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ABSTRACT The interval-valued Pythagorean fuzzy (IVPF) sets, describing the membership and non-
membership degrees from interval values, can address uncertain information, while the normal fuzzy
number (NFN) can depict normal distribution information in anthropogenic activity and natural environment.
By combining the advantages of both operations, in this study, we proposed the interval-valued Pythagorean
normal fuzzy (IVPNF) sets by introducing the NFN into IVPF environment. Firstly, we defined the concep-
tion, the operational laws, score function, accuracy function of IVPNF sets. Secondly, we presented four
information aggregation operators to aggregate IVPNF information, including the IVPNF weighted aver-
aging (IVPNFWA) operator, [IVPNF weighted geometric (IVPNFWG) operator, the generalized [VPNFWA
operator, and the generalized IVPNFWG operator. In addition, we analyzed some desirable properties of
monotonicity, commutativity, and idempotency for the proposed four operators. Finally, a numerical example
on multi-attribute decision-making problem is given to verify the practicality of the proposed operators, and
the comparative and sensitive analysis are used to show the effectiveness and flexibility of our proposed
approach.

INDEX TERMS Normal fuzzy number, interval-valued Pythagorean normal fuzzy, information aggregation

operators, multi-attribute decision-making.

I. INTRODUCTION

In our daily life, most of human beings are often faced
with multiple attribute decision-making (MADM) problems,
which may involve in multiple alternatives and multiple eval-
uation elements. Due to the complexity of human social
activities and the uncertainty of natural environment, the way
to deal with such uncertain information has become the
key to solve the MADM problems. Zadeh [1] proposed a
membership-based fuzzy set (FS), which effectively char-
acterized the fuzzy information and uncertain environment,
and thus benefit to recommend a better decision. Further-
more, Atanassov [2] extended the Zadeh’s FS to intuitionistic
fuzzy sets (IFSs) containing three elements, i.e., member-
ship degree, non-membership degree and hesitancy degree.
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The above intuitionistic fuzzy set has been extensively stud-
ied and extended into different types of intuitionistic fuzzy
sets, including interval IFSs [3], hesitant IFSs [4], trian-
gular IFSs [5], trapezoidal IFSs [6] and normal IFSs [7],
etc. IFSs indicate support, opposition and neutrality of the
decision-makers to the same attribute depending on member-
ship degree, non-membership degree and hesitancy degree,
and characterize fuzzy information by integrating the above
three aspects. The characterization of fuzzy information by
Atanassov’s IFSs is more comprehensive and detailed than
that by Zadeh’s FS for the single aspect of membership
degree. However, IFSs has certain deficiencies shown as
follows. As stipulated by IFS, the sum of membership degree
and non-membership degree should be less than or equal
to the value number 1. When people independently assign
membership degree and non-membership degree to the same
attribute in the actual decision-making process, the sum will
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be greater than the value number 1, while the square sum will
not exceed the value number 1, but the IFSs is inapplicable
in this case. For the purpose of characterization of such fuzzy
information, Yager and Abbasov [8] and Yager [9] extended
intuitionistic fuzzy sets into Pythagorean fuzzy sets (PFSs),
so that the decision-makers could characterize fuzzy informa-
tion more effective and make more accurate decisions without
modifying original fuzzy information into information in the
form of intuitionistic fuzzy.

Since Yager put forward PFSs, lots of studies inves-
tigated to combine the PFSs and other types of fuzzy
sets to extend the PFSs. In the terms of basic theory,
Hussain et al. [10] presented some Rough Pythagorean fuzzy
ideals to extend the PFS. Verma and Merigo [11] proposed
two new generalized similarity measures between PFSs using
cosine and cotangent functions. Hussian and Yang [12]
developed a method to calculate the distance between PFSs
based on the Hasudorff metric. Xian er al. [13] defined a
new trapezoidal Pythagorean fuzzy linguistic PRs (TrPFL-
PRs), and proved some properties of TrPFLPRs. Zhou and
Yang [14] defined the concept of single granulation hesitant
Pythagorean fuzzy rough sets (SGHPFRSs). In the terms
of information aggregation operators, Liang et al. [15] pre-
sented Pythagorean fuzzy geometric weighted Bonferroni
mean PYGWBM operator, and developed a MADM based
on PYGWBM operator and projection. Tang et al. [16] pro-
posed dual hesitant Pythagorean fuzzy sets (DHPFSs), and
developed the dual hesitant Pythagorean fuzzy (DHPF) gen-
eralized weighted Heronian mean (DHPFGWHM) operator
and DHPF generalized geometric weighted Heronian mean
(DHPFGGWHM) operator. Garg [17] proposed the fam-
ily of generalized Pythagorean fuzzy (HPF) Einstein opera-
tor. Khan et al. [18] presented the Pythagorean trapezoidal
uncertain linguistic fuzzy (PTULF) Einstein weighted aver-
aging (PTULFEWA) operator, the PTULF Einstein ordered
weighted averaging (PTULFEOWA) operator, and the
PTULF Einstein hybrid weighted averaging (PTULFEHWA)
operator. Wei et al. [19] developed dual hesitant Pythagorean
fuzzy (DHPF) Hamy mean (DHPFHM) operators, such as
the DHPF weighted Hamy mean (DHPFWHM) operator
and the DHPF weighted dual Hamy mean (DHPFWDHM)
operator. Abdullah and Mohd [20] proposed the Pythagorean
fuzzy Hamacher Choquet integral (PFHCI) average (PFH-
CIA) operators and PFHCI geometric PFHCIG) operators.
Abbas et al. [21] defined the concept of Cubic Pythagorean
fuzzy numbers (CPFNs), and presented Cubic Pythagorean
fuzzy (CPF) weighted averaging (CPFWA) operator, and CPF
weighted geometric (CPFWG) operator. Shakeel ez al. [22]
proposed Pythagorean trapezoidal fuzzy (PTF) ordered
weighted averaging (PTFOWA) operator and PTF hybrid
averaging (PTFHA) operator. Deng et al. [23] by introduc-
ing the Hamy mean (HM) operator into the 2-tuple lin-
guistic Pythagorean fuzzy numbers (2TLPFNs), developed
the family of the 2-tuple linguistic Pythagorean fuzzy infor-
mation aggregation operator. Xian et al. [24] developed a
new trapezoidal Pythagorean fuzzy linguistic entropic, and
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analyzed its operational rules and information aggregation
operators. Teng et al. [25] by introducing the power aver-
age (PA) operator and Maclaurin symmetric mean (MSM)
operator into Pythagorean fuzzy linguistic (PFL), presented
some power MSM aggregation operators for PFL informa-
tion. Garg [26] presented some neutrality operation-based
Pythagorean fuzzy geometric aggregation operators. Sarkar
and Biswas [27] presented archimedean t-conorm and
t-norm-based Pythagorean hesitant fuzzy weighted averaging
operator and weighted geometric operator. Jana e al. [28]
introduced the Dombi operations into PFS, developed the
family of Pythagorean fuzzy Dombi aggregation operators.
However, owing to the limitation of human cognition
and the complexity of the objective world, it is difficult
for a human to exactly express the membership and non-
membership degrees by crisp numbers, but can be shown by
the interval numbers [29]. Interval value PFS (IVPES), as the
expansion of PFS, was presented by Peng and Yang [29],
and caused widespread attention of many scholars. Accord-
ing to the basic theory of Interval value PFS, many
scholarships extended and fulfil the theory of IVPFS.
Garg [30] introduced the exponential operational laws into
the interval-valued Pythagorean fuzzy set (IVPFS), and pro-
posed some new exponential operational rules and informa-
tion aggregation operators of IVPFS. Du et al. [31] defined
the interval-valued Pythagorean fuzzy linguistic variable set
(IVPFLVS), and presented the interval-valued Pythagorean
fuzzy linguistic (IVPFL) weighted averaging (IVPFLWA),
IVPFL ordered weighted averaging (IVPFLOWA), IVPFL
hybrid averaging, and generalized IVPFL ordered weighted
average operators. Tang et al. [32] combined the Muir-
head Mean (MM) operator and dual MM (DMM) with the
interval-valued Pythagorean fuzzy numbers (IVPFNs), and
proposed the family of interval-valued Pythagorean fuzzy
Muirhead mean operators based on MM and DMM operators.
Yang and Pang [33] developed the concepts of the hesitant
interval-valued Pythagorean fuzzy set (HIVPFS) are defined,
and presented a series of aggregation operators based on
HIVPFS. Wang et al. [34] developed a series of the interval-
valued 2-tuple linguistic Pythagorean fuzzy Maclaurin sym-
metric mean operator. Liang ef al. [35] developed a series
of interval-valued Pythagorean fuzzy Frank power (IVPFFP)
aggregation operators. Wei et al. [36] by using Maclau-
rin symmetric mean (MSM) operator, developed IVPF
Maclaurin symmetric mean and IVPF weighted Maclau-
rin symmetric mean operators. Rahman and Abdullah [37]
developed some operators under interval-valued Pythagorean
fuzzy (IVPF) environment, including induced generalized
IVPF Einstein ordered weighted geometric (I-GIVPFEOWG)
operator and induced generalized IVPF Einstein hybrid
weighted geometric (I-GIVPFEHWG) aggregation operator.
Liu et al. [38] introduced a new decision-making method
based on interval-valued Pythagorean hesitant fuzzy sets
to select third-party reverse logistics providers (3PRLs).
Haktanir and Kahraman [39] presented an MDAM method
combining Quality function deployment (QFD) with IVPFS
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to evaluate solar photovoltaic technology development.
Chen [40] developed an inferior ratio(IR)-based assignment
method under IVPF information environment to evaluate risk
level of enterprise technological innovation. Yu ef al. [41]
presented a group MADM method for sustainable supplier
selection using extended TOPSIS based on IVPF sets.

