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ABSTRACT The interval-valued Pythagorean fuzzy (IVPF) sets, describing the membership and non-
membership degrees from interval values, can address uncertain information, while the normal fuzzy
number (NFN) can depict normal distribution information in anthropogenic activity and natural environment.
By combining the advantages of both operations, in this study, we proposed the interval-valued Pythagorean
normal fuzzy (IVPNF) sets by introducing the NFN into IVPF environment. Firstly, we defined the concep-
tion, the operational laws, score function, accuracy function of IVPNF sets. Secondly, we presented four
information aggregation operators to aggregate IVPNF information, including the IVPNF weighted aver-
aging (IVPNFWA) operator, IVPNF weighted geometric (IVPNFWG) operator, the generalized IVPNFWA
operator, and the generalized IVPNFWG operator. In addition, we analyzed some desirable properties of
monotonicity, commutativity, and idempotency for the proposed four operators. Finally, a numerical example
on multi-attribute decision-making problem is given to verify the practicality of the proposed operators, and
the comparative and sensitive analysis are used to show the effectiveness and flexibility of our proposed
approach.

INDEX TERMS Normal fuzzy number, interval-valued Pythagorean normal fuzzy, information aggregation
operators, multi-attribute decision-making.

I. INTRODUCTION
In our daily life, most of human beings are often faced
with multiple attribute decision-making (MADM) problems,
which may involve in multiple alternatives and multiple eval-
uation elements. Due to the complexity of human social
activities and the uncertainty of natural environment, the way
to deal with such uncertain information has become the
key to solve the MADM problems. Zadeh [1] proposed a
membership-based fuzzy set (FS), which effectively char-
acterized the fuzzy information and uncertain environment,
and thus benefit to recommend a better decision. Further-
more, Atanassov [2] extended the Zadeh’s FS to intuitionistic
fuzzy sets (IFSs) containing three elements, i.e., member-
ship degree, non-membership degree and hesitancy degree.
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The above intuitionistic fuzzy set has been extensively stud-
ied and extended into different types of intuitionistic fuzzy
sets, including interval IFSs [3], hesitant IFSs [4], trian-
gular IFSs [5], trapezoidal IFSs [6] and normal IFSs [7],
etc. IFSs indicate support, opposition and neutrality of the
decision-makers to the same attribute depending on member-
ship degree, non-membership degree and hesitancy degree,
and characterize fuzzy information by integrating the above
three aspects. The characterization of fuzzy information by
Atanassov’s IFSs is more comprehensive and detailed than
that by Zadeh’s FS for the single aspect of membership
degree. However, IFSs has certain deficiencies shown as
follows. As stipulated by IFS, the sum of membership degree
and non-membership degree should be less than or equal
to the value number 1. When people independently assign
membership degree and non-membership degree to the same
attribute in the actual decision-making process, the sum will
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be greater than the value number 1, while the square sum will
not exceed the value number 1, but the IFSs is inapplicable
in this case. For the purpose of characterization of such fuzzy
information, Yager and Abbasov [8] and Yager [9] extended
intuitionistic fuzzy sets into Pythagorean fuzzy sets (PFSs),
so that the decision-makers could characterize fuzzy informa-
tionmore effective andmakemore accurate decisions without
modifying original fuzzy information into information in the
form of intuitionistic fuzzy.

Since Yager put forward PFSs, lots of studies inves-
tigated to combine the PFSs and other types of fuzzy
sets to extend the PFSs. In the terms of basic theory,
Hussain et al. [10] presented some Rough Pythagorean fuzzy
ideals to extend the PFS. Verma and Merigo [11] proposed
two new generalized similarity measures between PFSs using
cosine and cotangent functions. Hussian and Yang [12]
developed a method to calculate the distance between PFSs
based on the Hasudorff metric. Xian et al. [13] defined a
new trapezoidal Pythagorean fuzzy linguistic PRs (TrPFL-
PRs), and proved some properties of TrPFLPRs. Zhou and
Yang [14] defined the concept of single granulation hesitant
Pythagorean fuzzy rough sets (SGHPFRSs). In the terms
of information aggregation operators, Liang et al. [15] pre-
sented Pythagorean fuzzy geometric weighted Bonferroni
mean PYGWBM operator, and developed a MADM based
on PYGWBM operator and projection. Tang et al. [16] pro-
posed dual hesitant Pythagorean fuzzy sets (DHPFSs), and
developed the dual hesitant Pythagorean fuzzy (DHPF) gen-
eralized weighted Heronian mean (DHPFGWHM) operator
and DHPF generalized geometric weighted Heronian mean
(DHPFGGWHM) operator. Garg [17] proposed the fam-
ily of generalized Pythagorean fuzzy (HPF) Einstein opera-
tor. Khan et al. [18] presented the Pythagorean trapezoidal
uncertain linguistic fuzzy (PTULF) Einstein weighted aver-
aging (PTULFEWA) operator, the PTULF Einstein ordered
weighted averaging (PTULFEOWA) operator, and the
PTULF Einstein hybrid weighted averaging (PTULFEHWA)
operator. Wei et al. [19] developed dual hesitant Pythagorean
fuzzy (DHPF) Hamy mean (DHPFHM) operators, such as
the DHPF weighted Hamy mean (DHPFWHM) operator
and the DHPF weighted dual Hamy mean (DHPFWDHM)
operator. Abdullah and Mohd [20] proposed the Pythagorean
fuzzy Hamacher Choquet integral (PFHCI) average (PFH-
CIA) operators and PFHCI geometric PFHCIG) operators.
Abbas et al. [21] defined the concept of Cubic Pythagorean
fuzzy numbers (CPFNs), and presented Cubic Pythagorean
fuzzy (CPF)weighted averaging (CPFWA) operator, andCPF
weighted geometric (CPFWG) operator. Shakeel et al. [22]
proposed Pythagorean trapezoidal fuzzy (PTF) ordered
weighted averaging (PTFOWA) operator and PTF hybrid
averaging (PTFHA) operator. Deng et al. [23] by introduc-
ing the Hamy mean (HM) operator into the 2-tuple lin-
guistic Pythagorean fuzzy numbers (2TLPFNs), developed
the family of the 2-tuple linguistic Pythagorean fuzzy infor-
mation aggregation operator. Xian et al. [24] developed a
new trapezoidal Pythagorean fuzzy linguistic entropic, and

analyzed its operational rules and information aggregation
operators. Teng et al. [25] by introducing the power aver-
age (PA) operator and Maclaurin symmetric mean (MSM)
operator into Pythagorean fuzzy linguistic (PFL), presented
some power MSM aggregation operators for PFL informa-
tion. Garg [26] presented some neutrality operation-based
Pythagorean fuzzy geometric aggregation operators. Sarkar
and Biswas [27] presented archimedean t-conorm and
t-norm-based Pythagorean hesitant fuzzy weighted averaging
operator and weighted geometric operator. Jana et al. [28]
introduced the Dombi operations into PFS, developed the
family of Pythagorean fuzzy Dombi aggregation operators.

However, owing to the limitation of human cognition
and the complexity of the objective world, it is difficult
for a human to exactly express the membership and non-
membership degrees by crisp numbers, but can be shown by
the interval numbers [29]. Interval value PFS (IVPFS), as the
expansion of PFS, was presented by Peng and Yang [29],
and caused widespread attention of many scholars. Accord-
ing to the basic theory of Interval value PFS, many
scholarships extended and fulfil the theory of IVPFS.
Garg [30] introduced the exponential operational laws into
the interval-valued Pythagorean fuzzy set (IVPFS), and pro-
posed some new exponential operational rules and informa-
tion aggregation operators of IVPFS. Du et al. [31] defined
the interval-valued Pythagorean fuzzy linguistic variable set
(IVPFLVS), and presented the interval-valued Pythagorean
fuzzy linguistic (IVPFL) weighted averaging (IVPFLWA),
IVPFL ordered weighted averaging (IVPFLOWA), IVPFL
hybrid averaging, and generalized IVPFL ordered weighted
average operators. Tang et al. [32] combined the Muir-
head Mean (MM) operator and dual MM (DMM) with the
interval-valued Pythagorean fuzzy numbers (IVPFNs), and
proposed the family of interval-valued Pythagorean fuzzy
Muirheadmean operators based onMMandDMMoperators.
Yang and Pang [33] developed the concepts of the hesitant
interval-valued Pythagorean fuzzy set (HIVPFS) are defined,
and presented a series of aggregation operators based on
HIVPFS. Wang et al. [34] developed a series of the interval-
valued 2-tuple linguistic Pythagorean fuzzy Maclaurin sym-
metric mean operator. Liang et al. [35] developed a series
of interval-valued Pythagorean fuzzy Frank power (IVPFFP)
aggregation operators. Wei et al. [36] by using Maclau-
rin symmetric mean (MSM) operator, developed IVPF
Maclaurin symmetric mean and IVPF weighted Maclau-
rin symmetric mean operators. Rahman and Abdullah [37]
developed some operators under interval-valued Pythagorean
fuzzy (IVPF) environment, including induced generalized
IVPFEinstein orderedweighted geometric (I-GIVPFEOWG)
operator and induced generalized IVPF Einstein hybrid
weighted geometric (I-GIVPFEHWG) aggregation operator.
Liu et al. [38] introduced a new decision-making method
based on interval-valued Pythagorean hesitant fuzzy sets
to select third-party reverse logistics providers (3PRLs).
Haktanir and Kahraman [39] presented an MDAM method
combining Quality function deployment (QFD) with IVPFS
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to evaluate solar photovoltaic technology development.
Chen [40] developed an inferior ratio(IR)-based assignment
method under IVPF information environment to evaluate risk
level of enterprise technological innovation. Yu et al. [41]
presented a group MADM method for sustainable supplier
selection using extended TOPSIS based on IVPF sets.

Furthermore, in the process of actual decision-making,
people will also be exposed to much information obeying
normal distribution which is derived from a large number
of human activities and natural phenomena obeying normal
distribution, e.g., ‘‘the service life of different products’’,
‘‘measurement errors’’, and ‘‘the law of weather changing
with the seasons’’, etc. However, it is impossible to character-
ize such kind of fuzzy information with the existing hesitant
fuzzy numbers, triangular fuzzy numbers and trapezoidal
fuzzy numbers, etc. For this reason, Yang and Ko [42] put
forward a concept of normal fuzzy number (NFN) to describe
the above-mentioned fuzzy phenomena. As shown by the
comparison results, normal fuzzy numbers boasted high-
order derivative continuity and were closer to human thinking
in decision-making [43]. Based on this, some scholars
developed some new notions by combining the NFN and
intuitionistic fuzzy sets. Wang et al. [44] defined the
concept of intuitionistic normal fuzzy (INF) sets and pre-
sented some information aggregation under INF environ-
ment. Wang et al. [45] developed a series of induced
ordered weighted aggregation operators for INF. Liu and
Teng [46] defined some concepts of normal interval-valued
intuitionistic fuzzy numbers (NIVIFNs). Liu and Liu [47]
proposed some INF operators based on Bonferroni mean.
Yang et al. [48] proposed two dynamic intuitionistic nor-
mal fuzzy weighted operators. Moreover, Li et al. [49] pre-
sented dynamic interval-valued INF aggregation operators.
Liu [50] proposed some NIF operators with power interac-
tion. Zhang et al. [51] proposed some INF Heronian mean
operators.

