
the experimental results from velocities and accelerations in
AFEM [1].

TABLE 5. (a). FLC rules for pendulums’ joints.

The defuzzification is the conversion of a fuzzy quantity to
a crisp value. The centroid method was applied for defuzzifi-
cation. Figure 8 shows the FLC surface relationship between
velocities, accelerations and friction coefficients of the three
joints in LFM.

The friction coefficients obtained by the fuzzy logic infer-
ence system was trained by using a Radial Basis Function
Artificial Neural Network (RBANN). The sampling rate is
chosen as 1khz (sampling time) for the 40s (experiment
test time) the velocities and accelerations inputs data are
40000 simples, respectively. the RBFNN method produces
better training of a big number of data. RBFNN have the
advantages of an easy design (just three-layer architecture),
good generalization, and high tolerance of input noises and
the ability of online learning. RBFNNs are simpler than other
networks existing in the literature [23], [24].

This network uses the Bayesian Regularization (BR) algo-
rithm [25] to treat the joint velocities and accelerations as
inputs and the resultant frictions coefficients of fuzzy logic
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FIGURE 7. FLC membership functions of the first joint in LFM. (a) Velocity
membership functions. (b) Acceleration membership functions.
(c) Friction coefficient (B) membership functions. (d) Friction coefficient
(C) membership functions.

as targets. The Bayesian Regularization (BR) algorithm per-
formance is dependent by the minimal Means Squared Error
(MSE). The RBANN model expressed by two neurons in the
input layer, 10 neurons in the hidden layer, and two neurons
in the output layer. The RBANN model is developed in each
pendulum’s joint of the TLRIP. Figure 9 illustrates the block
diagram of the NFFEM architecture for the TLRIP. The filter
seen in figures 9 and 10 is an IIR (Infinite Impulse Response)
filter which is explained in section V-B. Where θi, θ̇i and θ̈i
are the joints’ angles positions, the angular velocities and the
angular accelerations of the i-th pendulums.

The experimental and simulation results will be discussed
in the next section.

V. EXPERIMENTAL SETUP AND RESULTS
A. DATA COLLECTION
The horizontal arm of the TLRIP is driven by a direct
drive brushless DC torque motor (Type: TMH-130-050-NC).
In this type of motor, since there is no use of transmission or

FIGURE 8. FLC surface in LFM for pendulums joints. (a) Joint 2 (b) Joint 3
(c) Joint 4.

gearbox, the frictions in the horizontal arm can be considered
negligible. During the collection of the experimental data, the
arm joint θ1 is fixed at zero position. The pendulums’ angles
(θ2, θ3 and θ4) are measured with three encoders having a
resolution of 2048 pulses per revolution. The signals obtained
from the encoder passes through the slip ring mounted in
the joints. A dSPACE-DS1103 controller board treats the
received signals from the encoders. The friction in the joints
of the TLRIP depends on their velocities and the acceler-
ations. In this case, the friction coefficients of the AFEM
andNFFEM should be determined experimentally. The initial
positions of the pendulums will be taken in cases with the
value of θ2 at 180 degrees along with θ3 and θ4 at an angle
of 0 degrees. The experimental hardware configuration is
shown in Figure 10. In this work, the frequency counting
technique [26] was used to obtain velocity and acceleration
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FIGURE 9. Block diagram of the NFFEM architecture for the TLRIP.

FIGURE 10. Block diagram of the experimental hardware configuration
structure.

from an incremental encoder. This technique is useful for
medium and high speeds but degrades in performance at low
speed since the relative error increases at low speed. For this
reason, a second-order IIR filter [27], [28] was used to smooth
the signal.

B. RESULTS AND DISCUSSION
In the AFEM, the Pattern Search (PS) method was used to
optimize the frictions coefficients. The PS method allows
the optimization of a number of parameters at the same
time [29]. The simulation results obtained from the AFEMs
and NFFEMs based on NCFM, LFM and NLFM were com-
pared with the experimental results. For each joint, position
RMSEs between these simulation and experimental results
were calculated.

