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ABSTRACT Deng entropy is a novel and efficient uncertainty measure to deal with imprecise phenomenon,
which is an extension of Shannon entropy. In this paper, power law and dimension of the maximum value for
belief distribution with the max Deng entropy are presented, which partially uncover the inherent physical
meanings of Deng entropy from the perspective of statistics. This indicated some work related to power law
or scale-free can be analyzed using Deng entropy. The results of some numerical simulations are used to
support the new views.

INDEX TERMS Deng entropy, power law, maximum Deng entropy, dimension.

I. INTRODUCTION
Uncertainty is a pervasive phenomenon in the real world,
and with it, most of the information on which decisions are
based is uncertain. Therefore, the processing of uncertain
information has attracted much attention. Until now, various
mathematical models are proposed to express uncertainties,
such as probability theory [1], Dempster-shafer evidence the-
ory [2]–[4], fuzzy mathematics [5], [6], Z-number [7]–[9],
and so on.

Uncertainty measure can be represented as the quality of
the information, which has been applied in complex networks
[10], [11], pattern recognition [12], target recognition [13],
decision making [14], machine learning [15] and information
fusion [16]. How to measure the uncertainty of the basic
probability assignment (BPA) accurately and efficiently is
significant and also an open issue in Dempster-Shafer the-
ory (DST). Plenty of functions have been developed for
uncertainty modeling, such as Hohle’s confusion measure
[17], Kullback-Leibler’s divergence measure [18], Yeger’s
dissonance measure [19], Klir & Ramer’s discord measure
[20], Klir & Parviz’s strife measure [21], George & Pal’s
conflict measure [22], Wang & Song’s interval measure [23],
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Higashi & Klir’s entropy [24], etc., and lots of further and
improved works have been made on them, e.g. Liu’s new
uncertainty measure for belief networks [25], Song’s uncer-
tainty measure for interval-valued belief structures [26], and
some inequalities for different divergences with applications
in information theory [27]–[29].

Entropy is a method of uncertainty measures, which can
be used to measure uncertainty degree as well as information
quality. Since firstly proposed by Clausius in 1865 for ther-
modynamics, various kinds of entropies have been proposed,
such as information entropy [30], Tsallis entropy [31], [32],
Gini Entropy, and Shannon entropy [33], which have been
applied to real engineering [34]–[37].

A new entropy, named Deng entropy, has been pre-
sented by Prof. Deng to manage the uncertain information
in the frame of Dempster-Shafer evidence theory (DST)
[38], which has achieved plenty of attention in recent years
[12], [39]–[48]. Some analyzed the properties of Deng
entropy [39], some made improved work based on Deng
entropy [12], [40]–[46], and some applied Deng entropy into
different aspects, e.g. pattern recognition [12], fault diagnosis
[47], sensor fusion [48], etc. Presently, there are many criteria
for judging entropy. From different perspectives, the results
of judging entropy are also different. For example, Shan-
non entropy can measure uncertain degree with probability
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distribution efficiently and has been used widely, but it
can’t measure uncertain degree with basic probability assign-
ment. From the perspective of classical entropy theory, Deng
entropy doest not verify the requirements of set consistency,
range, subadditivity, additivity and monotonicity, which are
defined by Klir & Wierman [49] and extended by Abellán &
Masegosa [50]. However, Deng entropy, considered as an
extension of Shannon entropy, can not only deal with uncer-
tain phenomenon in the probability field, but also be applied
to absorb the complex imprecise (or unknown) phenomenon
in the belief filed (frame of DST) efficiently. When the BPA
is degenerated as probability distribution, Deng entropy is
degenerated as Shannon entropy. In this paper, we focus on
the Deng entropy to discover some interesting results.

The maximum value of entropy is a problem worth study-
ing. In [51], the condition of the maximum of Deng entropy
is discussed and obtained the analytic solution of the max-
imum Deng entropy, which lays a foundation for further
research. In this paper, the work focuses two investigations
based on themaximum values of the belief distribution via the
max Deng entropy with different scales of frame of discern-
ment (FOD). One is the relation between the maximum value
of belief distribution subjecting to the max Deng entropy and
the scale of Deng information correspondingly. The other is
dimension of the maximum value for belief distribution with
the max Deng entropy. Some numerical simulations have
been made to achieve the two discoveries, i.e., approximate
power law and approximate constant dimension.