Inspired by the above survey of related studies, we under-
stand that PFS, as an extension of IFS, describes fuzzy infor-
mation in a wider way than IFS. Compared with hesitant
fuzzy numbers, triangular fuzzy numbers and trapezoidal
fuzzy numbers, NFN is closer to human thinking in decision-
making. INF sets have been presented in previous studies, but
PFS or IVPFS based on NFN has not yet been reported.

In this study, we proposed a new fuzzy set, called interval
value Pythagorean normal fuzzy set (IVPNFS). We assume
that this new set for operation can support the multi-attribute
decision making and improve the decision performance. The
main contributions of this paper are summarized as follows:

(1) The concept of IVPNFN and its based operational rules
are defined, the related properties of the operational rules are
proved, and the score function and accuracy function under
IVPNF environment is proposed.

(2) The method for measurement of the distance between
IVPNFNs is defined, including the method for measurement
of the distance between IVPNFNs based on Euclidean dis-
tance and Hamming distance, and the compliance of the

distance measurement method to the three elements of dis-
tance is proved.

(3) Some information aggregation operators in IVPNF
environment are proposed, including IVPNF weighted
averaging (IVPNFWA) operator, IVPNF weighted geo-
metric (IVPNFWG) operator, the generalized IVPNFWA
(GIVPNFWA) operator, and the generalized IVPNFWG
(GIVPNFWG) operator, and commutativity, idempotency,
and boundedness properties of the above aggregation oper-
ators are demonstrated.

(4) A MADM method based on IVPNFW aggregation
operator and TOPSIS in IVPNF environment is proposed.

The rest parts are arranged as follows: In Part 2, the basic
concepts of NFN and IVPFS are reviewed. In Part 3, PNFS
and some of its operational rules are proposed. In Part 4,
Euclidean distance andHamming distance between IVPNFSs
are put forward. In Part 5, some information aggregation oper-
ators under IVPNFS environment are presented. In Part 6,
a MADM method based on IVPNFS weighted information
aggregation operators and TOPSIS is proposed. In Part 7,
an example is given to demonstrate the effectiveness of the
proposed method. In Part 8, some conclusions are made.

II. PRELIMLINARIES
A. THE NORMAL FUZZY NUMBER
Definition 1 [42]: Let R be a real number set, the membership
function of fuzzy number

Q̃(x) = e−(
x−α
σ )

2
(σ > 0) (1)

is called as a normal fuzzy number (NFN) Q̃ = (α, σ ),
the normal fuzzy number set (NFNS) is denoted by Ñ .
Definition 2 [52]: let Q̃1, Q̃2 ∈ Ñ , denoted by

Q̃1 = (α, σ ), Q̃2 = (β, τ ), then
(1) λQ̃1 = λ(α, σ ) = (λα, λσ ), λ > 0
(2) Q̃1+Q̃2 = (α, σ )+(β, τ ) = (α+β, σ+τ )
Definition 3 [52]: let Q̃1, Q̃2 ∈ Ñ , denoted by

Q̃1 = (α, σ ), Q̃2 = (α, σ ), then the distance between Ã and
B̃ can be defined as

d2
(
Ã, B̃

)
= (α−β)2+

1
2
(σ−τ)2 (2)

B. THE INTERVAL-VALUED PYTHAGOREAN FUZZY
NUMBER
Definition 4 [29]: Let X be a non-empty set of the universe,
an interval-valued Pythagorean fuzzy A in X defined by

A =
〈
x,
[
µLA(x), µ

U
A (x)

]
,
[
νLA (x), ν

U
A (x)

]〉
where

[
µLA(x), µ

U
A (x)

]
and

[
νLA (x), ν

U
A (x)

]
respectively, rep-

resent the membership and non-membership degree of
A,
[
µLA(x), µ

U
A (x)

]
∈ [0, 1],

[
νLA (x), ν

U
A (x)

]
∈ [0, 1], and

0 ≤ uuA(x)
2
+vuA(x)

2
≤ 1, the degree of indeterminacy is

determined as

πA(x) =
[
πLA (x), π

U
A (x)

]
=

√1−
(
µUA (x)

)2
−
(
νUA (x)

)2
,√

1−
(
µLA(x)

)2
−
(
νLA (x)

)2
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Peng and Yang called A =
〈[
µLA, µ

U
A

]
,
[
νLA , ν

U
A

]〉
as an

interval-valued Pythagorean fuzzy number (IVPFN).
Definition 5 [29]: Let A =

〈[
µLA, µ

U
A

]
,
[
νLA , ν

U
A

]〉
, A1 =〈[

µL1 , µ
U
1

]
,
[
νL1 , ν

U
1

]〉
, and A2 =

〈[
µL2 , µ

U
2

]
,
[
νL2 , ν

U
2

]〉
be

any three IVPFNs, λ be a non-negative real number, then

(1) A1⊕ A2 =


√(µL1 )2+(µL2 )2−(µL1 )2·(µL2 )2,√(

µU1

)2
+
(
µU2

)2
−
(
µU1

)2
·
(
µU2

)2
,[

νL1 ν
L
2 , ν

U
1 ν

U
2

]
,

(2) A1⊗A2 =


[
µL1µ

L
2 , µ

U
1 µ

U
2

]
,√(

νL1

)2
+
(
νL2

)2
−
(
νL1

)2
·
(
νL2

)2
,√(

νU1

)2
+
(
νU2

)2
−
(
νU1

)2
·
(
νU2

)2
,

(3) λA =


[√

1−
(
1−
(
µLA

)2)λ
,

√
1−
(
1−
(
µUA

)2)λ]
,[(

νLA

)λ
,
(
νUA

)λ]
,

(4) Aλ =


[(
µLA

)λ
,
(
µUA

)λ]
,[√

1−
(
1−
(
νLA

)2)λ
,

√
1−
(
1−
(
νUA

)2)λ]
,

Definition 6 [29]: Let A =
〈[
µLA, µ

U
A

]
,
[
νLA , ν

U
A

]〉
be an

IVPFN, its score function is defined as

S(A) =
1
2

((
µLA

)2
+

(
µUA

)2
−

(
νLA

)2
−

(
νUA

)2)
and its accuracy function is defined as

H (A) =
1
2

((
µLA

)2
+

(
µUA

)2
+

(
νLA

)2
+

(
νUA

)2)
for any two IVPFNs, A1 =

〈[
µL1 , µ

U
1

]
,
[
νL1 , ν

U
1

]〉
, and

A2 =
〈[
µL2 , µ

U
2

]
,
[
νL2 , ν

U
2

]〉
, then

(1) If S(A1) > S(A2), then A1 > A2;
(2) If S(A1) = S(A2), then
If H (A1) > H (A2), then A1 > A2
If H (A1) = H (A2), then A1 = A2

III. THE INTERVAL-VALUED PYTHAGOREAN NORMAL
FUZZY NUMBER AND ITS OPERATIONS
Based on the conceptions and operations of IVPFN and NFN,
we defined the interval-valued Pythagorean normal fuzzy
number (IVPNFN) and its operations.
Definition 7: Let X be an ordinary fixed non-empty set and

(α, σ ) ∈ Ñ , Ã =
〈
(α, σ );

[
µLA, µ

U
A

]
,
[
νLA , ν

U
A

]〉
is a IVPNFN

when its membership function is defined as[
µLA, µ

U
A

]
=

[
µLAe
−( x−α

σ
)2 , µUA e

−( x−α
σ

)2
]
, x ∈ X (3)

and non-membership function is defined as

[
νLA , ν

U
A

]
=

(1−(1−νLA )e−( x−ασ )2
)
,(

1−(1−νUA )e
−( x−α

σ
)2
) , x ∈ X (4)

where
[
µLA(x), µ

U
A (x)

]
∈ [0, 1],

[
νLA (x), ν

U
A (x)

]
∈ [0, 1], and

0 ≤ uuA(x)
2
+vuA(x)

2
≤ 1.

Definition 8: Let Ã =
〈
(α, σ );

[
µLA, µ

U
A

]
,
[
νLA , ν

U
A

]〉
,

Ã1 =
〈
(α1, σ1);

[
µL1 , µ

U
1

]
,
[
νL1 , ν

U
1

]〉
, and Ã2 = 〈(α2, σ2);[

µL2 , µ
U
2

]
,
[
νL2 , ν

U
2

]〉
be any three IVPFNs, λ be a

non-negative real number, then

(1)Ã1⊕Ã2 =


(α1+α2, σ1+σ2);√(µL1 )2+(µL2 )2−(µL1 )2·(µL2 )2,√(

µU1

)2
+
(
µU2

)2
−
(
µU1

)2
·
(
µU2

)2
,[

νL1 ν
L
2 , ν

U
1 ν

U
2

]

,

(2)Ã1⊗Ã2 =


(α1·α2, σ1·σ2);

[
µL1µ

L
2 , µ

U
1 µ

U
2

]
,√(νL1 )2+(νL2 )2−(νL1 )2·(νL2 )2,√(

νU1

)2
+
(
νU2

)2
−
(
νU1

)2
·
(
νU2

)2

,

(3)λÃ =


(λα, λσ);[√

1−
(
1−
(
µLA

)2)λ
,

√
1−
(
1−
(
µUA

)2)λ]
,[(

νLA

)λ
,
(
νUA

)λ]
,

(4)Ãλ =


(
αλ, σ λ

)
;

[(
µLA

)λ
,
(
µUA

)λ]
,[√

1−
(
1−
(
νLA

)2)λ
,

√
1−
(
1−
(
νUA

)2)λ]
;

Proposition 1: Let Ã =
〈
(α, σ );

[
µLA, µ

U
A

]
,
[
νLA , ν

U
A

]〉
,

Ã1 =
〈
(α1, σ1);

[
µL1 , µ

U
1

]
,
[
νL1 , ν

U
1

]〉
, and Ã2 = 〈(α2, σ2);[

µL2 , µ
U
2

]
,
[
νL2 , ν

U
2

]〉
be any three IVPFNs, and λ, λ1, λ2 be

non-negative real numbers, we can obtain that:

(1) Ã1⊕Ã2 = Ã2⊕Ã1,

(2)
(
Ã1⊕Ã2

)
⊕Ã3 = Ã1⊕

(
Ã2⊕Ã3

)
,

(3) Ã1⊗Ã2 = Ã2⊗Ã1,

(4)
(
Ã1⊗Ã2

)
⊗Ã3 = Ã1⊗

(
Ã2⊗Ã3

)
,

(5) λ
(
Ã1⊗Ã2

)
= λÃ2⊗λÃ1,

(6) (λ1+λ2)Ã = λ1Ã+λ2Ã,

(7)
(
Ã1⊗Ã2

)λ
= Ãλ1⊗Ã

λ
2 .