Furthermore, in the process of actual decision-making,
people will also be exposed to much information obeying
normal distribution which is derived from a large number
of human activities and natural phenomena obeying normal
distribution, e.g., “‘the service life of different products™,
“measurement errors’’, and “‘the law of weather changing
with the seasons”, etc. However, it is impossible to character-
ize such kind of fuzzy information with the existing hesitant
fuzzy numbers, triangular fuzzy numbers and trapezoidal
fuzzy numbers, etc. For this reason, Yang and Ko [42] put
forward a concept of normal fuzzy number (NFN) to describe
the above-mentioned fuzzy phenomena. As shown by the
comparison results, normal fuzzy numbers boasted high-
order derivative continuity and were closer to human thinking
in decision-making [43]. Based on this, some scholars
developed some new notions by combining the NFN and
intuitionistic fuzzy sets. Wang et al. [44] defined the
concept of intuitionistic normal fuzzy (INF) sets and pre-
sented some information aggregation under INF environ-
ment. Wang et al. [45] developed a series of induced
ordered weighted aggregation operators for INF. Liu and
Teng [46] defined some concepts of normal interval-valued
intuitionistic fuzzy numbers (NIVIFNs). Liu and Liu [47]
proposed some INF operators based on Bonferroni mean.
Yang et al. [48] proposed two dynamic intuitionistic nor-
mal fuzzy weighted operators. Moreover, Li et al. [49] pre-
sented dynamic interval-valued INF aggregation operators.
Liu [50] proposed some NIF operators with power interac-
tion. Zhang et al. [51] proposed some INF Heronian mean
operators.

Inspired by the above survey of related studies, we under-
stand that PFS, as an extension of IFS, describes fuzzy infor-
mation in a wider way than IFS. Compared with hesitant
fuzzy numbers, triangular fuzzy numbers and trapezoidal
fuzzy numbers, NFN is closer to human thinking in decision-
making. INF sets have been presented in previous studies, but
PFS or IVPFS based on NFN has not yet been reported.

In this study, we proposed a new fuzzy set, called interval
value Pythagorean normal fuzzy set (IVPNES). We assume
that this new set for operation can support the multi-attribute
decision making and improve the decision performance. The
main contributions of this paper are summarized as follows:

(1) The concept of IVPNFN and its based operational rules
are defined, the related properties of the operational rules are
proved, and the score function and accuracy function under
IVPNF environment is proposed.

(2) The method for measurement of the distance between
IVPNFNS is defined, including the method for measurement
of the distance between IVPNFNs based on Euclidean dis-
tance and Hamming distance, and the compliance of the
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distance measurement method to the three elements of dis-
tance is proved.

(3) Some information aggregation operators in IVPNF
environment are proposed, including IVPNF weighted
averaging (IVPNFWA) operator, IVPNF weighted geo-
metric (IVPNFWG) operator, the generalized IVPNFWA
(GIVPNFWA) operator, and the generalized IVPNFWG
(GIVPNFWG) operator, and commutativity, idempotency,
and boundedness properties of the above aggregation oper-
ators are demonstrated.

(4) A MADM method based on IVPNFW aggregation
operator and TOPSIS in IVPNF environment is proposed.

The rest parts are arranged as follows: In Part 2, the basic
concepts of NFN and IVPFS are reviewed. In Part 3, PNFS
and some of its operational rules are proposed. In Part 4,
Euclidean distance and Hamming distance between IVPNFSs
are put forward. In Part 5, some information aggregation oper-
ators under IVPNFS environment are presented. In Part 6,
a MADM method based on IVPNFES weighted information
aggregation operators and TOPSIS is proposed. In Part 7,
an example is given to demonstrate the effectiveness of the
proposed method. In Part 8, some conclusions are made.

II. PRELIMLINARIES

A. THE NORMAL FUZZY NUMBER

Definition 1 [42]: Let R be a real number set, the membership
function of fuzzy number

000 = e (5 (0 > 0) 0

is called as a normal fuzzy number (NFN) 0 = (a,0),
the normal fuzzy number set (NFNS) is denoted by N.
_ Definition 2 [52]: let Q1,02 € N, denoted by
01 = (&, 0), 0> = (B, ), then

@)) ):Q] = Ma,0) = (Aa, o), A >0

(2) 01402 = (@, 0)H(B, 7) = (@+B, o+7)

Definition 3 [52]: let Q1,02 € N, denoted by
01 = (a,0), 02 = (@, o), then the distance between A and
B can be defined as

L |
dz(A, B) = (a—ﬁ)2+5(a—f)2 )

B. THE INTERVAL-VALUED PYTHAGOREAN FUZZY
NUMBER

Definition 4 [29]: Let X be a non-empty set of the universe,
an interval-valued Pythagorean fuzzy A in X defined by

A= <x, [,u,ﬁ(x), Mg(x)], [vj(x), VX(X)D

where [14(x), n§ (x)] and [vk(x), v§ (x)] respectively, rep-
resent the membership and non-membership degree of
A, [uheo), n{ )] e [0, 11, [vi), vY )] € [0,1], and
0 < ufé()c)z—f—vl’fl(x)2 < 1, the degree of indeterminacy is
determined as

J=(l 0) (Y @)™,
1= (i) = (v )

51297

mA(x) = [ﬂﬁ(x), nf(x)] =



IEEE Access

Z. Yang, J. Chang: IVPNF Information Aggregation Operators for Multi-Attribute Decision Making

Peng and Yang called A = ([uf, u{], [v5. v]]) as an

interval-valued Pythagorean fuzzy number (IVPEN).

