
Received January 30, 2020, accepted March 1, 2020, date of publication March 6, 2020, date of current version March 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2978899

3D Face Authentication Software Test Automation
DEBDEEP BANERJEE , (Member, IEEE), AND KEVIN YU
Qualcomm Technologies, Inc., San Diego, CA 92121, USA

Corresponding author: Debdeep Banerjee (debdeep.banerjee@gmail.com)

ABSTRACT The 3D face authentication has become a hot trend for researchers and developers in the recent
years, due to its many advantages over the 2D face recognition feature. The 3D reconstruction of a human
face using both near-infrared and depth sensors is a complex process onmobile phones. It commonly involves
algorithms like face detection, face landmark detection, facial feature extraction, and depth information
analysis. The 3D face authentication feature is critical for the user as per as security and also providing a
convenient way to authenticate by the correct user. Therefore, the testing of 3D face authentication algorithms
and applications in terms of functionality, performance, and stability is critical. However, the research on 3D
face authentication application level validation and testing method is lacking in the field. Most testers are
still validating the application manually. In this paper, we propose a robotic-arm-based test automation for
testing the 3D face authentication feature on mobile phones.We programmed a 6 degree of freedom (6-DOF)
robotic arm to perform 3D face authentication automated tests that were executed manually before. Our test
automation also benchmarked the performance of an in-house developed 3D face authentication application
and a 3rd party application which yielded promising latency and accuracy comparison results under different
performance-impacting test scenarios.

INDEX TERMS Automation, robotics, software testing, software engineering.

I. INTRODUCTION
One of the main objectives of a software validation team is
to effectively test the performance of the software. In this
paper, wewill focus on the design of a reliable test automation
that can thoroughly evaluate the performance of a 3D face
authentication end-to-end application. Creating a 3D Face
authentication application on a mobile phone is challenging
because multiple computer vision algorithms and security
algorithms are utilized to ensure that the correct user is
authenticated. Fig. 1 shows a near-infrared (NIR) image and
a depth image that are provided by the 3D face authentication
application.

We have developed a test automation that ensures that 3D
face enrollment and authentication are automated. This test
automation has helped us increase the testing efficiency. The
main contributions of this paper are as follows:
1. An end-to-end robotic-arm-based test automation is

developed for the execution of mobile device 3D face
authentication tests under various angular movements,
speeds and distances from the test subjects.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ehsan Asadi .

FIGURE 1. Near-infrared (NIR) image and depth image from the 3D face
authentication device sensors.

The test automation realizes end-to-end automation of a 3D
face authentication application by launching the application,
focusing on the 3D face, and performing face authentica-
tion to determine whether to allow the user to access the
phone software. The robotic arm is programmed to pick up
the mobile phone being tested, focus the phone on the test
subject, perform tests under various distances and angular
movements, and perform 3D scanning of the test subjects

46546 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-4907-3054
https://orcid.org/0000-0001-9224-3891
https://orcid.org/0000-0002-4835-2828


D. Banerjee, K. Yu: 3D Face Authentication Software Test Automation

under various speeds to validate the 3D face authentication
algorithm.

2. A test automation with live people is developed for
conducting gaze detection tests.

The robotic arm is programmed to perform 3D face authen-
tication on real people using mobile phones. The robot is
programmed to obtain 3D scans of the faces of people who are
sitting in a designated location. The robot scans each subject’s
face and ensures that the irises were scanned so that gaze
and liveness detection tests can be performed. This test can
demonstrate whether the face authentication algorithm can
authenticate real humans.

3. A false-rejection rate (FRR) test automation for 3D
face authentication tests is proposed.

If two users have enrolled their faces in the 3D face
authentication algorithm application, then they should always
be authenticated successfully. The rate at which users who
have been successfully enrolled are not authenticated is the
false-rejection rate. The objective of the algorithm is to realize
a false-rejection rate of zero as we do not want to fail to
authenticate users who have successfully enrolled their faces
in the 3D face authentication application on a mobile phone.
4. The authentication efficiency under real-life test con-

ditions, such as blurriness due to motion, is evaluated.
Real-world test scenarios must be automated to ensure that

we can simulate the failures in field testing prior to testing in
the functional test suite. The robotic arm is programmed to
perform test cases with jitter while obtaining a 3D scan of a
face; in this way, we simulate injection jitter scenarios while
performing the 3D face authentication tests. Jitter can easily
occur when a real user uses the application to authenticate
himself/herself in a grocery store, e.g., to pay bills using
mobile payment gateways.