Proof:Based on definition 8, we can easily infer that (1),
(3), (5), (6) and (7) are right, (2) and (4) need be proved as
follows:

For (2)
(
Ã1⊕Ã2

)
⊕Ã3 = Ã1⊕

(
Ã2⊕Ã3

)
Let the NFN of IVPFN Q̃ be ÑQ̃, the degree of

membership of
(
Ã1⊕Ã2

)
⊕Ã3 and Ã1⊕

(
Ã2⊕Ã3

)
be[

µL(A1⊕A2)⊕A3
, µU(A1⊕A2)⊕A3

]
and

[
µLA1⊕(A2⊕A3)

, µUA1⊕(A2⊕A3)

]
,

and their degree of non-membership be[
νL(A1⊕A2)⊕A3

, νU(A1⊕A2)⊕A3

]
and

[
νLA1⊕(A2⊕A3)

, νUA1⊕(A2⊕A3)

]
,
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respectively, and we can get

Ñ(A1⊕A2)⊕A3 = ÑA1⊕(A2⊕A3) = (α1+α2+α3, σ1+σ2+σ3)[
µL(A1⊕A2)⊕A3 , µ

U
(A1⊕A2)⊕A3

]

=



√√√√(
µL1

)2
+
(
µL2

)2
−
(
µL1

)2
·
(
µL2

)2
+
(
µL3

)2
−

((
µL1

)2
+
(
µL2

)2
−
(
µL1

)2
·
(
µL2

)2)
·
(
µL3

)2 ,√√√√(
µU1

)2
+
(
µU2

)2
−
(
µU1

)2
·
(
µU2

)2
+
(
µU3

)2
−

((
µU1

)2
+
(
µU2

)2
−
(
µU1

)2
·
(
µU2

)2)
·
(
µU3

)2



=



√√√√(
µL1

)2
+
(
µL2

)2
+
(
µL3

)2
−
(
µL1

)2
·
(
µL2

)2
−
(
µL1

)2
·
(
µL3

)2
−
(
µL2

)2
·
(
µL3

)2
+
(
µL1

)2
·
(
µL3

)2
·
(
µL2

)2 ,√√√√(µU1 )2+(µU2 )2+(µU3 )2−(µU1 )2·(µU2 )2
−
(
µU1

)2
·
(
µU3

)2
−
(
µU2

)2
·
(
µU3

)2
+
(
µU1

)2
·
(
µU2

)2
·
(
µU3

)2


[
µLA1⊕(A2⊕A3), µ

U
A1⊕(A2⊕A3)

]

=



√√√√(
µL2

)2
+
(
µL3

)2
−
(
µL2

)2
·
(
µL3

)2
+
(
µL1

)2
−

((
µL2

)2
+
(
µL3

)2
−
(
µL2

)2
·
(
µL3

)2)
·
(
µL1

)2 ,√√√√(
µU2

)2
+
(
µU3

)2
−
(
µU2

)2
·
(
µU3

)2
+
(
µU1

)2
−

((
µU2

)2
+
(
µU3

)2
−
(
µU2

)2
·
(
µU3

)2)
·
(
µU1

)2



=



√√√√(
µL1

)2
+
(
µL2

)2
+
(
µL3

)2
−
(
µL1

)2
·
(
µL2

)2
−
(
µL1

)2
·
(
µL3

)2
−
(
µL2

)2
·
(
µL3

)2
+
(
µL1

)2
·
(
µL3

)2
·
(
µL2

)2 ,√√√√(
µU1

)2
+
(
µU2

)2
+
(
µU3

)2
−
(
µU1

)2
·
(
µU2

)2
−
(
µU1

)2
·
(
µU3

)2
−
(
µU2

)2
·
(
µU3

)2
+
(
µU1

)2
·
(
µU2

)2
·
(
µU3

)2


Then[
µL(A1⊕A2)⊕A3 , µ

U
(A1⊕A2)⊕A3

]
=

[
µLA1⊕(A2⊕A3), µ

U
A1⊕(A2⊕A3)

]
Similarly, we can get[
νL(A1⊕A2)⊕A3 , ν

U
(A1⊕A2)⊕A3

]
=

[
νLA1⊕(A2⊕A3), ν

U
A1⊕(A2⊕A3)

]
Therefore, (

Ã1⊕Ã2
)
⊕Ã3 = Ã1⊕

(
Ã2⊕Ã3

)
For (4) (

Ã1⊗Ã2
)
⊗Ã3 = Ã1⊗

(
Ã2⊗Ã3

)
Let the NFN of IVPFNs Q̃ be ÑQ̃, the degree

of membership of
(
Ã1⊗Ã2

)
⊗Ã3 and Ã1⊗

(
Ã2⊗Ã3

)
be[

µL(A1⊗A2)⊗A3
, µU(A1⊗A2)⊗A3

]
and

[
µLA1⊗(A2⊗A3)

, µUA1⊗(A2⊗A3)

]
,

and their degree of non-membership be
[
νL(A1⊗A2)⊗A3

,

νU(A1⊗A2)⊗A3

]
and

[
νLA1⊗(A2⊗A3)

, νUA1⊗(A2⊗A3)

]
, respectively,

and we can get

Ñ(A1⊗A2)⊗A3 = ÑA1⊗(A2⊗A3) = (α1+α2+α3, σ1+σ2+σ3)[
νL(A1⊗A2)⊗A3 , ν

U
(A1⊗A2)⊗A3

]

=



√√√√(
νL1

)2
+
(
νL2

)2
−
(
νL1

)2
·
(
νL2

)2
+
(
νL3

)2
−

((
νL1

)2
+
(
νL2

)2
−
(
νL1

)2
·
(
νL2

)2)
·
(
νL3

)2 ,√√√√(
νU1

)2
+
(
νU2

)2
−
(
νU1

)2
·
(
νU2

)2
+
(
νU3

)2
−

((
νU1

)2
+
(
νU2

)2
−
(
νU1

)2
·
(
νU2

)2)
·
(
νU3

)2



=



√√√√(
νL1

)2
+
(
νL2

)2
+
(
νL3

)2
−
(
νL1

)2
·
(
νL2

)2
−
(
νL1

)2
·
(
νL3

)2
−
(
νL2

)2
·
(
νL3

)2
+
(
νL1

)2
·
(
νL3

)2
·
(
νL2

)2 ,√√√√(
νU1

)2
+
(
νU2

)2
+
(
νU3

)2
−
(
νU1

)2
·
(
νU2

)2
−
(
νU1

)2
·
(
νU3

)2
−
(
νU2

)2
·
(
νU3

)2
+
(
νU1

)2
·
(
νU2

)2
·
(
νU3

)2


[
νLA1⊗(A2⊗A3), ν

U
A1⊗(A2⊗A3)

]

=



√√√√(
νL2

)2
+
(
νL3

)2
−
(
νL2

)2
·
(
νL3

)2
+
(
νL1

)2
−

((
νL2

)2
+
(
νL3

)2
−
(
νL2

)2
·
(
νL3

)2)
·
(
νL1

)2 ,√√√√(
νU2

)2
+
(
νU3

)2
−
(
νU2

)2
·
(
νU3

)2
+
(
νU1

)2
−

((
νU2

)2
+
(
νU3

)2
−
(
νU2

)2
·
(
νU3

)2)
·
(
νU1

)2



=



√√√√(
νL1

)2
+
(
νL2

)2
+
(
νL3

)2
−
(
νL1

)2
·
(
νL2

)2
−
(
νL1

)2
·
(
νL3

)2
−
(
νL2

)2
·
(
νL3

)2
+
(
νL1

)2
·
(
νL3

)2
·
(
νL2

)2 ,√√√√(
νU1

)2
+
(
νU2

)2
+
(
νU3

)2
−
(
νU1

)2
·
(
νU2

)2
−
(
νU1

)2
·
(
νU3

)2
−
(
νU2

)2
·
(
νU3

)2
+
(
νU1

)2
·
(
νU2

)2
·
(
νU3

)2


Then[
νL(A1⊗A2)⊗A3 , ν

U
(A1⊗A2)⊗A3

]
=

[
νLA1⊗(A2⊗A3), ν

U
A1⊗(A2⊗A3)

]
Similarly, we can get that[
µL(A1⊗A2)⊗A3 , µ

U
(A1⊗A2)⊗A3

]
=

[
µLA1⊗(A2⊗A3), µ

U
A1⊗(A2⊗A3)

]
.

Therefore,
(
Ã1⊗Ã2

)
⊗Ã3 = Ã1⊗

(
Ã2⊗Ã3

)
Definition 9: Let Ã =

〈
(α, σ );

[
µL , µU

]
,
[
νL , νU

]〉
be an

IVPFN, its score function is determined as

S1(Ã) =
α

2

((
µL
)2
+
(
µU
)2

2
+1−

(
νL
)2
+
(
νU
)2

2

)
,

S2(Ã) =
σ

2

((
µL
)2
+
(
µU
)2

2
+1−

(
νL
)2
+
(
νU
)2

2

)
.

its accuracy function is determined as

H1(Ã) =
α

2

((
µL
)2
+
(
µU
)2

2
+

(
νL
)2
+
(
νU
)2

2

)
,

H2(Ã) =
σ

2

((
µL
)2
+
(
µU
)2

2
+

(
νL
)2
+
(
νU
)2

2

)
.

VOLUME 8, 2020 51299



Z. Yang, J. Chang: IVPNF Information Aggregation Operators for Multi-Attribute Decision Making

Definition 10: Let Ã1 =
〈
(α1, σ1);

[
µL1 , µ

U
1

]
,
[
νL1 , ν

U
1

]〉
,

Ã2 =
〈
(α2, σ2);

[
µL2 , µ

U
2

]
,
[
νL2 , ν

U
2

]〉
be any two IVPFNs,

their score functions are S1(a), S2(a), their accuracy func-
tions are H1(a), H2(a), respectively, then we can get

(1) If S1(Ã1) > S1(Ã2), then Ã1 > Ã2;
(2) If S1(Ã1) = S1(Ã2) and H1(Ã1) > H1(Ã2), Ã1 > Ã2;
(3) If S1(Ã1) = S1(Ã2) and H1(Ã1) = H1(Ã2)
(a) If S2(Ã1) > S2(Ã2), then Ã1 < Ã2
(b) If S2(Ã1) = S2(Ã2) and H2(Ã1) > H2(Ã2), then

Ã1 < Ã2
(c) If S2(Ã1) = S2(Ã2) and H2(Ã1) = H2(Ã2), then

Ã1 = Ã2

IV. THE DISTANCE MEASURE BETWEEN IVPNFNs
Definition 11: Assume Ã1 =

〈
(α1, σ1);

[
µL1 , µ

U
1

]
,
[
νL1 , ν

U
1

]〉
,

Ã2 =
〈
(α2, σ2);

[
µL2 , µ

U
2

]
,
[
νL2 , ν

U
2

]〉
, be any two IVPFNs

in X , and the Euclidean distance and Hamming distance
between IVPFNs are defined as follows:

DE
(
Ã1, Ã2

)

=
1
2

√√√√√√√√√√√√√√√√

 1+
(
µL1

)2
−
(
νL1

)2
+1+

(
µU1

)2
−
(
νU1

)2
2 α1

−
1+
(
µL2

)2
−
(
νL2

)2
+1+

(
µU2

)2
−
(
νU2

)2
2 α2

2

+
1
2

 1+
(
µL1

)2
−
(
νL1

)2
+1+

(
µU1

)2
−
(
νU1

)2
2 σ1

−
1+
(
µL2

)2
−
(
νL2

)2
+1+

(
µU2

)2
−
(
νU2

)2
2 σ2

2

+

(
1+
(
πL1

)2
−
(
πL2

)2
+1+

(
πU1

)2
−
(
πU2

)2
2

)2

(5)