Definition 5 [29]: Let A = ([ug,ug]ij,uA DA =
([, i ] [ors v ) and Ao = ([ug, 13 ] [v7.v)']) be
any three IVPFNSs, A be a non-negative real number, then

2 2 2 2

Ve + 08~ (sh) )

DAI® A, = 2 2 2 2 7],
e R e O e R
[vivy, vi'v]
[uh g, 1 nd],

2 2 2 2

) maas = |V OD+OH =00 0D |

OV HOE Y —(o0) (7

(3) 24 = _/1_(1_( ﬁ)zy’\/]_(l‘(%f)k] ,
() (5]
(1), (15" ].

4 A" = _\/1—(1—(V“l“)2>k,\/1—<]—(U}‘])2)}L:| ;

Definition 6 [29]: Let A = ([uk, u¥]. [vk. v{]) be an
IVPFN, its score function is defined as

S(4) = ((MA)er(MX ) =(u£) (st >2>

and its accuracy function is defined as

H(A) = ((MA)2+(MX)2+(V/§)2+(\1£’)2>

for any two IVPFNs, A; = ([uf, uV], [vE, v7]), and
o = b ], [, 4] hen

(VIES(A)) > S(Aa), then A, > Ao

(2) If S(A;) = S(As), then

IFH(A)) > H(Ay). then A, > Ay

IfH(A)) = H(A),thenA| = A

Ill. THE INTERVAL-VALUED PYTHAGOREAN NORMAL
FUZZY NUMBER AND ITS OPERATIONS
Based on the conceptions and operations of [IVPFN and NFN,
we defined the interval-valued Pythagorean normal fuzzy
number (IVPNFN) and its operations.

Definition 7: Let X be an ordinary fixed non-empty set and
(a,0) € N, A= <(a, 0); [uﬁ, pcg] [vﬁ, vy ]) is a IVPNFN
when its membership function is defined as

_(X=ay2 xX—a\2
[/«Lﬁ,uff] uAe( Vouge e )], xeX (3
and non-membership function is defined as
B x—ay2
1—(1—vkye (5% )
L U] _ A ’
Vi, vy | = i , xeX &
[ ArA 1—(1—u/§f)e—<T>2)
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where [pk(x), u{ ()] € 10, 11, [vi(x), v{ (x)] € [0, 1], and
0< uA(x)2+vA(x)2 <1.
Definition 8: Let A = (((x, o0); [,uﬁ, Mf{], [vﬁ, vf\/]),
A= (a1, o0); [, u? ], ], and Ay = ((er2, 02);
[,ué‘, ué’], [vé‘ vzu]) be any three IVPFNs, A be a
non-negative real number, then

(a1+0ag, 014072);
b (2 () (11b)°,

i =)

(DA @A,

["f"%v [SS) ]

(12, 01-02); 1

L U, U
Lk, ul W],

OO +0H) = 0b 00 | |-
_J(vff)%(vé’)z—(v%’)z-(v;f)z

(A, Ao);

(2)A1®4,

(3)AA

Il
I
VN
.
—_
=
b
N—
[ )
N—
>~
—
|
VS
—
A
=
S
N—
[\)
N—"
~
| I |

(4)A*

=) -6

Proposition 1: Let A = ((a 0); [/LA,/,LA] [UA vy ])

A = (l(lozl, o1); [k, n¥], [vE,vY]), and Ay = ((02, 02);
[u%, sy ] [vé“, vy ]) be any three IVPFNs, and A, A1, A be
non-negative real numbers, we can obtain that:

(1) A1@Ar = A@A,
(2) <A1€BA2)®A3 = Al@(A2®A3>,
(3) A1®A; = Ay®A],
“) (A1®A2)®A3 = ;\1®(A2®;\3>,
) 1(A18ds) = 1h@idy,
(6) (Mi+A2)A = MA+IA,
™ (Areh)" = Bod}.
Proof: Based on definition 8, we can easily infer that (1),

(3), (5), (6) and (7) are right, (2) and (4) need be proved as
follows:

For (2) (Al@Az)@As = 2\1@(2\2@133)
Let the NFN of IVPEN Q be N~, the degree of
membership of (A]@Az 69;\3 and A169<;\2@;\3) be

L U L %
[M(AI@AZ)GBAS’ KA @404, | 204 I:MAléB(AzEBAz)’ “Al@mz@Az)]’
and their degree of non-membership be

L U L U
[”(AI@AZ)@As’ V(A1®A2)®A3] and [UAléB(AzGBA})’ ”AleamzeaAg)]’
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respectively, and we can get

N(A|®A2)®A3 = NA1®(A2®A3) = (a1+az+as, o1+02+03)

L U
I:M(AlﬂaAz)GBA,%’ K, €BA2)€BA3]

(b ) +(1h) = (k) (e )2+(2M§)2

S
PP T
\ ((Ml)"‘(ﬂz) (H’l) ('ué/) )(Mg)

(WY 4O = )
N ) ) ) ) )
) (=)
O ()

[Mﬁle;(Az@Ag)v MXlEB(Az@AQ]

(M%)2+(2M%)2—(2M%)2-(g§)2+(zuf)2

(AR T R

(1Y) +(nY )2—(;&5’)2‘(1;?)24r vy’
~((Y)+ (1Y)~ (1Y)

(B0 ) () () )
— (1) (15) = (15) " (15) "+ () ™ (125) ™ (13)

) )+ =) )

—(1?) " (1n8) =) (1F) +!) (1) (5)

Then

|

0y -WWJ

|
pd

Z

L U _ L U
[M(AleAmaAy “(Al@Az)eaAg] = [“Alea(AzeAw MAlea(Az@As)]

Similarly, we can get

[hauson e = [aman o]
(A1®BA2)BA3> “(A1DA2)DA3 A1B(A20A3)> YA1©(A20A3)
Therefore,
(A104;)@; = 4 10(A04; )
For (4)
(Ai@dr)ols = 410(A:04;)
Let the NFN of IVPFNs Q be N~, the degree
of membership of (A1®A2)®A3 and A1®<A2®A3> be

L U L U
[M(A1®A2)®A3’ “(A@Az)@As] and [“A.®<A2®A3>’ “A.@(A2®A3>]’
and their degree of non-membership be [V} 94,1045

U L U ;
V(A1®A2)®A3] and I:VA1®(A2®A3), VA ®A.@A) | Tespectively,
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and we can get
N(A1®A2)®A3 = NA1®(A2®A3) = (a1+az+az, o1+02+03)
L U
[V<A1 ®42)®A3° V(A ®Az)®A3]
O +04) =) 04+
—(0h)+ () = (vh) % (0)°)-
’ (

|
Z

00 8V () 00+ 000 (00

1
U\2 U\2 U\2 U\2 U\2 U\2 U\2

\ =) () =) (w3 )+ 7)) (v3)
Then
st ]~ senr o]

(A1®A2)®A3° "(A1®A2)®A3 | = [ "A1®(A2843)° "A1®(A2®@A3)