The rest of the paper is organized as follows. The
preliminaries briefly introduce some concepts about
Dempster-Shafer evidence theory, Deng entropy, max Deng
entropy, power law and its distribution, self-similar and
fractal dimension in Section II. In Section III, the new views
about max Deng entropy are presented. One is the relation
between the maximum value of belief distribution subjecting
to the max Deng entropy and the scale of Deng information
correspondingly. The other is dimension of the maximum
value for belief distribution with the max Deng entropy.
Finally, this paper is concluded in Section IV.

II. PRELIMINARIES
In this section, some preliminaries are briefly introduced.

A. FRAME OF DEMPSTER-SHAFER EVIDENCE THEORY
Let X be a set of mutually exclusive and collectively exhaus-
tive events, indicated by

X = {θ1, θ2, · · · , θi, · · · , θ|X |} (1)

where set X is called a frame of discernment (FOD). The
power set of X is indicated by 2X , namely

2X = {∅, {θ1}, · · · , {θ|X |}, {θ1, θ2}, · · · , {θ1, θ2, · · · , θi},

· · · ,X} (2)

For a frame of discernment X = {θ1, θ2, · · · , θ|X |}, a mass
function is a mapping m from 2X to [0, 1], formally defined

by:

m : 2X → [0, 1] (3)

which satisfies the following condition:

m(∅) = 0 and
∑
A∈2X

m(A) = 1 (4)

where A is a focal element if m(A) is not 0.

B. DENG ENTROPY
With the range of uncertaintymentioned above, Deng entropy
[38] can be presented as follows

Ed = −
∑
i

m(Fi) log
m(Fi)

2|Fi| − 1
(5)

where, Fi is a proposition in mass function m, and |Fi|
is the cardinality of Fi. As shown in the above definition,
Deng entropy, formally, is similar with the classical Shannon
entropy, but the belief for each proposition Fi is divided by
a term (2|Fi| − 1) which represents the potential number of
states in Fi (of course, the empty set is not included).
Specially, Deng entropy can definitely degenerate to the

Shannon entropy if the belief is only assigned to single ele-
ments. Namely,

Ed = −
∑
i

m(θi) log
m(θi)

2|θi| − 1
= −

∑
i

m(θi) logm(θi)

Next, the condition of the maximum Deng entropy is dis-
cussed [51].

C. THE MAXIMUM DENG ENTROPY
Assume Fi is the focal element and m(Fi) is the basic prob-
ability assignment for Fi, then the maximum Deng entropy
for a belief function happens when the basic probability
assignment satisfy the condition m (Fi) = 2|Fi|−1∑

i
2|Fi|−1

, where

i = 1, 2, . . . , 2X − 1, and X is the scale of the frame of
discernment.
Theorem 1 (The Maximum Deng Entropy): The maximum

Deng entropy: Ed = −
∑
i
m(Fi) log

m(Fi)
2|Fi|−1

if and only if

m (Fi) = 2|Fi|−1∑
i
2|Fi|−1

.

More information refers to the part of APPENDIX.
As shown in Fig. 1, belief distributions with the maximum
Deng entropy are changing with the scale of FOD, |X | =
1, . . . 8. The point in this paper lies in the maximum value
of each belief distribution.

D. POWER LAW AND POWER LAW DISTRIBUTION
Zipf law is one of the fundamental laws in information sci-
ence, and it is very often used in linguistics. Apart from
its use in information science and linguistics, Zipf law is
also used in city populations, solar flare intensity, website
traffic, earthquake magnitude, and the size of moon craters,
etc. This distribution in economics is known as the Pareto
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FIGURE 1. Belief distribution with the maximum Deng entropy changing with the scale of FOD, |X | = 1, . . . 8.

law (also called the 80-20 rule) [52], [53], which analyzes
the distribution of the wealthiest members of the community.
It states that generally 80% of all effects result from 20% of
all causes. These two laws are the same in the mathematical
sense, but they are applied in different contexts [54]–[56].
And the famous Zipf law and Pareto law are both examples
of power law distribution.

The power law (also called the scaling law) states that
a relative change in one quantity results in a proportional
relative change in another, independent of the initial size of
those quantities: one quantity varies as a power of another.