DH
(
Ã1, Ã2

)

=
1
2



∣∣∣∣∣∣
1+
(
µL1

)2
−
(
νL1

)2
+1+

(
µU1

)2
−
(
νU1

)2
2 α1

−
1+
(
µL2

)2
−
(
νL2

)2
+1+

(
µU2

)2
−
(
νU2

)2
2 α2

∣∣∣∣∣∣
+

1
2

∣∣∣∣∣∣
1+
(
µL1

)2
−
(
νL1

)2
+1+

(
µU1

)2
−
(
νU1

)2
2 σ1

−
1+
(
µL2

)2
−
(
νL2

)2
+1+

(
µU2

)2
−
(
νU2

)2
2 σ2

∣∣∣∣∣∣
+

∣∣∣∣ 1+(πL1 )2−(πL2 )2+1+(πU1 )2−(πU2 )22

∣∣∣∣


(6)

Theorem 1: Let Ã1 =
〈
(α1, σ1);

[
µL1 , µ

U
1

]
,
[
νL1 , ν

U
1

]〉
,

Ã2 =
〈
(α2, σ2);

[
µL2 , µ

U
2

]
,
[
νL2 , ν

U
2

]〉
, and Ã3 = 〈(α3, σ3);[

µL3 , µ
U
3

]
,
[
νL3 , ν

U
3

]〉
be any three IVPFNs in X , then

DE (A1,A2) satisfies the following properties:
(1) DE

(
Ã1, Ã2

)
≥ 0, only if Ã1 = Ã2, then

DE
(
Ã1, Ã2

)
= 0;

(2) DE
(
Ã1, Ã2

)
= DE

(
Ã2, Ã1

)
;

(3) Ã1 =
〈
(α1, σ1);

[
µL1 , µ

U
1

]
,
[
νL1 , ν

U
1

]〉
be an IVPFN,

DE
(
Ã1, Ã3

)
≤ DE

(
Ã1, Ã2

)
+DE

(
Ã2, Ã3

)
.

Proof: Based on the operational rules of IVPFNs in
definition 8, we know that (1), (2) are right, (3) need be proved
as follows:

Since we can get

(D(A1,A2)+D(A2,A3))2

=



1
2

√√√√√√√√√√√√√√√

 1+
(
µL1

)2
−
(
νL1

)2
+1+

(
µU1

)2
−
(
νU1

)2
2 α1

−
1+
(
µL2

)2
−
(
νL2

)2
+1+

(
µU2

)2
−
(
νU2

)2
2 α2

2

+
1
2

 1+
(
µL1

)2
−
(
νL1

)2
+1+

(
µU1

)2
−
(
νU1

)2
2 σ1

−
1+
(
µL2

)2
−
(
νL2

)2
+1+

(
µU2

)2
−
(
νU2

)2
2 σ2

2

+

(
1+
(
πL1

)2
−
(
πL2

)2
+1+

(
πU1

)2
−
(
πU2

)2
2

)2

+
1
2

√√√√√√√√√√√√√√√

 1+
(
µL2

)2
−
(
νL2

)2
+1+

(
µU2

)2
−
(
νU2

)2
2 α2

−
1+
(
µL3

)2
−
(
νL3

)2
+1+

(
µU3

)2
−
(
νU3

)2
2 α2

2

+
1
2

 1+
(
µL2

)2
−
(
νL2

)2
+1+

(
µU2

)2
−
(
νU2

)2
2 σ2

−
1+
(
µL3

)2
−
(
νL3

)2
+1+

(
µU3

)2
−
(
νU3

)2
2 σ3

2

+

(
1+
(
πL2

)2
−
(
πL3

)2
+1+

(
πU2

)2
−
(
πU3

)2
2

)2



2

According to the above formula, we can get

(D(A1,A2)+D(A2,A3))2

=
1
4

(
(01α1−02α2)

2
+
1
2
(01σ1−02σ2)

2
+(812)

2
)

+
1
4

(
(02α2−03α3)

2
+
1
2
(02σ2−03σ3)

2
+(823)

2
)

+
1
2

√(01α1−02α2)2+1
2 (01σ1−02σ2)

2
+(812)

2

×

√
(02α2−03α3)

2
+

1
2 (02σ2−03σ3)

2
+(823)

2


where

01 =
1+
(
µL1

)2
−
(
νL1

)2
+1+

(
µU1

)2
−
(
νU1

)2
2

,

02 =
1+
(
µL2

)2
−
(
νL2

)2
+1+

(
µU2

)2
−
(
νU2

)2
2

,

03 =
1+
(
µL3

)2
−
(
νL3

)2
+1+

(
µU3

)2
−
(
νU3

)2
2

,

812 =
1+
(
πL1

)2
−
(
πL2

)2
+1+

(
πU1

)2
−
(
πU2

)2
2

,

823 =
1+
(
πL2

)2
−
(
πL3

)2
+1+

(
πU2

)2
−
(
πU3

)2
2

,

813 =
1+
(
πL1

)2
−
(
πL3

)2
+1+

(
πU1

)2
−
(
πU3

)2
2

.

Based on the above formula’s expansion, we can obtain

(D(A1,A2)+D(A2,A3))2

≥
1
4

(
(01α1−02α2)

2
+
1
2
(01σ1−02σ2)

2
+(812)

2
)

+
1
4

(
(02α2−03α3)

2
+
1
2
(02σ2−03σ3)

2
+(823)

2
)

+
1
2

(
(01α1−02α2)×(02α2−03α3)+

1
2 (01σ1−02σ2)

×(02σ2−03σ3)+(812)×(823)

)
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≥
1
4

(
(01α1−02α2)

2
+(02α2−03α3)

2

+2(01α1−02α2)×(02α2−03α3)

)
+
1
4

( 1
2 (01σ1−02σ2)

2
+

1
2 (02σ2−03σ3)

2

+(01σ1−02σ2)(02σ2−03σ3)

)
+
1
4

(
(812)

2
+(823)

2
+2(812)×(823)

)
≥

1
4
(01α1−02α2+02α2−03α3)

2

+
1
8
(01σ1−02σ2+02σ2−03σ3)

2
+
1
4
(812+823)

2

≥
1
4
(01α1−03α3)

2
+
1
8
(01σ1−03σ3)

2
+
1
4
(813)

2

= D(A1,A3)2

The proof is completed.
So D

(
Ã1, Ã3

)
≤ D

(
Ã1, Ã2

)
+D

(
Ã2, Ã3

)
is maintained,

then we can infer that the DE
(
Ã1, Ã2

)
is kept.

Similarly, we can proof that the DH
(
Ã1, Ã2

)
is also kept.

In formula (5) and (6), when
〈[
µL1 , µ

U
1

]
,
[
νL1 , ν

U
1

]〉
=

〈[1, 1], [0, 0]〉,
〈[
µL2 , µ

U
2

]
,
[
νL2 , ν

U
2

]〉
= 〈[1, 1], [0, 0]〉,

the IVPNFNs Ã1 and Ã2 are reduced to two NFs, the distance
between IVPNFNs is transferred to the distance betweenNFs.

V. SOME AGGREGATION OPERATORS FOR IVPNFNs
There are some aggregation operators for IVPNFNs are pre-
sented, including interval-valued Pythagorean normal fuzzy
weighed averaging operators and their generalized form.

A. INTERVAL-VALUED PYTHAGOREAN NORMAL FUZZY
WEIGHTED AVERAGING OPERATORS
Based on the operational rules of IVPNFs, the weighed aver-
aging operators for IVPNFs are presented as follows:
Definition 12: Let Ãi =

〈
(αi, σi);

[
µLi , µ

U
i

]
,
[
νLi , ν

U
i

]〉
be a collection of IVPNFN, W = (w1,w2, . . . ,wn) be a
weight vector of Ãi, and wi ≥ 0,

∑n
i=1 wi = 1. Then the

interval-valued Pythagorean normal fuzzyweighed averaging
(IVPNFWA) operator can be defined as

IVPNFWA
(
Ã1, Ã2, . . . , Ãn

)
=

n∑
i=1

wiÃi (i = 1, 2, . . . , n)

(7)

Theorem 2: Let Ãi =
〈
(αi, σi);

[
µLi , µ

U
i

]
,
[
νLi , ν

U
i

]〉
be

a collection of IVPNFN, then the aggregated value using
IVPNFWA operator is still an IVPNFN, that is

IVPNFWA
(
Ã1, Ã2, . . . , Ãn

)

=



(
n∑
i=1

wiαi,
n∑
i=1

wiσi

)
;

√
1−

n∏
i=1

(
1−
(
µLi

)2)wi
,√

1−
n∏
i=1

(
1−
(
µUi

)2)wi
,[

n∏
i=1

(
νLi

)wi
,
n∏
i=1

(
νUi

)wi]


(8)

Proof:We use the method of mathematical induction to
prove the theorem 2 as follows:

If n = 2, then

IVPNFWA
(
Ã1, Ã2

)
= w1Ã1⊕w1Ã1

w1Ã1

=


(w1α1,w1σ1);[√

1−
(
1−
(
µL1

)2)w1
,

√
1−
(
1−
(
µU1

)2)w1
]
,[(

νL1

)w1
,
(
νU1

)w1
]


w2Ã2

=


(w2α2,w2σ2);[√

1−
(
1−
(
µL2

)2)w2
,

√
1−
(
1−
(
µU2

)2)w2
]
,[(

νL2

)w2
,
(
νU2

)w2
]


w1Ã1⊕w2Ã2

=



(w1α1+w2α,w1σ2+w2σ2);

√√√√√√
(
1−
(
1−
(
µL1

)2)w1
)
+

(
1−
(
1−
(
µL2

)2)w2
)

−

(
1−
(
1−
(
µL1

)2)w1
)
·

(
1−
(
1−
(
µL2

)2)w2
) ,

√√√√√√
(
1−
(
1−
(
µU1

)2)w1
)
+

(
1−
(
1−
(
µU2

)2)w2
)

−

(
1−
(
1−
(
µU1

)2)w1
)
·

(
1−
(
1−
(
µU2

)2)w2
)


,

[(
νL1

)w1
(
νL2

)w2
,
(
νU1

)w1(
νU2

)w2
]



=



(w1α1+w2α,w1σ2+w2σ2);
√
1−
(
1−
(
µL1

)2)w1
(
1−
(
µL2

)2)w2
,√

1−
(
1−
(
µu1

)2)w1
(
1−
(
µu2

)2)w2

,[(
νL1

)w1
(
νL2

)w2
,
(
νU1

)w1(
νU2

)w2
]


We suppose that formula holds for n = k (k ≥ 3), that is

IVPNFWA
(
Ã1, Ã2, . . . , Ãk

)

=



(
k∑
i=1

wiαi,
n∑
i=1

wiσi

)
;[√

1−
k∏
i=1

(
1−
(
µLi

)2)wi
,

√
1−

k∏
i=1

(
1−
(
µUi

)2)wi]
,[

k∏
i=1

(
νLi

)wi
,
k∏
i=1

(
νUi

)wi]
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Then if n = k +1, we can use the operational rules of
IVPNFNs to obtain the

IVPNFWA
(
Ã1, Ã2, . . . , Ãk , Ãk+1

)

=



(
k∑
i=1

wiαi+wk+1αk+1,
k∑
i=1

wiσi+wk+1σk+1

)
;