Similarly, we can get that

L U _ L U
[M(A1®A2)®A3’ /“L(A1®A2)®A3] = [MA|®(A2®A3)’ “A1®<A2®A3)]-

Therefore, (;\1®A2>®;\3 = A1®(A2®A3>

Definition 9: LetA = ((a, 0); [,uL MU], [vL, vU]) be an
IVPFN, its score function is determined as

Si(A) = %((“L)ZZ(MU)ZH_(vL)szr(va)’
SH(A) = %<(“L)ZJ;(MU)ZH_(vL)ZJ;(va).

its accuracy function is determined as

2 + 2
R

51299
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Definition 10: Let A; = ((ozl,al) [“1’“1] [ lL,le])
Ay = (a2, 02); [d, Y], [vE, vY]) be any two TVPENS,
their score functions are Si(a), S>(a), their accuracy func-
tions are H (a) Hz(a) respectlvely, then we can get
(l) IfSl(Al) > Sl(Az) thenAl > Az,
2 IfSl(Al) = 51(A2) and Hl(Al) > H1(A2) Ay > Ag;
3) IfSl(Al) = Sl(Az) and H1(A1) = H1(A2)
(a) If SQ(A]) > S2(A2) thenA1 < A2
(b) If Sz(A]) SQ(AZ) and Hz(A]) > HQ(AQ), then

A < A2 5 . . 5
_ (© If $2(A1) = $2(A2) and Hy(A1) = H(A2), then
Al =Ap

IV. THE DISTANCE MEASURE BETWEEN IVPNFNs
Definition 11: Assume Ay = ((ay, o1); [ph, V] [vE, v ]),
Ay = (a2, 02); [k, Y], [vE, v¥]), be any two IVPFNs
in X, and the Euclidean distance and Hamming distance
between IVPFNSs are defined as follows:

DE (Al, Az)
O 0\
1+(u§)2—(v§)2431+(u2U)2—(VZU)2a2
L B % 0 SN T W RS
SR W e
L\2_ (. L\2 21/ 2 2\ 2 2
+(1+(711) 7(772) ‘;1+(7[] ) 7(712) )
DH(~1,A2
() = OE ) 00
_1+<ué>2—<v5>22§1+<u5f>2—<u3>2az
1 L2 _(,L U2 (U2
- 2 +% H_](MI)L 2( 1)L+1+1(M1 )U 2( l )U(721 6)
- +§ﬂz> _EVZ) s +(:2> —<2vz> o
|| e e =)

Theorem 1: Let A, = ((051,01) [Mpﬂ]] [ 1L’V1U]>’

Ay = (a2, 02); [k, uY ], [vE,vY]), and A3 = ((a3, 03);
[u%, ,ug] [v3L v3U]> be any three IVPFNs in X, then
Dg (A1, Ay) satisfies the following properties:

(1 DE(AI,AZ) > 0, only if Ay, =
DE<A1,A2) =0;
(2 DE(ALAz) = DE(A2 ;\1);
(3) A1 = (@1, 00 [uf, uf], [vf, v]']) be an IVPEN,
DE(;\l,;h < Dg(A1, Az )+Dg Az,As)
Proof: Based on the operational rules of IVPFNs in

definition 8, we know that (1), (2) are right, (3) need be proved
as follows:

Az, then

S N—"
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Since we can get
(D(A1, Ap)+D(As, A3))?

1+(Mf)2—(uf)2+1+(M§J)2—(uff)2al

- 1+<u5>2f<vé>%+21+<u3>2—<v2”>2

o
O 0
1+<us>2—(vL>%+21+<u3>2—<v2">2

2 N2 2\ 2
+ 1+( il <n2>+1+<n1>—(n2>)

1+( “2 - +1+(“2) _("2[])2 @
2
1 (%) = +1+ u vV
i RaRe i A
_l’_

=

+

02

= )21+(“2) ),
2\ - =0’
2

+<1+<n%) (n§>2+1+(n£>2(n§’>2>2

+
D=

03

2

\

According to the above formula, we can get
(D(A1. A2)+D(A2, A3))?

1 2, 1 2 2
=1 Ta1—Tra) +§(F101—F20’2) +(®12)

1 1
+4—1 <(F2W2—F3(¥3)2+§(T202—F303)2+(<I>23)2>

J 11 —T202) + 3 (F101—T202) +(012)?
><\/(1"202—1“3(13)24-%(F202—F303)2+(<I>23)2

where
. () = 0 14 () = (o)
= 5 ,
- () = (0F) 14+ (1Y) = (vF)°
= 5 ,
o () = (5 14+ (1Y) = (vF)°
= 3 ,
o 14(rE) = (ed) 14 (=) = (nF)
12 = ,
2
() = (xh) + 14+ (xf) ~(=F)*
O3 = 5 )
o () = (b + (2~ (=F)
13 = .
2

Based on the above formula’s expansion, we can obtain
(D(A1, A2)+D(A2, A3))?

>1(I‘ -T 211“ —T%02)>+(P2)?
z 4| T 2002) ~|-2( 101—1202)"+(P12)

—i—l(l’ a3 (Tyop—T303) 4 (0a3)?
7| (222 303) +2( 202—T'303)"+(P23)

—I'207) )
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v

l((F10t1—F2a2)2+(F2(¥2—F30t3)2 >
+2(TM a1 —Tap) x (TMaz—T3a3)

+1 < 1(M101-T202)*+3 (M02—T303)? >
+(M101—T1202)(I'202—-T"303)

1
7 (@) (@0 +2(@1)x (@)

1
Z(Flal_F2a2+F2a2_F3“3)2

v

1 1
+§(F101—F202+F202—F363)2+Z(¢12+¢23)2

1 2, 1 2, 1 2
> Z(Flal_FSOlS) +§(F101—F3U3) +Z(<I>13)
= D(Ay, A3)?

The propf is completed
So D(A.A3) < D(A1 A2)+D<A2,A3) is maintained,

then we can infer that the Dg A 1 A2 is kept.

Similarly, we can proof that the Dy (Al, ;\2) is also kept.

In formula (5) and (6), when ([/Lf /,L%/] [vll“, UIU]> =
(1, 13,10,00), ([ng, n' ], [v5.vy]) = (11, 11,10, 00),
the IVPNFNs A; and A, are reduced to two NFs, the distance
between IVPNFNSs is transferred to the distance between NFs.

V. SOME AGGREGATION OPERATORS FOR IVPNFNs
There are some aggregation operators for IVPNFNs are pre-
sented, including interval-valued Pythagorean normal fuzzy
weighed averaging operators and their generalized form.