A power law distribution has the form F (x) = kxα ,
where: F is a function (the result) and x is the variable
(the thing you can change), α is the law’s exponent, k is a
constant.

Power law distributions exist widely in many fields such
as physics, earth and planetary sciences, computer science,
biology, ecology, demographics and social sciences, eco-
nomics and finance, and they have various forms of expres-
sion. In nature and daily life, the distribution of earthquake
magnitudes, the distribution of computer file sizes, the dis-
tribution of the number of cited papers, the distribution of
clicks on web pages, etc. are all typical power law distri-
butions. Fig. 2 is a simple power-law distribution graph,
which shows the approximate power-law distribution graph-
ically, and the meaning of its axes is various in different
specific studies. For example, Pareto distributions are typi-
cal scale-probability distributions and Zipf distributions are
typical ranking-frequency distributions. Then if you plot two
quantities against each other with logarithmic axes and they
show a linear relationship, this indicates that the two quanti-
ties have a power law distribution.

FIGURE 2. A simple power law distribution.

E. SELF-SIMILAR AND FRACTAL DIMENSION
In mathematics, a self-similar object is exactly or approxi-
mately similar to a part of itself (i.e. the whole has the same
shape as one or more of the parts) [57]. And self-similarity is
also an important characteristic of power-law distributions.

In fractal geometry, a fractal dimension is a ratio providing
a statistical index of complexity comparing how detail in
a pattern (strictly speaking, a fractal pattern) changes with
the scale at which it is measured. A fractal dimension does
not have to be an integer. And a fractal dimension can be
presented as follows

d =
logN (a)
log(a)

(6)

where, d is the fractal dimension, a is themagnification factor,
and N (a) is the number of self-similar pieces [58].
Next, Two focuses are presented. One is the relation

between the maximum value of belief distribution subjecting
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FIGURE 3. The maximum value of belief distribution with the maximum Deng entropy changing
with the maximum scale of Deng information, the scale of FOD, |X | = 1, . . . 10. This is an
approximate power law distribution.

to the max Deng entropy and the scale of Deng information
correspondingly. The other is dimension of the maximum
value for belief distribution with the max Deng entropy.

III. POWER LAW AND DIMENSION OF THE MAXIMUM
VALUE FOR BELIEF DISTRIBUTION WITH THE MAX
DENG ENTROPY
In statistic, a power law is a relationship in which a relative
change in one quantity gives rise to a proportional relative
change in the other quantity, independent of the initial size
of those quantities. Power law is a pervasive phenomenon
in many fields, such as complex network (scale-free net-
work) [57], Fractals [59].

Firstly, the power law function is established between the
maximum value of belief distribution via max Deng entropy
and the maximum Deng information scale correspondingly.

A. POWER LAW OF THE MAXIMUM VALUE FOR BELIEF
DISTRIBUTION WITH THE MAX DENG ENTROPY
Suppose the maximum value for belief distribution via max
Deng entropy max [m (Fi)] relates to a function P(r). In addi-
tion, assume the corresponding maximum Deng informa-
tion scale

∑
i

(
2|Fi| − 1

)
relates to the variable r . A power

law function P
(∑

i

(
2|Fi| − 1

))
with a scale invariance

(d ≈ 0.37) is established using Eq. (7).

P (r) = r−d (7)

where r =
∑
i

(
2|Fi| − 1

)
, P (r) = max [m (Fi)], m (Fi) =

2|Fi|−1∑
i

(
2|Fi|−1

) , d ≈ 0.37.

As shown in Fig. 3, when the scales of FOD (|X |) change
from 1 to 10, all the few high belief (the maximum values of
the belief distribution via max Deng entropy, max [m (Fi)])
are contained in the front of the plane, most of the other
low belief (the maximum values of the belief distribution
via max Deng entropy, max [m (Fi)]) are distributed in the
following wide plane. This is an approximate power law

distribution. A power law function P
(∑

i

(
2|Fi| − 1

))
with

a scale invariance (d) is easily observed by Fig. 3. What is
more, the scale invariance d ≈ 0.37, which will be discussed
in the next section.

Next, dimension of the maximum value for belief distribu-
tion with the max Deng entropy is presented.