√√√√√√√√√1−
k∏
i=1

(
1−
(
µLi

)2)wi
+1−

(
1−
(
µLk+1

)2)wk+1
−(

1−
k∏
i=1

(
1−
(
µLi

)2)wi)(
1−
(
1−
(
µLk+1

)2)wk+1) ,

√√√√√√√√√1−
k∏
i=1

(
1−
(
µUi

)2)wi
+1−

(
1−
(
µUk+1

)2)wk+1
−(

1−
k∏
i=1

(
1−
(
µUi

)2)wi)(
1−
(
1−
(
µUk+1

)2)wk+1)


,

[
k∏
i=1

(
νLi

)wi(
νLk+1

)wk+1
,
k∏
i=1

(
νUi

)wi(
νUk+1

)wk+1]



=



(
k+1∑
i=1

wiαi,
k+1∑
i=1

wiσi

)
;

√√√√√√ 1+
(
1−

k∏
i=1

(
1−
(
µLi

)2)wi
−1
)

(
1−1+

(
1−
(
µLk+1

)2)wk+1) ,

√√√√√√ 1+
(
1−

k∏
i=1

(
1−
(
µUi

)2)wi
−1
)

(
1−1+

(
1−
(
µUk+1

)2)wk+1)


,


k+1∏
i=1

(
νLi

)wi
,

k+1∏
i=1

(
νUk+1

)wi




=



(
k+1∑
i=1

wiαi,
k+1∑
i=1

wiσi

)
;

√
1−

k+1∏
i=1

(
1−
(
µLi

)2)wi
,√

1−
k+1∏
i=1

(
1−
(
µUi

)2)wi
,
[
k+1∏
i=1

(
νLi

)wi
,
k+1∏
i=1

(
νUk+1

)wi]


The IVPNFWA operator satisfies the following three
properties.
Theorem 3 (Idempotency): If all Ãi = 〈(αi, σi);[
µLi , µ

U
i

]
,
[
νLi , ν

U
i

]〉
(i = 1, 2, . . . , n) are equal with Ãi = Ã,

then IVPNFWA
(
Ã1, Ã2, . . . , Ãn

)
= Ã.

Proof: Since αi = α, σi = σ, µLi = µL , µUi =

µU , νLi = ν
L , νUi = ν

U ,

IVPNFWA
(
Ã1, Ã2, . . . , Ãn

)

=



(
n∑
i=1

wiαi,
n∑
i=1

wiσi

)
;


√
1−

n∏
i=1

(
1−
(
µLi

)2)wi
,√

1−
n∏
i=1

(
1−
(
µUi

)2)wi
,[

n∏
i=1

(
νLi

)wi
,
n∏
i=1

(
νUi

)wi]



=



(
α

n∑
i=1

wi, σ
n∑
i=1

wi

)
;


√
1−
(
1−
(
µLi

)2) n∑
i=1

wi
,√

1−
(
1−
(
µUi

)2) n∑
i=1

wi

,(νLi )
n∑
i=1

wi
,
(
νUi

) n∑
i=1

wi




Since

n∑
i=1

wi =1, we can get

IVPNFWA
(
Ã1, Ã2, . . . , Ãn

)

=


(α, σ );[√

1−
(
1−
(
µLi

)2)
,

√
1−
(
1−
(
µUi

)2)]
,[

νLi , ν
U
i

]
 = Ã

Theorem 4 (Boundedness); Let Ãi =
〈(
αij, σij

)
;[

µLij , µ
U
ij

]
,
[
νLij , ν

U
ij

]〉
(i = 1, 2, . . . , n; j = 1, 2, . . . ij)

be a collection of IVPNFN,
If

Ãi =
〈(
αij, σij

)
;

[
µLij , µ

U
ij

]
,
[
νLij , ν

U
ij

]〉
(i = 1, 2, . . . , n; j = 1, 2, . . . ij)

α− = min1≤i≤n,j=1,2,...,ij αij,α
+
= max1≤i≤n,j=1,2,...,ij αij,

σ− = max1≤i≤n,j=1,2,...,ij σij,σ
+
= min1≤i≤n,j=1,2,...,ij σij.

µL− =min1≤i≤n,j=1,2,...,ijµ
L
ij ,µ

L+
=max1≤i≤n,j=1,2,...,ij µ

L
ij,

µU− =min1≤i≤n,j=1,2,...,ijµ
U
ij ,µ

U+
=max1≤i≤n,j=1,2,...,ij µ

U
ij ,

νL− =min1≤i≤n,j=1,2,...,ij ν
L
ij ,ν

L+
= max1≤i≤n,j=1,2,...,ij ν

L
ij ,

νU−=min1≤i≤n,j=1,2,...,ij ν
U
ij ,ν

U+
=max1≤i≤n,j=1,2,...,ij ν

U
ij .

Then〈(
α−, σ−

)
;

[
µL−, µU−

]
,
[
νL+, νU+

]〉
≤ IVPNFWA

(
Ã1, Ã2, . . . , Ãn

)
≤

〈(
α+, σ+

)
;

[
µL+, µU+

]
,
[
νL−, νU−

]〉
Proof: Since νL− = min1≤i≤n,j=1,2,...,ij ν

L
ij ,

νU− = min1≤i≤n,j=1,2,...,ij ν
U
ij , ν

L+
= max1≤i≤n,j=1,2,...,ij ν

L
ij ,

νU+ = max1≤i≤n,j=1,2,...,ij ν
U
ij , we have νL− ≤ νLij ≤

νL+, νU− ≤ νUij ≤ ν
U+, and

νL−+νU−

=

n∏
i=1

(
νL−

)wi
+

n∏
i=1

(
νU−

)wi
≤

n∏
i=1

(
νLij

)wi
+

n∏
i=1

(
νUij

)wi
≤

n∏
i=1

(
νL+

)wi
+

n∏
i=1

(
νU+

)wi
= νL++νU+

Since µL− = min1≤i≤n,j=1,2,...,ij µ
L
ij , µ

L+
=

max1≤i≤n,j=1,2,...,ij µ
L
ij , µ

U−
= min1≤i≤n,j=1,2,...,ij µ

U
ij ,
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µU+ = max1≤i≤n,j=1,2,...,ij µ
U
ij , we have µL− ≤ µLij ≤

µL+, µU− ≤ µUij ≤ µ
U+ and

µL−+µU−

=

√√√√1−
n∏
i=1

(
1−
(
µL−

)2)wi
+

√√√√1−
n∏
i=1

(
1−
(
µU−

)2)wi

≤

√√√√1−
n∏
i=1

(
1−
(
µLij

)2)wi
+

√√√√1−
n∏
i=1

(
1−
(
µUij

)2)wi

≤

√√√√1−
n∏
i=1

(
1−
(
µL+

)2)wi
+

√√√√1−
n∏
i=1

(
1−
(
µU+

)2)wi
= µL++µU+

Since α− = min1≤i≤n,j=1,2,...,ij αij, α+ =

max1≤i≤n,j=1,2,...,ij αij, σ
−
= max1≤i≤n,j=1,2,...,ij σij, σ

+
=

min1≤i≤n,j=1,2,...,ij σij, we have α− ≤ αij ≤ α+,
α+ ≤ αij ≤ α

− and

n∑
i=1

wiα− ≤
n∑
i=1

wiαij ≤
n∑
i=1

wiα+,
n∑
i=1

wiσ+

≤

n∑
i=1

wiσij ≤
n∑
i=1

wiσ−

Therefore, based on the score function and accurate func-
tion, we can infer that

n∑
i=1

wiα−

2
(√

1−
n∏
i=1

(
1−(µL−)

2
)wi)2

+

(√
1−

n∏
i=1

(
1−(µU−)

2
)wi)2

2

+1−

(
n∏
i=1

(
νL+

)wi)2

+

(
n∏
i=1

(
νU+

)wi)2

2



≤

n∑
i=1

wiαij

2

×


(√

1−
n∏
i=1

(
1−
(
µLij

)2)wi)2

+

(√
1−

n∏
i=1

(
1−
(
µUij

)2)wi)2

2

+1−

(
n∏
i=1

(
νLij

)wi)2

+

(
n∏
i=1

(
νUij

)wi)2

2



≤

n∑
i=1

wiα+

2

×


(√

1−
n∏
i=1

(
1−(µL+)

2
)wi)2

+

(√
1−

n∏
i=1

(
1−(µU+)

2
)wi)2

2

+1−

(
n∏
i=1

(
νL−

)wi)2

+

(
n∏
i=1

(
νU−

)wi)2

2



That is〈(
α−, σ−

)
;

[
µL−, µU−

]
,
[
νL+, νU+

]〉
≤ IVPNFWA

(
Ã1, Ã2, . . . , Ãn

)
≤

〈(
α+, σ+

)
;

[
µL+, µU+

]
,
[
νL−, νU−

]〉
Theorem 5 (Monotonicity): Suppose

(
Ã1, Ã2, . . . , Ãn

)
and

(
B̃1, B̃2, . . . , B̃n

)
are two sets of IVPNFN, and

Ãi =

〈(
αaij , σaij

)
;

[
µLaij , µ

U
aij

]
,
[
νLaij , ν

U
aij

]〉
and B̃i =〈(

αbij , σbij
)
;

[
µL
bij
, µU

bij

]
,
[
νL
bij
, νU

bij

]〉
, (i = 1, 2, . . . , n;

j = 1, 2, . . . ij) For any i, if there is αaij ≤ αbij,
(
µLaij

)2
+(

µUaij

)2
≤

(
µLbij

)2
+

(
µUbij

)2
and

(
νLaij

)2
+

(
νUaij

)2
≥

(
νLbij

)2
+(

νUbij

)2
or Ai ≤ Bi then

IVPNFWA
(
Ã1, Ã2, . . . , Ãn

)
≤ IVPNFWA

(
B̃1, B̃2, . . . , B̃n

)
.