A. INTERVAL-VALUED PYTHAGOREAN NORMAL FUZZY
WEIGHTED AVERAGING OPERATORS
Based on the operational rules of IVPNFs, the weighed aver-
aging operators for IVPNFs are presented as follows:
Definition 12: Let Ai = (((x,-, 07); [,u{‘, ,LLIU], [viL, vl.U])
be a collection of IVPNFN, W = (wi,wo,...,w;,) be a
weight vector of Ai, and w; > 0, Zl'-’:l w; = 1. Then the
interval-valued Pythagorean normal fuzzy weighed averaging
(IVPNFWA) operator can be defined as

n
1VPNFWA<A1,A2,...,A,,) =Y wikii=1.2.....n)
=1

@)
Theorem 2: Let Ai = ((ai,a,-); [,uiL, MlU], [uL vU]) be

iV
a collection of IVPNFN, then the aggregated value using
IVPNFWA operator is still an IVPNFN, that is

IVPNFWA(A L As ,An>
(Z wic;, Z Wlal)v
2\ Wi
(1_(“1‘)) ’

) ®

VOLUME 8, 2020

Proof: We use the method of mathematical induction to
prove the theorem 2 as follows:
If n = 2, then

IVPNFWA (Al , Az)

= lezh @WIAI

wiA;
(wrag, wiop);

| [V 0-b?)" = (-wd)
[(Vf)wl’ (VIU)WI:I

woAz

(Waa2, wa02);

1= (=) 1= (1-09)) |
(04 (4)]

wiA1Ow)A,

(Wia+waa, wio2+w207);

(1—(1—<u%>2>w‘>+<1—(1—<u%>2>””>

~(1=(1=) ) (= (1-0) )

(i -]

-(1-(1- w)’)")

[N ,<v%f>‘"(v5')wz]

(wia1+woa, wion+w207);

Ji=0=60)" (1-6) ™
=007 10"

()" ()™, (o)™ (v)"]

We suppose that formula holds for n = k (k > 3), that is

‘E\
\_/
[\)
\_/
—~
~—
o

|
A

IVPNFWA(Al,Az, . ,Ak)

k n
(Z wid, Y Wi0i>§
i=1

i=1

_ [ l_ilj (1—(M,~L)2)Wi’/1_ili[l (1—(MiU)2)Wi}’

51301
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Then if n = k+1, we can use the operational rules of
IVPNENS to obtain the

IVPNFWA<A1,A2, .. .,Ak,Ak+1>

k k
(Z Willi+ Wk 1Qk+1, 2 WiUi+Wk+10'k+1>§
i=1

=

Wk+1

Il
-

1 k+1
wieti, Y wioi |;

i=1 i=1

t

—
+
N
p—
|
=
—~
—
|
—~
=
~T~
N—
S
S ——
|
—
N———"
~

,_.
+
—_
|
—=
—~
—_
L
=
~=
SN—"
\S)
=z
|
—_
N~
o~
I
;?
+Q
-
=z

k+1 IN2 wi
= \/l—i]:ll (1—(:“1') ) | e, kel -
| ,[n 60" T (08) }
U2\ i=1 i=1
=TT (1-(uF)’)
i=1

The IVPNFWA operator satisfies the following three
properties. 5

Theorem 3 (Idempotency): If all A; = {((«;,0});
[ LU LyUhi=1,2 1withA; = A
pk, wl ] [vE P )i =1,2,..., n) are equal with A; ,

i

then 1VPNFWA<A1,A2, o A,,) A
Proof: Since o; = «a, oy = o, pb = pb, WY =
pY, vk =vk Wl =0,

IVPNFWA(Al,Az, . ,An)

51302

n n
ad wi,o > wil;
i=1 i=1

n n
2 wi 2 Wi
(1) )5

n
Since Y w; =1, we can get
i=1

IVPNFWA(Al Ay A,,)

(a,0);

_ [\/1—(1—(;#)2),\/1—(1_(/1;1)2”, _

v v

i Vi

Theorem 4 (Boundedness); Let A;

[ ] ] =
be a collection of IVPNFN,
If

A . L U L U
A = <(oc,-j, aij); [MU I ][v,, v ]>
G=1.2,....mj=1.2...i)

= ((c, o3);

L2,....n) = 1,2,...0)

= MiN|<i<p,j=1.2,...j ajat = Max| <i<p,j=12,....i; %ij>

07 = MaXi<i<pj=12,..; 00 = Mil|<j<nj=1.2....i; Oj-

ph T =ming<icn e, g 1T =maxi<ica o2, 1

V™ =mingcicn jor 2, 0= max cicn im0, 1 S

vE- :minliisn,jzl,z _____ i vl-?,ULJ'_ = MaXi<i<n,j=12,...i Vié’

V- =MiN|<j<n j=1,2,...,j; vi;],vUJr=max1§i§n,j:1,2,w,j/. vlﬁj
Then

((a—’a—); I:ML—’ MU—]’ I:VL+’ vU+]>
< IVPNFWA(Al,Az, . ,An)

< ((a+’a+); [MH’ MU+]’ [UL—’ vU—])

Proof:  Since pL— = min]sign,j=l,2,...,ij vilj‘»,
U= — mins i U L+ — . L
v = M| <i<p,j=1,2,....jj Vii»V t= maxi<i<n,j=1,2,....i; Vij»
U+ = maxi<i<p,j=1,2,....j; viﬁ'/’ we have vE~ < Ué-’ <

vt W= < VIS'] < Ut and

UL_~|—L'U_

=TT T 0) =00 T ()"

i=1
n wi n wi
1 1
< 1—[ (UL+) +1—[ (UU+) — Lt Ut
i=1 i=1

: L
ming <i<p,j=1,2,...,i; :u’ijs 1% =
L U— : U
maxi<i<n,j=1,2,...,ij I’Ll‘jv 1% = minj <i<p,j=1,2,...,i; /’ij ,

=

Since pul— = L+
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U
" + = maX1§i§n,j:l,2,A..,

i /,Li(j}, we have pl—
pht w1V <l < pU+ and

L
fﬂijf

[ Y/ Ad

IA
—_
|
B
N
—
|
—
=
<
N—"
)
N———"
=
+

000
_ilj (1_(MU+)2)M

IA

_}j(l_

L++MU+

=n

Since o~ = minj<j<pj=12,..i ozij, at =
max|<i<p,j=1,2,....;; %j» 0 = MaAX|<i<nj=12,...,
min| <ij<pj=12....;; 0;j> we have o= < aij < at,

at <aj <a” and
n n n n
Zwia_ < Zwiaij < Zw,oﬁ', Zw,-0+
i=1 i=1 i=1 i=1
n n
< Zwidij < ZW,‘O’_
i=1 i=1

Therefore, based on the score function and accurate func-
tion, we can infer that

9
\;I
Q

|

é:lwia_
2
<\/ lj( —(puk )) )2 < ( (MU)Z)W!)Z
2 2 2
e (e
iwiau
=l
- 2

x n Wi 2 n W 2
(71 (v{;) ’) +<1:[1 vé/) l)
+1--= —
iwloﬁ
< i=1
)
n 2 n 2
fieon) o)
X 2

VOLUME 8, 2020

That is
<(a_, o) [ML_, MU_], [vH, vU+]>
< IVPNFWA(A] Ay ,An)

< ((a+’a+); [HL+’ MU+]’ [VL—’ UU—])
Theorem 5 (Monotonicity): Suppose (AlAZAn)
and (El,fi’g,...,f?n) are two sets of IVPNFN, and
Ai = <(aa,/vaalj) |::ua,] Ma,,] [é}’ ng:l> and Bi =

((ab,-j,ffb,--); [/va_, ,ub_.], [uvabU]> i = 12...,n

2
Jj = 1,2,...i;) For any i, if there is ag; < ap;, um] +
U 2 2 2 2 U 2
()" = (k) +(uty) ama () +(o85) " = (vh) "+
2
(v%) or A; < B; then
IVPNFWA<A1,A2, . ,A,,) SIVPNFWA(El, B ... ,En).