1) AFEM
Table 6 presents the classification of joints accelerations
and their values into different groups as follows: High
[0-7s], medium [7-14s] and low [14-40s] for joint of the first
pendulum; high [0-6s], medium [6- 16s] and low [16-40s] for
joint of the second pendulum 2; low [0-1.3s], high [1.3- 4.5s],
medium [4.5-13s] and low [13-30s] for joint of the Third

TABLE 6. Classification of joints accelerations.

TABLE 7. Adaptive friction coefficients obtained by NCFM.

TABLE 8. Adaptive friction coefficients obtained by LFM.

pendulum 3. Tables 7, 8, and 9 present the adaptive friction
coefficients using the NCFM, LFM, and NLFM, respectively.
Where Cp is the viscous friction coefficient for each pen-
dulum joint of the ANCFM. Bi and Ci are the constants of
Viscous and Coulomb friction coefficients for each pendulum
joint of the ALFM. Also, the ANLFM depend by: fo is the
zero-drift error of friction torque, fc is the Coulomb friction
coefficient, fv is the viscous friction coefficient. fa and fb
are the experimental friction coefficients of each pendulum
joint.

2) NFFEM
Figure 11, 12 and 13 illustrate the friction coefficients
obtained by the: Neuro-Fuzzy Non-Conservative Friction
Model (NFNCFM), Neuro-Fuzzy Linear Friction Model
(NFLFM) and Neuro-Fuzzy Non-Linear Friction Model
(NFNLFM) for the joints of the TLRIP, respectively.
Figure 14 illustrates the angular position comparison between
experimental and NFNLFM simulation results. As can be
seen from the figure, a high estimation performance is pro-
duced with the use of NFNLFM for each joint.
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TABLE 9. Adaptive friction coefficients obtained by NLFM.

FIGURE 11. Friction coefficients (C = [Nm]) obtained by NFNCFM for
pendulums joints.

The joint position RMSEs between the simulation and
experimental results of the AFEM and NFFEM were cal-
culated. For comparison purpose, these position RMSEs
are given in Table 10. According to the calculated position
RMSEs, the NFNLFM produces more accurate results than

FIGURE 12. Friction coefficients (C = [Nm] and B = [Nm.s/rad] ) in NFLFM
for pendulums joints.

TABLE 10. Position RMSEs in AFEMs and NFFEMs.

TABLE 11. Comparison ın terms of RMSE Percentage between NFNLFM
and other friction models.

the ANCFM, ALFM, ANLFM, NFNCFM, and NFLFM.
In order to see the NFNLFM performance compared with
other friction models, percentages of position RMSEs were
computed for each joint and they are given in Table 11.
Considering the RMSEs of position in all joints, NFNLFM
between 11.56 of percentage and 94.55 of percentage yields
better results.
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FIGURE 13. Friction coefficients in NFNLFM (fo, fc, fafb = [Nm] and fv [Nm · s/rad] ): (a) Joint 2, (b) Joint 3 and (c) Joint 4.
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FIGURE 14. Angular position comparison between experimental and
NFNLFM simulation results.

VI. CONCLUSION
In this paper, a novel NFFEMs is developed based on NCFM,
LFM and NLFM to estimate the joint friction coefficients
in the TLRIP system. The simulation results obtained from
NFFEMs were compared with AFEMs. For wide ranges of
velocity and acceleration of joints, the variable friction coef-
ficients were estimated with the NFFEMs and AFEMs. All
of the friction models were verified and compared using the
calculated position RMSEs. According to the performance
comparison, the NFNLFM in NFFEMs produced the best
results for all joints of the TLRIP. In future works, the fuzzi-
fication ranges and rules of the NF system will be tuned
with evolutionary algorithms to enhance the estimation per-
formance of the NFFEMs. Furthermore, more inputs such as
jerks and snaps of the joints will be applied to the NF system
and the TLRIP system will be controlled using the proposed
friction models.
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