Proof: For any i, there is αaij ≤ αbij,
Therefore

n∑
i

αaij ≤

n∑
i

αbij

For any i, there is
(
µLaij

)2
+

(
µUaij

)2
≤

(
µLbij

)2
+

(
µUbij

)2
,

Therefore

1−
(
µLai

)2
+1−

(
µUai

)2
≥ 1−

(
µLbi

)2
+1−

(
µUbi

)2
×

n∏
i=1

(
1−
(
µLai

)2)wi
+

n∏
i=1

(
1−
(
µUai

)2)wi
≥

n∏
i=1

(
1−
(
µLbi

)2)wi
+

n∏
i=1

(
1−
(
µUbi

)2)wi
and√√√√1−

n∏
i=1

(
1−
(
µLai

)2)wi
+

n∏
i=1

(
1−
(
µUai

)2)wi

≤

√√√√1−
n∏
i=1

(
1−
(
µLbi

)2)wi
+

√√√√1−
n∏
i=1

(
1−
(
µUbi

)2)wi

Since there is
(
νLaij

)2
+

(
νUaij

)2
≥

(
νLbij

)2
+

(
νUbij

)2
,

Therefore

1−

(
n∏
i=1
νLaij

)2

+

(
n∏
i=1
νUaij

)2

2
≤ 1−

(
n∏
i=1
νLbij

)2

+

(
n∏
i=1
νUbij

)2

2
,
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And
n∑
i=1
αaij

2

×


(√

1−
n∏
i=1

(
1−
(
µLai

)2)wi)2

+

(√
1−

n∏
i=1

(
1−
(
µUai

)2)wi)2

2

+1−

(
n∏
i=1
νLaij

)2

+

(
n∏
i=1
νUaij

)2

2



≤

n∑
i=1
αbij

2


(√

1−
n∏
i=1

(
1−
(
µLbi

)2)wi)2

+

(√
1−

n∏
i=1

(
1−
(
µUbi

)2)wi)2

2

+1−

(
n∏
i=1
νLbij

)2

+

(
n∏
i=1
νUbij

)2

2

.
Therefore

IVPNFWA
(
Ã1, Ã2, . . . , Ãn

)
≤ IVPNFWA

(
B̃1, B̃2, . . . , B̃n

)
,

B. INTERVAL-VALUED PYTHAGOREAN NORMAL FUZZY
WEIGHTED GEOMETRIC OPERATOR
Definition 13: Let Ãi =

〈
(αi, σi);

[
µLi , µ

U
i

]
,
[
νLi , ν

U
i

]〉
(i = 1, 2, . . . , n) be a collection of IVPNFN,
W = (w1,w2, . . . ,wn) be a weight vector of Ãi, and
wi ≥ 0,

∑n
i=1 wi = 1. Then the interval-valued Pythagorean

normal fuzzy weighed geometric (IVPNFWG) operator can
be defined as

IVPNFWG
(
Ã1, Ã2, . . . , Ãn

)
=

n∏
i=1

Ãwii (i = 1, 2, . . . , n) (9)

Theorem 6: Let Ãi =
〈
(αi, σi);

[
µLi , µ

U
i

]
,
[
νLi , ν

U
i

]〉
(i = 1, 2, . . . , n) be a collection of IVPNFN, then the aggre-
gated value of the IVPNFWG operator is still an IVPNFN,
that is

IVPNFWG
(
Ã1, Ã2, . . . , Ãn

)

=



(
n∏
i=1
α
wi
i ,

n∏
i=1
σ
wi
i

)
;

[
n∏
i=1

(
µLi

)wi
,
n∏
i=1

(
µUi

)wi]
,

√
1−

n∏
i=1

(
1−
(
νLi

)2)wi
,√

1−
n∏
i=1

(
1−
(
νUi

)2)wi



(10)

Proof: The method of mathematical induction is used to
prove the theorem 6 as follows:

(1) If n = 2, then

IVPNFWG
(
Ã1, Ã2

)
= Ãw1

1 ⊗Ã
w2
2

Ãw1
1

=


(
α
w1
1 , σ

w1
1

)
;

[(
µL1

)w1
,
(
µU1

)w1
]
,[√

1−
(
1−
(
νL1

)2)w1
,

√
1−
(
1−
(
νU1

)2)w1
]

Ãw2
2

=


(
α
w2
2 , σ

w2
2

)
;

[(
µL2

)w2
,
(
µU2

)w2
]
,[√

1−
(
1−
(
νL2

)2)w2
,

√
1−
(
1−
(
νU2

)2)w2
]

Ãw1
1 ⊗Ã

w2
2

=



(
α
w1
1 ×α

w3
2 , σ

w1
1 ×σ

w2
2

)
;

[ (
µL1

)w1
(
µL2

)w2
,(

µU1

)w1(
µU2

)w2

]
,

√√√√√√
(
1−
(
1−
(
νL1

)2)w1
)
+

(
1−
(
1−
(
νL2

)2)w2
)

−

(
1−
(
1−
(
νL1

)2)w1
)
·

(
1−
(
1−
(
νL2

)2)w2
) ,

√√√√√√
(
1−
(
1−
(
νU1

)2)w1
)
+

(
1−
(
1−
(
νU2

)2)w2
)

−

(
1−
(
1−
(
νU1

)2)w1
)
·

(
1−
(
1−
(
νU2

)2)w2
)





=



(
α
w1
1 ×α

w3
2 , σ

w1
1 ×σ

w2
2

)
;

 (µL1 )w1
(
µL2

)w2
,(

µU1

)w1(
µU2

)w2

,
√
1−
(
1−
(
νL1

)2)w1
(
1−
(
νL2

)2)w2
,√

1−
(
1−
(
νu1

)2)w1
(
1−
(
νu2

)2)w2




(2)We suppose that formula holds for n = k (k ≥ 3), that is

IVPNFWG
(
Ã1, Ã2, . . . , Ãk

)

=



(
k∏
i=1
α
wi
i ,

k∏
i=1
σ
wi
i

)
;

[
k∏
i=1

(
µLi

)wi
,
k∏
i=1

(
µUi

)wi]
,


√
1−

k∏
i=1

(
1−
(
νLi

)2)wi
,√

1−
k∏
i=1

(
1−
(
νUi

)2)wi



(3) Then if n = k +1, we can use the operational rules of

IVPNFNs to obtain the IVPNFWG
(
Ã1, Ã2, . . . , Ãk , Ãk+1

)
,

as shown at the bottom of the next page.
(4) Based on steps (1), (2) and (3), we can get

Theorem 6 holds for any k .
According to Theorems 3, 4, 5, we can similarly prove the

properties of idempotency, monotonicity and boundedness
for IVPNFWG operator

C. GENERALIZED INTERVAL-VALUED PYTHAGOREAN
NORMAL FUZZY WEIGHTED AVERAGING OPERATORS
As generalizations of the IVPNFNWA and IVPNFNWG
operators, some generalized Interval-valued Pythagorean
normal fuzzy weighed averaging operators are developed in
the following.
Definition 14: Let Ãi =

〈
(αi, σi);

[
µLi , µ

U
i

]
,
[
νLi , ν

U
i

]〉
(i = 1, 2, . . . , n) be a collection of IVPNFN,
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W = (w1,w2, . . . ,wn) be a weight vector of Ãi, and wi ≥ 0,∑n
i=1 wi = 1, λ be a parameter and λ ∈ (−∞, 0)∪(0,+∞)

then

GIVPNFWA
(
Ã1, Ã2, . . . , Ãn

)
=

(
n∑
i=1

wiÃλi

)1/λ
(i = 1, 2, . . . , n) (11)

is called a generalized IVPNF weighted averaging
(GIVPNFWA) operator.
Theorem 7: Let Ãi =

〈
(αi, σi);

[
µLi , µ

U
i

]
,
[
νLi , ν

U
i

]〉
(i = 1, 2, . . . , n) be a collection of the IVPNFN, based on
the operational rules of IVPNF, the GIVPNFWA operator is
still an IVPNFN, that is Eq. (12), as shown at the bottom of
this page.

IVPNFWG
(
Ã1, Ã2, . . . , Ãk , Ãk+1

)
=




k∏
i=1
α
wi
i ×α

wk+1
k+1 ,

k∏
i=1
σ
wi
i ×σ

wk+1
k+1

;


k∏
i=1

(
µLi

)wi(
µLk+1

)wk+1
,

k∏
i=1

(
µUi

)wi(
µUk+1

)wk+1
,



√√√√√√√
1−

k∏
i=1

(
1−
(
νLi

)2)wi
+1−

(
1−
(
νLk+1

)2)wk+1
−

(
1−

k∏
i=1

(
1−
(
νLi

)2)wi)(1−(1−(νLk+1)2)wk+1) ,√√√√√√√1−
k∏
i=1

(
1−
(
νUi

)2)wi
+1−

(
1−
(
νUk+1

)2)wk+1
−

(
1−

k∏
i=1

(
1−
(
νUi

)2)wi)(
1−
(
1−
(
νUk+1

)2)wk+1)





=



(
k+1∏
i=1

α
wi
i ,

k+1∏
i=1

σ
wi
i

)
;

[
k+1∏
i=1

(
µLi

)wi
,
k+1∏
i=1

(
µUk+1

)wi]
,

√
1+
(
1−

k∏
i=1

(
1−
(
νLi

)2)wi
−1
)(

1−1+
(
1−
(
νLk+1

)2)wk+1)
,√

1+
(
1−

k∏
i=1

(
1−
(
νUi

)2)wi
−1
)(

1−1+
(
1−
(
νUk+1

)2)wk+1)




=



(
k+1∏
i=1

α
wi
i ,

k+1∏
i=1

σ
wi
i

)
;

[
k+1∏
i=1

(
µLi

)wi
,
k+1∏
i=1

(
µUk+1

)wi]
,

√
1−

k+1∏
i=1

(
1−
(
νLi

)2)wi
,√

1−
k+1∏
i=1

(
1−
(
νUi

)2)wi




GIVPNFWA
(
Ã1, Ã2, . . . , Ãn

)
=




(

n∑
i=1

wiαλi

)1/λ
,(

n∑
i=1

wiσ λi

)1/λ

,

(√

1−
n∏
i=1

(
1−
((
µLi

)λ)2)wi)1/λ

,(√
1−

n∏
i=1

(
1−
((
µUi

)λ)2)wi)1/λ

,

√√√√√1−

1−

(
n∏
i=1

(√
1−
(
1−
(
νLi

)2)λ)wi)2
1/λ

,√√√√√1−

1−

(
n∏
i=1

(√
1−
(
1−
(
νUi

)2)λ)wi)2
1/λ




(12)
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Proof: We use the mathematical induction method to
prove the follow formula firstly:

n∑
i=1

wiÃλi

=




n∑
i=1

wiαλi ,

n∑
i=1

wiσ λi

;

√
1−

n∏
i=1

(
1−
((
µLi

)λ)2)wi
,√

1−
n∏
i=1

(
1−
((
µUi

)λ)2)wi
,


n∏
i=1

(√
1−
(
1−
(
νLi

)2)λ)wi
,

n∏
i=1

(√
1−
(
1−
(
νUi

)2)λ)wi



(1) When n = 2,
Since

w1Ãλ1 =



(
w1α

λ
1 ,

w1σ
λ
1

)
;


√
1−
(
1−
((
µL1

)λ)2)w1

,√
1−
(
1−
((
µU1

)λ)2)w1

,

(√

1−
(
1−
(
νL1

)2)λ)w1

,(√
1−
(
1−
(
νU1

)2)λ)w1




,

w2Ãλ2 =



(
w2α

λ
2 ,

w2σ
λ
2

)
;


√
1−
(
1−
((
µL2

)λ)2)w1

,√
1−
(
1−
((
µU2

)λ)2)w1

,

(√

1−
(
1−
(
νL2

)2)λ)w1

,(√
1−
(
1−
(
νU2

)2)λ)w1




,

Then w1A1⊕w2A2, as shown at the bottom of this page.
(2) Supposing n = k, k > 2, that is

k∑
i=1

wiÃλi

=



(
k∑
i=1

wiαλi ,
k∑
i=1

wiσ λi

)
;


√
1−

k∏
i=1

(
1−
((
µLi

)λ)2)wi
,√

1−
k∏
i=1

(
1−
((
µUi

)λ)2)wi
,


k∏
i=1

(√
1−
(
1−
(
νLi

)2)λ)wi
,

k∏
i=1

(√
1−
(
1−
(
νUi

)2)λ)wi




w1A1⊕w2A2 =



(
w1α

λ
1+w2α

λ
2 ,

w1σ
λ
1+w2σ

λ
2

)
;



√√√√√√√√√√

(√
1−
(
1−
((
µL1

)λ)2)w1
)2

+

(√
1−
(
1−
((
µL2

)λ)2)w1
)2

−

(√
1−
(
1−
((
µL1

)λ)2)w1
)2

·

(√
1−
(
1−
((
µL2

)λ)2)w1
)2 ,

√√√√√√√√√√

(√
1−
(
1−
((
µU1

)λ)2)w1
)2

+

(√
1−
(
1−
((
µU2

)λ)2)w1
)2

−

(√
1−
(
1−
((
µU1

)λ)2)w1
)2

·

(√
1−
(
1−
((
µU2

)λ)2)w1
)2



,


(√

1−
(
1−
(
νL1

)2)λ)w1
(√

1−
(
1−
(
νL2

)2)λ)w1

,(√
1−
(
1−
(
νU1

)2)λ)w1
(√

1−
(
1−
(
νU2

)2)λ)w1





=



(
2∑
i=1

wiαλi ,
2∑
i=1

wiσ λi

)
;


√
1−

2∏
i=1

(
1−
((
µLi

)λ)2)wi
,√

1−
2∏
i=1

(
1−
((
µUi

)λ)2)wi
,

[
2∏
i=1

(√
1−
(
1−
(
νLi

)2)λ)wi
,

2∏
i=1

(√
1−
(
1−
(
νUi

)2)λ)wi]
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If n = k+1, according to the operational laws of IVPNFN,

we can get
k∑
i=1

wiÃλi +wk+1Ã
λ
ik+1, as shown at the bottom of

this page, then

(
k+1∑
i=1

wiÃλi

)1/λ

, as shown at the bottom of

this page.