Proof: For any i, there is ag;j < apjj,
Therefore

n n
D caij = ) i
i i
2 U \2
For any i, there is (,u,m]) (,umj> (Mbl]> (“bij) ,

Therefore
2
= 1= () +1~(uf)

(o) (o) (o) (et
(o) 1 (-08))

i=1

= [1(-6) 1 (-))

2 2 2 2
Since there is (vaLl.j) +(”Z’j> > (vlfl./) —|—<vl§{/) ,
Therefore

(f105) +(11:4)
= =

1- <1- ,
2 2
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And

Therefore

IVPNFWA<A1,A2, . ,A,,) §IVPNFWA<I§1,I§2, o ,Bn),
B. INTERVAL-VALUED PYTHAGOREAN NORMAL FUZZY
WEIGHTED GEOMETRIC OPERATOR

Definition 13: Let Ai = ((ai,ai); [uiL,,ulU], [vlL vl.U]>
(i = 1,2,...,n) be a collection of IVPNFN,
W = (wi,wa,...,w,) be a weight vector of Ai, and
wi > 0, Y%, wi = 1. Then the interval-valued Pythagorean
normal fuzzy weighed geometric IVPNFWG) operator can
be defined as

n
IVPNFWG(A1, Ao, ... An) = TA} i =1.2,..om (9)

Theorem 6: Let z:\,- = ((ocl-, 0;); [,uiL, ,ufj], [viL, vl.U])
(i=1,2,...,n) be acollection of IVPNFN, then the aggre-
gated value of the IVPNFWG operator is still an IVPNFN,
that is

IVPNFWG(AI, Ay .. ,An)

(10)

Proof: The method of mathematical induction is used to
prove the theorem 6 as follows:
(1) If n = 2, then
IVPNFWG(A), Az) = A} @Ay
iy

(o ): [ ()™ (1)),

[\/1_(1_(”1L)2)W1, \/1_<1_(vly)z)wl}

51304

Ay
(@2, 03 >,[< > . (1d)")
[\/1— (1-(v \/1 (1-0%) Wz}
AV @AY

L\WI ([, L\W2
(ozl xay?, 0" x0, ),I:(M‘) (/;2211) ’i|,

(2) We suppose that formula holds forn = k (k > 3), thatis

IVPNFWG(Al, Ay . ,Ak)

(ilj a;vi, lli[] O—ZWI>’
) [ﬁ (F)". T1 (Mf])wi]’ \/l_i

j=1 i=1

—=
—/
—_
|
—_
=
~
SN—

(3]
N—
=z

&
—
|
(et
—~
—_
L
=
-
~—
[\S)
SN—"
=

(3) Then if n = k +1, we can use the operational rules of
IVPNENS to obtain the IVPNFWG(Al A, Ay Ak+1),
as shown at the bottom of the next page.

(4) Based on steps (1), (2) and (3), we can get
Theorem 6 holds for any k.

According to Theorems 3, 4, 5, we can similarly prove the
properties of idempotency, monotonicity and boundedness
for IVPNFWG operator

C. GENERALIZED INTERVAL-VALUED PYTHAGOREAN
NORMAL FUZZY WEIGHTED AVERAGING OPERATORS
As generalizations of the IVPNFNWA and IVPNFNWG
operators, some generalized Interval-valued Pythagorean
normal fuzzy weighed averaging operators are developed in
the following.

Definition 14: Let A; = ((ai, 0i); [M,-L, ,ulU], [v.L v.U]>

1771
(i = 1,2,...,n) be a collection of IVPNEN,
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W = (wy, wa, ..., wy) be a weight vector OfA,‘, and w; > 0,
>, wi = 1, A be a parameter and A € (—o0, 0)U(0, +00)

then
A,,)

GIVPNFWA(Al,Az, L
n 1/)L
= (Z wiA?) (i
i=1

1,2,....n) (11

is called a generalized IVPNF weighted averaging
(GIVPNFWA) operator.

Theorem 7: Let A,- = ((a,-, 07); [/,LlL ,ul.U], [viL, vl.U]>
(i = 1,2,...,n) be a collection of the IVPNEN, based on
the operational rules of IVPNF, the GIVPNFWA operator is
still an IVPNFN, that is Eq. (12), as shown at the bottom of

this page.

k wi
a)
i=1 '

k .
[1 Gin
\i=l

Wi+1
Xak+l .

Wk+1
XO’k+l

(wF)" ()™

()"

)Wk+1

,.
ol e

IVPNFWG(/L,AZ, ...,Ak,AkH) - i=1

k+1
2\ Wk+1
1=(f,)’)

-(1-6£)")

/N

»
t

Il
—-

(1—f[ 1—(vf’)2)wi>(l—(1—(vzf]+1

1_(V1£/+1

)Q)Wk+l
)

1

+
—
|
h:l”

—
>~

. )
X
R

—_
l =~
=

—

._
|
~
A IR

Il
—_

_ = I
[l

™= s

I
—

NN M

GIVPNFWA (A LA

An)
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the mathematical induction me

Proof: We use

prove the follow formula firstly:

"
i=1

shown at the bottom of this page.

k, k > 2, thatis

Then wiA1BwrA», as

(2) Supposing n

(000

:2,

(1) Whenn

w1A1©&w24A2
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If n = k41, according to the operational laws of IVPNFN,
k

A

‘1> as shown at the bottom of

we can get y w,-A?‘—}—wkH;l
i=1
k+1

1/
3 w,-Af‘) , as shown at the bottom of
i=1

this page, then (
this page.

(3) According to above steps, we can get Theorem 7 holds

for any k.
Where, if A = 1, the GIVPNFWA operator is reduced

to the IVPNFWA operator. Furthermore, based on the
Theorems 3, 4 and 5, we know that the GIVPNFWA operator
has the properties of boundedness, and idempotency and

monotonicity.

k

Z WiA?”+Wk+1A,)'}{+1 = wlflf@wzﬁéﬂa. . .@WkA])CL@Wk+1A£+1

i=1

k

A A
D Wil FWE 10y
i=1

k

A A
> wio; FWet107
i=1

e

T~ T~

k+1

(._

> wi
i=1

)L>1/A (\/1—]:11 <]—((M%)A>2)W;> /)w
0] ; IPE
()
1y ]
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D. GENERALIZED INTERVAL-VALUED PYTHAGOREAN
NORMAL FUZZY WEIGHTED GEOMETRIC OPERATOR
Definition 15: Let A = (((x,,o,) [,u{‘,,u,lU],[ )
(i = 1,2,...,n) be a collection of IVPNFN, W =
(wi, wy, ...,w,,) be a weight vector of A,, and w; > 0,
>y wi = 1, A be a parameter and A € (—o0, 0)U(0, +00)
then

GIVPNFWG(Al,Az, . ,An) - i(]i[ (AA) ) (13)
i=1

is called a generalized IVPNF weighted geometric

(GIVPNFWG) operator.
Theorem 8: Let A; = ((ai,o,-); [,uiL,,ulU], [vl.L, vl.U]>
(i = 1,2,...,n) be a collection of the IVPNFN, the

GIVPNFWG operator is still an IVPNFN, that is (14), as
shown at the bottom of this page.

Proof: Firstly, we use the mathematical induction
method to prove the follow formula:

[1(:4)"

i=1
I G \/ -
_ ﬁ (o™ /1

E:l=
N
»—A

) 2\"
~(0)’)
K
l

fi(-()) |
enrlEa)
(1) Whenn =2,
Since

()

o | )
o™ ) ( A> ’

)
( (}\.OlZ)Wz’ ) (
G ) ( ) ’
n

~ w ~ w
Then (AAl) l®<kA2) 2, as shown at the bottom of the
next page.

ko, o \w
(2) Supposing n = k, k > 2, thatis ] (AAi) , as shown
i=1

at the bottom of the next page.
If n = k41, according to the operational laws of IVPNFN,
n -~ wi ~ w,
we can get [] ()»A,-) X (Mk+1> kH, as shown at the
i=1

n A\ Wi

bottom of page 51310, then % <]_[ (AA,-) >, as shown at the
i=1

bottom of page 51310. l

(3) According to above steps, we can get Theorem 8 holds
for any k.