B. DIMENSION OF THE MAXIMUM VALUE FOR BELIEF
DISTRIBUTION WITH THE MAX DENG ENTROPY
The scale invariance d in Eq.(7) is equal to the dimension of
the maximum value for belief distribution with the max Deng
entropy. By the polyfit function in the Matlab, the dimension
d ≈ 0.37 after investigating the data of belief distributions
with max Deng entropy (scale of FOD, |X | = 1, 2, . . . , 30).
The result is shown in Fig. 4, which indicates the log values
trending between the maximum value of belief distribution
with the maximum Deng entropy and the maximum amount
of Deng information, the scale of FOD, |X | = 1, . . . 30.
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FIGURE 4. Dimension of the maximum value of belief distribution with the maximum Deng
entropy and the maximum amount of Deng information, the scale of FOD, |X | = 1, . . . 30.

As shown in Fig. 4, an approximate linear relation is obtained,
which indicate the scale-free and power law.

d =− lim
ε→0

logN (ε)
log (ε)

= lim
i→∞

log2max [m (Fi)]

log2
∑
i

(
2|Fi| − 1

)≈0.37 (8)

s.t. m (Fi) =
2|Fi| − 1∑

i

(
2|Fi| − 1

) (9)

IV. CONCLUSION
Deng entropy can not only deal with uncertain phenomenon
in the probability field, but also measure uncertain degree
with basic probability assignment in the belief filed (frame
of DST) efficiently. Since it was proposed, lots of researches
have been done based on it and it has been applied in pattern
recognition, fault diagnosis, sensor fusion, etc. In this paper,
power law and dimension of the maximum value for belief
distribution with the max Deng entropy are presented, which
partially uncover the inherent physical meanings of Deng
entropy from the perspective of statistics. The results of some
numerical simulations are used to support the new views. The
discovery of the power law of the maximum value for belief
distribution with the max Deng entropy means that Deng
entropy can be used in the applications of fractals. Plenty of
researches about entropy associated with fractal have been
done, e.g. information entropy and fractal dimension [60] and
some other work of entropy associated with fractal [61], [62].
This indicated some work related to power law or scale-free
or fractal can be analyzed using Deng entropy and the results
of this paper may stimulate some further research.

APPENDIX
THE MAXIMUM DENG ENTROPY
Assume Fi is the focal element and m(Fi) is the basic prob-
ability assignment for Fi, then the maximum Deng entropy
for a belief function happens when the basic probability
assignment satisfy the condition m (Fi) = 2|Fi|−1∑

i
2|Fi|−1

, where

i = 1, 2, . . . , 2X − 1, and X is the scale of the frame of
discernment.
Theorem 2 (The Maximum Deng Entropy): The maximum

Deng entropy: Ed = −
∑
i
m(Fi) log

m(Fi)
2|Fi|−1

if and only if

m (Fi) = 2|Fi|−1∑
i
2|Fi|−1

Proof: Let

D = −
∑
i

m (Fi) log
m (Fi)
2|Fi| − 1

(10)∑
i

m (Fi) = 1 (11)

Then the Lagrange function can be defined as

D0 = −
∑
i

m (Fi) log
m (Fi)
2|Fi| − 1

+λ

(∑
i

m (Fi)− 1

)
(12)

Now we can calculate the gradient,

∂D0

∂m (Fi)
= − log

m (Fi)
2|Fi| − 1

− m (Fi)
1

m(Fi)
2|Fi|−1

ln a
·

1
2|Fi| − 1

+ λ = 0 (13)
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Then Eq. (13) can be simplified as

− log
m (Fi)
2|Fi| − 1

−
1
ln a
+ λ = 0 (14)

From Eq. (14), we can get

m (F1)
2|F1| − 1

=
m (F2)
2|F2| − 1

= · · · =
m (Fn)
2|Fn| − 1

(15)

Let
m (F1)
2|F1| − 1

=
m (F2)
2|F2| − 1

= · · · =
m (Fn)
2|Fn| − 1

= k (16)

Then

m (Fi) = k
(
2|Fi| − 1

)
(17)

According to Eq. (11), we can get

k =
1∑

i
2|Fi| − 1

(18)

According to Eq. (16), we can get

m (Fi) =
2|Fi| − 1∑
i
2|Fi| − 1

(19)

Hence, the maximum Deng entropy Ed = −
∑
i
m(Fi)

log m(Fi)
2|Fi|−1

if and only if m (Fi) = 2|Fi|−1∑
i
2|Fi|−1
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