(3) According to above steps, we can get Theorem 7 holds
for any k .
Where, if λ = 1, the GIVPNFWA operator is reduced

to the IVPNFWA operator. Furthermore, based on the
Theorems 3, 4 and 5, we know that the GIVPNFWA operator
has the properties of boundedness, and idempotency and
monotonicity.

k∑
i=1

wiÃλi +wk+1Ã
λ
ik+1 = w1Ãλ1⊕w2Ãλ2⊕. . .⊕wk Ã

λ
k⊕wk+1Ã

λ
k+1

=




k∑
i=1

wiαλi +wk+1α
λ
k+1,

k∑
i=1

wiσ λi +wk+1σ
λ
k+1

,


√√√√√√√√√√

(√
1−

k∏
i=1

(
1−
((
µLi

)λ)2)wi)2

+

(√
1−
(
1−
((
µLk+1

)λ)2)w1
)2

−

(√
1−

k∏
i=1

(
1−
((
µLi

)λ)2)wi)2

·

(√
1−
(
1−
((
µLk+1

)λ)2)w1
)2 ,

√√√√√√√√√√

(√
1−

k∏
i=1

(
1−
((
µUi

)λ)2)wi)2

+

(√
1−
(
1−
((
µUk+1

)λ)2)w1
)2

−

(√
1−

k∏
i=1

(
1−
((
µUi

)λ)2)wi)2

·

(√
1−
(
1−
((
µUk+1

)λ)2)w1
)2



,


k∏
i=1

(√
1−
(
1−
(
νLi

)2)λ)wi(√1−
(
1−
(
νLk+1

)2)λ)w1

,

k∏
i=1

(√
1−
(
1−
(
νUi

)2)λ)wi(√
1−
(
1−
(
νUk+1

)2)λ)w1





=



(
k+1∑
i=1

wiαλi ,
k+1∑
i=1

wiσ λi

)
;


√
1−

k+1∏
i=1

(
1−
((
µLi

)λ)2)wi
,√

1−
k+1∏
i=1

(
1−
((
µUi

)λ)2)wi
,

[
k+1∏
i=1

(√
1−
(
1−
(
νLi

)2)λ)wi
,
k+1∏
i=1

(√
1−
(
1−
(
νUi

)2)λ)wi]



(
k+1∑
i=1

wiÃλi

)1/λ

=



(k+1∑
i=1

wiαλi

)1/λ

,

(
k+1∑
i=1

wiσ λi

)1/λ
;


(√
1−

k+1∏
i=1

(
1−
((
µLi

)λ)2)wi)1/λ
,

(√
1−

k+1∏
i=1

(
1−
((
µUi

)λ)2)wi)1/λ

,


√√√√√√1−

1−

(
k+1∏
i=1

(√
1−
(
1−
(
νLi

)2)λ)wi)2

1/λ
,√√√√√√1−

1−

(
k+1∏
i=1

(√
1−
(
1−
(
νUi

)2)λ)wi)2

1/λ
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D. GENERALIZED INTERVAL-VALUED PYTHAGOREAN
NORMAL FUZZY WEIGHTED GEOMETRIC OPERATOR
Definition 15: Let Ãi =

〈
(αi, σi);

[
µLi , µ

U
i

]
,
[
νLi , ν

U
i

]〉
(i = 1, 2, . . . , n) be a collection of IVPNFN, W =

(w1,w2, . . . ,wn) be a weight vector of Ãi, and wi ≥ 0,∑n
i=1 wi = 1, λ be a parameter and λ ∈ (−∞, 0)∪(0,+∞)

then

GIVPNFWG
(
Ã1, Ã2, . . . , Ãn

)
=

1
λ

(
n∏
i=1

(
λÃi

)wi)
(13)

is called a generalized IVPNF weighted geometric
(G IVPNFWG) operator.
Theorem 8: Let Ãi =

〈
(αi, σi);

[
µLi , µ

U
i

]
,
[
νLi , ν

U
i

]〉
(i = 1, 2, . . . , n) be a collection of the IVPNFN, the
GIVPNFWG operator is still an IVPNFN, that is (14), as
shown at the bottom of this page.

Proof: Firstly, we use the mathematical induction
method to prove the follow formula:

n∏
i=1

(
λÃi

)wi

=




n∏
i=1
(λαi)

wi ,

n∏
i=1
(λσi)

wi

;

√
1−

n∏
i=1

(
1−
((
µLi

)λ)2)wi
,√

1−
n∏
i=1

(
1−
((
µUi

)λ)2)wi
,

[
n∏
i=1

(√
1−
(
1−
(
νLi

)2)λ)wi
,
n∏
i=1

(√
1−
(
1−
(
νUi

)2)λ)wi]


(1) When n = 2,
Since(
λÃ1

)w1

=



(
(λα1)

w1 ,

(λσ1)
w1

)
;


(√

1−
(
1−
(
µL1

)2)λ)wi
,(√

1−
(
1−
(
µU1

)2)λ)wi
,

[√
1−
(
1−
((
νL1

)λ)2)wi
,

√
1−
(
1−
((
νU1

)λ)2)wi]


,

(
λÃ2

)w2

=



(
(λα2)

w2 ,

(λσ2)
w2

)
;


(√

1−
(
1−
(
µL2

)2)λ)wi
,(√

1−
(
1−
(
µU2

)2)λ)wi
,

[√
1−
(
1−
((
νL2

)λ)2)wi
,

√
1−
(
1−
((
νU2

)λ)2)wi]


,

Then
(
λÃ1

)w1
⊗

(
λÃ2

)w2
, as shown at the bottom of the

next page.

(2) Supposing n = k, k > 2, that is
k∏
i=1

(
λÃi

)wi
, as shown

at the bottom of the next page.
If n = k+1, according to the operational laws of IVPNFN,

we can get
n∏
i=1

(
λÃi

)wi
×

(
λÃk+1

)wk+1
, as shown at the

bottom of page 51310, then 1
λ

(
n∏
i=1

(
λÃi

)wi)
, as shown at the

bottom of page 51310.
(3) According to above steps, we can get Theorem 8 holds

for any k .
Where, if λ = 1, theGIVPNFWGoperator is reduced to the

IVPNFWGoperator. TheGIVPNFWGoperator has the prop-
erties of boundedness, and idempotency and monotonicity.

VI. A MULTI- ATTRIBUTE DECISION MAKING METHOD
BASED ON IVPNF INFORMATION
In the IVPNF information environment, let A = {A1,A2,
. . . ,An} represent n alternative sets, C = {C1,C2, . . . ,Cm}m
attribute sets, w = {w1,w2, . . . ,wm} weights of attributes
and Ãij =

〈(
αij, σij

)
;

[
µLij , µ

U
ij

]
,
[
νLij , ν

U
ij

]〉
(i = 1, 2, . . . , n;

j = 1, 2, . . . ,m ) is a IVPNFN of alternative Ai in attribute
Cj. Wherein, µLij and µ

U
ij are the lower limit and upper limit

of the membership degree of alternative Ai to normal fuzzy
numbers (αij, σij) in attribute Cj, respectively;νLij and ν

U
ij are

the lower limit and upper limit of the non-membership degree
of alternative Ai to normal fuzzy numbers (αij, σij) in attribute

Cj, respectively;
[
µLij(x), µ

U
ij (x)

]
∈ [0, 1],

[
νLij (x), ν

U
ij (x)

]
∈

[0, 1], and 0 ≤ uUij (x)
2
+vUij (x)

2
≤ 1. n alternative sets

GIVPNFWG
(
Ã1, Ã2, . . . , Ãn

)
=




1
λ

n∏
i=1
(λαi)

wi ,

1
λ

n∏
i=1
(λσi)

wi

,


√√√√√1−

1−

(
n∏
i=1

(√
1−
(
1−
(
µLi

)2)λ)wi)2
1/λ

,√√√√√1−

1−

(
n∏
i=1

(√
1−
(
1−
(
µUi

)2)λ)wi)2
1/λ


,

(√1−
n∏
i=1

(
1−
((
νLi

)λ)2)wi)1/λ

,

(√
1−

n∏
i=1

(
1−
((
νUi

)λ)2)wi)1/λ



(14)
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and m attribute sets constitute an n×m decision matrix
D =

(
Ãij
)
n×m

to determine the decision results.
The steps of MADM in IVPNF information environment

are given below:
Step 1: normalize the decision matrix.
To eliminate the influence of different dimensions on the

decision results, the decision matrix D =
(
Ãij
)
n×m

is nor-

malized into D̄ =
(
¯̃Aij
)
n×m

; wherein, ¯̃Aij =
〈(
ᾱij, σ̄ij

)
;[

µ̄Lij , µ̄
U
ij

]
,
[
ν̄Lij , ν̄

U
ij

]〉
.

For benefit attributes [54]:

ᾱij =
αij

max
i
(αij)

, σ̄ij =
σij

max
i
(σij)
·
σij

αij
, µ̄Lij = µ

L
ij , µ̄

U
ij = µ

U
ij

(15)

For cost attributes [54]:

ᾱij =

min
i
(αij)

αij
, σ̄ij =

σij

max
i
(σij)
·
σij

αij
, ν̄Lij = ν

L
ij , ν̄

U
ij = ν

U
ij

(16)

Step 2: aggregate the values of alternative attributes.
On the basis of IVPNF information aggregation oper-

ators, the information set with attribute Cj in Ãi,
¯̃Aij =〈(

ᾱij, σ̄ij
)
;

[
µ̄Lij , µ̄

U
ij

]
,
[
ν̄Lij , ν̄

U
ij

]〉
, is aggregated into ¯̃Ai =〈

(ᾱi, σ̄i);
[
µ̄Li , µ̄

U
i

]
,
[
ν̄Li , ν̄

U
i

]〉
.