Where, if A = 1, the GIVPNFWG operator is reduced to the
IVPNFWG operator. The GIVPNFWG operator has the prop-
erties of boundedness, and idempotency and monotonicity.

VI. A MULTI- ATTRIBUTE DECISION MAKING METHOD
BASED ON IVPNF INFORMATION
In the IVPNF information environment, let A = {A, A,
A, } represent n alternative sets, C = {Cy, Ca, ..., Cy}m
attribute sets, w = {w, wa, ..., wy,} weights of attributes
and;\,;/ = ((a,,,a,/) [‘MU 7% ‘l [vé v;j ]>(1 =1,2,.
j=12,. m) is a IVPNFN of alternative A; in attnbute
G. Whereln Mlj and ul are the lower limit and upper limit
of the membership degree of alternative A; to normal fuzzy
numbers (o, o) in attribute Cj, respectlvely,vlj and vl] re
the lower limit and upper limit of the non-membership degree
of alternative A; to normal fuzzy numbers (c;;, 0j;) in attribute

G, respectively,[ul](x) Wi (x)] e [0, 1], [vlg(x), vg(x)] €
[0,1], and 0 < uYx)?*+Y(x)? < 1. n alternative sets

= lJ ij =

1
GIVPNFWG(Al,Az, . ,An) = \* 4

1/n

1/ |’

51308

VOLUME 8, 2020



Z. Yang, J. Chang: IVPNF Information Aggregation Operators for Multi-Attribute Decision Making

IEEE Access

and m attribute sets constitute an nxm decision matrix
D = (A,-j to determine the decision results.

The ste;sng MADM in IVPNF information environment

are given below:
Step 1: normalize the decision matrix.
To eliminate the influence of different dimensions on the
decision results, the decision matrix D = (Alj 1S nor-
nxm

malized into D = (A,) ; wherein, IZU = ((&ijv ‘_71'/')3
nx

-L SU sL U
[”ij’“ij]"[”zj’“ij :
For benefit attributes [54]:
= &ij = % 9% =L L =U U
Qjj = ————, 0= ————— [l = W, [ = W
Y max(a;;) Y max(oj) o y vy Y
L 1
(15)
For cost attributes [54]:
min(o;;
- i(l]) - _ % % -L_ L -U_. U
Qi = —, 0jj = ——, Vi = Vi,V = vy
ajj max(oj) o
1
(16)

Step 2: aggregate the values of alternative attributes.

On the basis of IVPNF information aggregation oper-
ators, the information set with attribute C; in ;\,-, ;\_ij =
<(&,;,~, 5ij); [/15 /lfl]] [,_‘_)5 175]), is aggregated into A; =
(@i on: [ 1] [oF. v ])

Step 3: determine the positive and negative ideal points of
the alternatives, and then calculate the distances between each
alternative and the two ideal points.

Let the positive ideal point be

At = << j). min (al-p); [1. 11, [0, 0]>.
1<i<n
Let the negative ideal point be
A” = << (@jj), max <<'rl-,~>>; [0, 01, [1, 1]>.
1<i<n
Then, the distances between each alternative and the two
ideal points:

DlJr = Dg (Ai,AJr); D: = Dg (AisA7>

max (o
1<i<n

min

1<i<n

Step 4: determine the ranking of alternatives.
Calculate the relative nearness D} = D; /Df +D;

(A" (hap)"?,
(Ao (ho2)"?

( )

wi

(AAI)WI@)(AAZ)M

() (e
- ,lj Qo | l.lj ( \/W wi |

i=1
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Rank the alternatives according to the value of D?; the
larger D7 is, the better the alternative will be.

VIl. NUMERICAL EXAMPLE

A. DECISION FINDINGS

With the development of e-commerce platforms, online shop-
ping has become a common consumption habit of consumers.
A consumer intends to buy a mobile phone on an e-commerce
platform. Five mobile phones are selected as alternatives,

and the alternative set is A {A1,Ar, A3, Ay, As).
Four attributes are considered, namely, the performance of
mobile phone system (Cp), credibility of merchant (C3),
online satisfaction rate (C3) and price preference (Cy),
constituting the attribute set C {C1, Cr, C3, C4}. All
are benefit attributes and their corresponding weights are
w = {0.3,0.25, 0.25,0.2}7". According to the decision infor-
mation, the decision information matrix shown in Table 1 is
constructed.

~

—

=l

—_

(Aar)"ix (Aatg41) "+,

(ho))" X (Aog41) "
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TABLE 1. Original decision matrix.

C c, G, C,
Al <(9,0.8), ([0.6,0.7], <(4,0.5), ([0.2,0.4], <(80,7), ([0.15,0.25], <(50,4), ([0.6,0.75],
[0.3,0.4]> [0.45,0.65])> [0.65,0.8])> [0.3,0.45])>
A2 <(8,0.7), ([0.7,0.9], <(7,0.6), ([0.4,0.45], <(90,8), ([0.4,0.55], <(45,5), ([0.6,0.7], [O.
[0.2,0.35])> [0.5,0.6])> [0.6,0.7])> 5,0.55])>
A3 <(6,0.6), ([0.5,0.55], <(9,0.8), ([0.7,0.75], <(75,6.5), ([0.6,0.65], <(60,6), ([0.3,0.5],
[0.5,0.6])> [0.3,0.35])> [0.3,0.4])> [0.6,0.65])>
A4 <(7,0.6), ([0.7,0.8], <(8,0.7), ([0.5,0.6] <(85,7.5), ([0.5,0.6], <(70,7), ([0.7,0.8],
[0.35,0.4])> [0.6,0.7])> [0.7,0.75])> [0.4,0.45])>
A5 <(6,0.5), ([0.3,0.4], <(7,0.6), ([0.5,0.55] <(95,6), (10.6,0.7], <(65,6.5), ([0.6,0.65],
[0.55,0.7])> [0.3,0.35])> [0.3,0.45])> [0.3,0.35])>
TABLE 2. Normalized decision matrix.
C C, G C,
Al <(1,0.089), <(0.444,0.078), <(0.842,0.077), <(0.714,0.046),
([0.6,0.7], [0.3,0.4]> ([0.2,0.4],[0.45,0.65])> ([0.15,0.25],[0.65,0.8])> ([0.6,0.751,[0.3,0.45])>
A2 <(0.889,0.077), ([0.7,0.9], <(0.778,0.0.064), <(0.947,0.089), <(0.643,0.079),
[0.2,0.35])> ([0.4,0.45], [0.5,0.6])> ([0.4,0.55],10.6,0.7])> ([0.6,0.7], [0. 5,0.55])>
A3 <(0.667,0.075), ([0.5,0.55], <(1,0.089), <(0.789,0.07), <(0.857,0.086),
[0.5,0.6])> ([0.7,0.75],[0.3,0.35])> ([0.6,0.65],10.3,0.4])> ([0.3,0.51, [0.6,0.65])>
A4 <(0.778,0.064), ([0.7,0.8], <(0.889,0.077), <(0.895,0.083), <(1,0.1),
[0.35,0.4])> ([0.5,0.6], [0.6,0.7])> ([0.5,0.6], [0.7,0.75])> ([0.7,0.8], [0.4,0.45])>
AS <(0.667,0.052), ([0.3,0.4], <(0.778,0.064), <(1,0.047), <(0.929,0.093),
[0.55,0.71)> ([0.5,0.551,[0.3,0.35])> ([0.6,0.7], [0.3,0.45])> ([0.6,0.651,[0.3,0.35])>

Step I: normalize the data listed in Table 1 according to for-

mula (15) and (16) for the normalized matrix D = (Aij)s R
with the results shown in Table 2. )

Step 2: aggregate the information in Table 2 with
IVPNFWA operator to get the integrated IVPNF of each
alternative.