Step 3: determine the positive and negative ideal points of
the alternatives, and then calculate the distances between each
alternative and the two ideal points.

Let the positive ideal point be
¯̃A+ =

〈(
max
1≤i≤n

(ᾱij), min
1≤i≤n

(σ̄ij)
)
; [1, 1], [0, 0]

〉
.

Let the negative ideal point be
¯̃A− =

〈(
min
1≤i≤n

(ᾱij), max
1≤i≤n

(σ̄ij)
)
; [0, 0], [1, 1]

〉
.

Then, the distances between each alternative and the two
ideal points:

D+i = DE
(
¯̃Ai,
¯̃A+
)
;D−i = DE

(
¯̃Ai,
¯̃A−
)

Step 4: determine the ranking of alternatives.
Calculate the relative nearness D∗i = D−i

/
D+i +D

−

i

(
λÃ1

)w1
⊗

(
λÃ2

)w2
=



(
(λα1)

w1(λα2)
w2 ,

(λσ1)
w1(λσ2)

w2

)
;


(√

1−
(
1−
(
µL1

)2)λ)w1
(√

1−
(
1−
(
µL2

)2)λ)w1

,(√
1−
(
1−
(
µU1

)2)λ)w1
(√

1−
(
1−
(
µU2

)2)λ)w1




√√√√√√√√√√

(√
1−
(
1−
((
νL1

)λ)2)w1
)2

+

(√
1−
(
1−
((
νL2

)λ)2)w1
)2

−

(√
1−
(
1−
((
νL1

)λ)2)w1
)2

·

(√
1−
(
1−
((
νL2

)λ)2)w1
)2 ,

√√√√√√√√√√

(√
1−
(
1−
((
νU1

)λ)2)w1
)2

+

(√
1−
(
1−
((
νU2

)λ)2)w1
)2

−

(√
1−
(
1−
((
νU1

)λ)2)w1
)2

·

(√
1−
(
1−
((
νU2

)λ)2)w1
)2





=




2∏
i=1
(λαi)

wi ,

2∏
i=1
(λσi)

wi

;


2∏
i=1

(√
1−
(
1−
(
µLi

)2)λ)wi
,

2∏
i=1

(√
1−
(
1−
(
µUi

)2)λ)wi
,

[√
1−

2∏
i=1

(
1−
((
νLi

)λ)2)wi
,

√
1−

2∏
i=1

(
1−
((
νUi

)λ)2)wi]



k∏
i=1

(
λÃi

)wi
=



(
k∏
i=1
(λαi)

wi ,
k∏
i=1
(λσi)

wi

)
;


√
1−

k∏
i=1

(
1−
((
µLi

)λ)2)wi
,√

1−
k∏
i=1

(
1−
((
µUi

)λ)2)wi
,

[
k∏
i=1

(√
1−
(
1−
(
νLi

)2)λ)wi
,
k∏
i=1

(√
1−
(
1−
(
νUi

)2)λ)wi]
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Rank the alternatives according to the value of D∗i ; the
larger D∗i is, the better the alternative will be.

VII. NUMERICAL EXAMPLE
A. DECISION FINDINGS
With the development of e-commerce platforms, online shop-
ping has become a common consumption habit of consumers.
A consumer intends to buy a mobile phone on an e-commerce
platform. Five mobile phones are selected as alternatives,

and the alternative set is A = {A1,A2,A3,A4,A5}.
Four attributes are considered, namely, the performance of
mobile phone system (C1), credibility of merchant (C2),
online satisfaction rate (C3) and price preference (C4),
constituting the attribute set C = {C1,C2,C3,C4}. All
are benefit attributes and their corresponding weights are
w = {0.3, 0.25, 0.25, 0.2}T . According to the decision infor-
mation, the decision information matrix shown in Table 1 is
constructed.

n∏
i=1

(
λÃi

)wi
×

(
λÃk+1

)wk+1
=




k∏
i=1
(λαi)

wi×(λαk+1)
wk+1 ,

k∏
i=1
(λσi)

wi×(λσk+1)
wk+1

,



k∏
i=1

(√
1−
(
1−
(
µLi

)2)λ)wi
(√

1−
(
1−
(
µLk+1

)2)λ)w1

,

k∏
i=1

(√
1−
(
1−
(
νUi

)2)λ)wi
(√

1−
(
1−
(
νUk+1

)2)λ)w1


,



√√√√√√√√√√

(√
1−

k∏
i=1

(
1−
((
νLi

)λ)2)wi)2

+

(√
1−
(
1−
((
νLk+1

)λ)2)w1
)2

−

(√
1−

k∏
i=1

(
1−
((
νLi

)λ)2)wi)2

·

(√
1−
(
1−
((
νLk+1

)λ)2)w1
)2 ,

√√√√√√√√√√

(√
1−

k∏
i=1

(
1−
((
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TABLE 1. Original decision matrix.

TABLE 2. Normalized decision matrix.

Step 1: normalize the data listed in Table 1 according to for-
mula (15) and (16) for the normalized matrix D̄ =

(
¯̃Aij
)
5×4

,
with the results shown in Table 2.
Step 2: aggregate the information in Table 2 with

IVPNFWA operator to get the integrated IVPNF of each
alternative.
¯̃A1 = < (0.764, 0.074), ([0.461, 0.59], [0.403, 0.55]) >;
¯̃A2 = < (0.827, 0.077), ([0.561, 0.736], [0.398, 0.521]) >;
¯̃A3 = < (0.819, 0.079), ([0.565, 0.632], [0.402, 0.481]) >;
¯̃A4 = < (0.879, 0.079), ([0.618, 0.721], [0.489, 0.551]) >;
¯̃A5 = < (0.83, 0.062), ([0.51, 0.586], [0.36, 0.459]) >;

Step 3: determine the positive and negative ideal points of
the alternative, and then calculate the distances between each
alternative and the two ideal points:

¯̃A+ = < (0.879, 0.062), ([1, 1], [0, 0]) >;
¯̃A− = < (0.764, 0.079), ([0, 0], [1, 1]) >;

The distance between each alternative and the positive
ideal point:
D+1 = 0.4839, D+2 = 0.3874, D+3 = 0.4051, D+4 = 0.3645,

D+5 = 0.412
The distance between each alternative and the negative

ideal point:
D−1 = 0.4073, D−2 = 0.5096, D−3 = 0.4787, D−4 = 0.5219,

D−5 = 0.4722
Step 4: conduct calculation according to the nearness

formula.

D∗1 = 0.457, D∗2 = 0.5681, D∗3 = 0.5416, D∗4 = 0.5888,
D∗5 = 0.534
Ranking of 5 alternatives: A4 > A2 > A3 > A5 > A1;

therefore, alternative A4 is the optimal choice.

B. COMPARATIVE ANALYSIS
Firstly, Euclidean distance and Hamming distance of IVPNF
proposed in this paper are compared. As shown in Table 3,
the ranking of alternatives with IVPNFW operator based
on IVPNF Euclidean distance and Hamming distance is
A4 > A2 > A3 > A5 > A1. When such methods
proposed other scholars as grey relational analysis, cosine
similarity and project are applied the ranking, the result is
the same, A4 > A2 > A3 > A5 > A1. The ranking result
calculatedwith score function in Definition 6 is also the same,
A4 > A2 > A3 > A5 > A1. What’s more, the ranking result
based on IVPNFWG operator, GIVPNFWA operator and
GIVPNFWG operator presented by this paper under different
distance measures are consistent. It can be concluded that
Euclidean and Hamming distances of IVPNF proposed in this
paper are effective.

Then, the four types of operators proposed in this paper
are compared with existed IVPF information aggregation
operators. When weighted interval-valued Pythagorean fuzzy
extended Bonferroni mean (WIVPFEBM) in [36] is applied
to IVPNF environment, and let the parameters p and q be 2,
the result show that A4 is the optimal choice while A1 is the
worst choice. When normal intuitionistic fuzzy Bonferroni
mean operators proposed by Liu and Liu [47] is applied
to IVPNF environment, the parameters p = q = 2, A4 is

VOLUME 8, 2020 51311



Z. Yang, J. Chang: IVPNF Information Aggregation Operators for Multi-Attribute Decision Making

TABLE 3. Comparison of ranking results based on different distance measures.

FIGURE 1. Changes in ranking based on GIVPNFWA operator and score
function.

still the optimal choice. When normal Intuitionistic Fuzzy
Hamacher weighted Heronian mean (NIFHWHM) proposed
by Zhang et al. [51] is applied to IVPNF environment, and
the parameters γ = 1, p = 2, q = 2, the optimal alternative
is also A4. It can be seen that the four aggregation operators
proposed in this paper are effective and rational.

C. SENSITIVITY ANALYSIS
The influence of generalized parameter λ on the alternative
ranking is analyzed. In Figure 1, the alternative ranking is
calculated based onGIVPNFWAoperator and score function.
If λ <5, the ranking of alternatives is A4 > A2 > A3 >
A5 > A1; if λ = 5, the ranking of alternatives changes into
A4 > A2 > A3 > A1 > A5; if 5< λ <8, the ranking
of alternatives changes again, A4 > A2 > A1 > A3 >

A5; if 8< λ, the alternatives are ranked in a new order,

FIGURE 2. Changes in ranking based on GIVPNFWA operator and TOPSIS.

A2 > A4 > A1 > A3 > A5, the optimal alternative
changes from A4 to A2. Similarly, in Figure 2, the ranking
of alternatives calculated based on GIVPNFWA operator and
TOPSIS varies with the change of parameter λ. The above
analysis shows that the generalized parameter λ has a great
influence on the ranking of alternatives. The decision-makers
may set the parameter λ according to the actual situation for
themost reasonable ranking result, and thenmake appropriate
decisions.

As suggested by the above analysis, the method proposed
in this paper has the following advantages:

(1) It combines the concept of NFN and IVPFN, puts
forward the concept of IVPNFN. IVPNFN interprets human
activities and natural phenomena that obey normal distribu-
tion in real life, and describes the fuzzy information with
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the sum of membership degree and non-membership degree
greater than one, while the square sum less than 1; thus, it
characterizes the fuzzy information in a wider way and is
closer to human thinking in decision-making.

(2) Different ranking results of alternatives can be obtained
flexibly with GIVPNFWA operator and GIVPNFWG opera-
tor based on parameter λ, and the decision-maker may deter-
mine decision result based on parameter λ according to own
preferred. Therefore, the method proposed in this paper is
featured by strong flexibility.

VIII. CONCLUSION
IVPFN characterizes interval-valued fuzzy information better
than IVIFS, but IVPFN cannot describe normal distribution
of social and natural phenomena. To solve such problems, this
paper combines NFN and IVPFN for advantage complemen-
tary, puts forward the concept of IVPNFN, defines some basic
theories of IVPNFN, proposes several aggregation operators
in IVPFN information environment, and applies them.

There is still space for further development in this paper.
For example, in terms of basic theory, the addition and
subtraction between IVPFNs can be further proposed, and
some measure methods for the similarity between IVPFNs
can be extended. In terms of information aggregation, it can
be extended to information aggregation model based on
Bonferroni mean or Einstein; in terms of application, it can
be extended to system control and logistics system.
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