A1 = < (0.764,0.074), ([0.461, 0.59], [0.403, 0.55]) >;

Ay = < (0.827,0.077), ([0.561, 0.736], [0.398, 0.521]) >;
A3 = < (0.819,0.079), ([0.565, 0.632], [0.402, 0.481]) >;
Ay = < (0.879,0.079), ([0.618, 0.721], [0.489, 0.551]) >;

As = < (0.83,0.062), ([0.51, 0.586], [0.36, 0.459]) >;

Step 3: determine the positive and negative ideal points of
the alternative, and then calculate the distances between each
alternative and the two ideal points:

At = < (0.879,0.062), ([1, 11, [0, 0]) >;
A = < (0.764,0.079), ([0, 0], [L, 1]) >;

The distance between each alternative and the positive
ideal point:

D =0.4839, D =0.3874, Df =0.4051, D] = 0.3645,
DI =0412

The distance between each alternative and the negative
ideal point:

D =0.4073, D; =0.5096, Dy = 0.4787, D, =0.5219,
Dg =0.4722

Step 4: conduct calculation according to the nearness
formula.
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D} = 0457, D} = 0.5681, D; = 0.5416, D} = 0.5888,
D =0.534

Ranking of 5 alternatives: A4 > Ay > A3 > A5 > Ajy;
therefore, alternative A4 is the optimal choice.

B. COMPARATIVE ANALYSIS

Firstly, Euclidean distance and Hamming distance of IVPNF
proposed in this paper are compared. As shown in Table 3,
the ranking of alternatives with IVPNFW operator based
on IVPNF Euclidean distance and Hamming distance is
Ay > Ay > A3 > As > A;. When such methods
proposed other scholars as grey relational analysis, cosine
similarity and project are applied the ranking, the result is
the same, A4 > A > A3z > As > Aj. The ranking result
calculated with score function in Definition 6 is also the same,
Ag > Ay > A3 > As > Aj. What’s more, the ranking result
based on IVPNFWG operator, GIVPNFWA operator and
GIVPNFWG operator presented by this paper under different
distance measures are consistent. It can be concluded that
Euclidean and Hamming distances of [IVPNF proposed in this
paper are effective.

Then, the four types of operators proposed in this paper
are compared with existed IVPF information aggregation
operators. When weighted interval-valued Pythagorean fuzzy
extended Bonferroni mean (WIVPFEBM) in [36] is applied
to IVPNF environment, and let the parameters p and q be 2,
the result show that A4 is the optimal choice while A is the
worst choice. When normal intuitionistic fuzzy Bonferroni
mean operators proposed by Liu and Liu [47] is applied
to IVPNF environment, the parameters p = q = 2, As i8
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TABLE 3. Comparison of ranking results based on different distance measures.

IVPNFWA IVPNFWG GIVPNFWA(A=2) GIVPNFWG(A=2)
Ay > A, > A Ay > Ay > Ay > A4, > Ay > Ay >
TOPSIS based on 4 2 3 4 3 4 2 4 3
Euclidean distance > A5 > 4 Ay > A5 > 4 Ay > A5 > 4 Ay > A5 > 4
TOPSIS based on Ay > A4y > 4 Ay > 45 > Ay >4, > Ay > 45 >
Hamming distance > AS > Al Az > AS > Al A3 > AS > Al Az > AS > Al
Ay > Ay > 4 Ay > Az > Ay > A4, > Ay > A4y >
Score function > A4s > 4 4, > 45 > 4 Ay > A5 > 4 4, > 45 > 4
Ay >4y > 4 Ay > Az > Ay > A4, > Ay > A4 >
Grey relational
analysis[53] >ds > 4 Ay > As > 4 A3 > A5 > 4 A > A5 > 4
Ay > Ay > 4 Ay > Az > Ay > A4, > Ay > A4y >
Cosine similarity[54]
> As > 4 A > A5 > 4 Ay > A5 > 4 A > A5 > 4
Ay >4, > A4 Ay > Ay > Ay > A4, > Ay > Ay >
Projection method [15] 4 2 3 4 3 4 2 4 3
> As > 4 Ay, > A5 > 4 Ay > A5 > 4 A, > A5 > 4
0.62 -
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FIGURE 1. Changes in ranking based on GIVPNFWA operator and score
function.

still the optimal choice. When normal Intuitionistic Fuzzy
Hamacher weighted Heronian mean (NIFHWHM) proposed
by Zhang et al. [51] is applied to IVPNF environment, and
the parameters y = 1, p = 2, q = 2, the optimal alternative
is also A4. It can be seen that the four aggregation operators
proposed in this paper are effective and rational.

C. SENSITIVITY ANALYSIS

The influence of generalized parameter A on the alternative
ranking is analyzed. In Figure 1, the alternative ranking is
calculated based on GIVPNFWA operator and score function.
If A <5, the ranking of alternatives is A4 > Ay > A3 >
As > Ay; if A =5, the ranking of alternatives changes into
Ags > Ay > Az > A; > As;if 5< A <8, the ranking
of alternatives changes again, A4 > A > A1 > A3z >
As; if 8< A, the alternatives are ranked in a new order,
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FIGURE 2. Changes in ranking based on GIVPNFWA operator and TOPSIS.

Ay > Ay > A; > A3z > As, the optimal alternative
changes from A4 to Aj. Similarly, in Figure 2, the ranking
of alternatives calculated based on GIVPNFWA operator and
TOPSIS varies with the change of parameter A. The above
analysis shows that the generalized parameter A has a great
influence on the ranking of alternatives. The decision-makers
may set the parameter A according to the actual situation for
the most reasonable ranking result, and then make appropriate
decisions.

As suggested by the above analysis, the method proposed
in this paper has the following advantages:

(1) It combines the concept of NFN and IVPEFN, puts
forward the concept of IVPNFN. IVPNEN interprets human
activities and natural phenomena that obey normal distribu-
tion in real life, and describes the fuzzy information with
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the sum of membership degree and non-membership degree
greater than one, while the square sum less than 1; thus, it
characterizes the fuzzy information in a wider way and is
closer to human thinking in decision-making.

(2) Different ranking results of alternatives can be obtained
flexibly with GIVPNFWA operator and GIVPNFWG opera-
tor based on parameter A, and the decision-maker may deter-
mine decision result based on parameter A according to own
preferred. Therefore, the method proposed in this paper is
featured by strong flexibility.

VIIl. CONCLUSION
IVPEN characterizes interval-valued fuzzy information better
than IVIFS, but IVPFN cannot describe normal distribution
of social and natural phenomena. To solve such problems, this
paper combines NFN and IVPEN for advantage complemen-
tary, puts forward the concept of IVPNFN, defines some basic
theories of IVPNEN, proposes several aggregation operators
in IVPEN information environment, and applies them.
There is still space for further development in this paper.
For example, in terms of basic theory, the addition and
subtraction between IVPFNs can be further proposed, and
some measure methods for the similarity between IVPFNs
can be extended. In terms of information aggregation, it can
be extended to information aggregation model based on
Bonferroni mean or Einstein; in terms of application, it can
be extended to system control and logistics system.
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