II. MOTIVATION
The main objectives in developing a 3D face authentication
test automation that uses a robotic arm are as follows:
1. Design and develop a reliable test automation for

thoroughly testing the 3D face authentication feature via
functional and performance tests.

Testing face authentication using 3D face recognition
and authentication is tedious and error-prone. Using a pro-
grammable robotic arm, we have constructed a test setup that
can be used to test 3D face authentication algorithms in a
repeatable manner.
2. Test real-life scenarios with blurred vision during

device motion scenarios.
The main objective of product testing is to ensure the req-

uisite test automation capabilities for simulating real-world
users and identifying issues early. Resolving these issues,
if possible, will facilitate expedited product commercializa-
tion efforts.

3. Test the 3D face authentication feature under various
angular motions and distances from the test subject. The
robotic arm performs these precise movements.

The 3D face authentication tests required repeated 3D
scanning of a face under various speeds, angular movements,
and distances. These tests were conducted to provide good
test coverage of faces with various angles and computer
vision algorithms were utilized to thoroughly test the face
authentication features under these test scenarios.

4. Execute the test automation with real people.
We needed a test setup in which we could perform face

enrollment and authentication tests. Therefore, an end-to-end
on-device test automaton setup was needed for automatically
picking up the mobile phone under test, 3D scanning the
users, and performing tests for evaluating the authentication
algorithms.

III. BACKGROUND AND RELATED WORK
Robots have been used for the performance evaluation of path
planning and learning algorithms [1]. To test unmanned vehi-
cle systems for autonomous cars testbeds, such as real-time
indoor autonomous vehicles, various test environments have
been used [2]. Data aggregation for multisensory fusion,
tracking, and localization is challenging for robots. Research
has been conducted on developing tests for thoroughly eval-
uating robot movement solutions [3]. Data from multisensors
can be integrated to optimize the use of robot movements [4].
Simulations that are based on software libraries and tools are
needed for 3D visualization of robot trajectory planning and
control [5]. For robots to visualize 3D space libraries, a point
cloud library is needed for 3D generation [6], [7].

For the generation of a 3D point cloud, we must extract an
optimal set that best characterizes a specified point cloud [8].
The robot operating system (ROS) is widely used to simulate
robotic control and movements prior to deploying them on
active assembly lines to perform tasks [9]. ROS code can be
generated from models that foster fast software development
for simulating robot control and movements [10].

Software testing has been accomplished by the program-
ming of robots [11]. Robots can be programmed to perform
repeatable tasks; this programming has benefited end-to-end
application testing on mobile phones [12]. Robot manipula-
tors have been studied and analyzed for implementing spec-
ified control algorithms for efficient usage [13]. Computer
vision applications such as image rectification can be tested
using programmable robots [14]. Object-tracking-based algo-
rithms that are executed on mobile phones require testing
under various relative speeds between the test object and the
mobile phone and angularmovements. These tests can be exe-
cuted using a robotic arm [15]. Robots can be usedwith image
processing algorithms for face recognition [16]. Robotic-
arm-based 3D reconstruction validation involves verifying
the reconstructed 3D objects and executing tests of the algo-
rithmic integrity of the computer vision algorithms that are
used for the 3D image reconstruction [17]. The precise move-
ments of a programmable robotic arm can be used to test
software features, e.g., in a motion-based image capture sys-
tem [18]. A ‘face plane’ from 3D reconstructed face data
can be extracted and used for head pose estimation [19].

VOLUME 8, 2020 46547



D. Banerjee, K. Yu: 3D Face Authentication Software Test Automation

FIGURE 2. 3D face authentication software high-level architecture blocks.

Three-dimensional face authentication algorithms involve
face feature extraction and analysis [20]. A face authentica-
tion score is generated from each face after comparison with
the enrolled faces [21].

For production software systems dealing with a large num-
ber of developer code submissions, it is critical to sanitize the
quality of software. Thereby a continuous assessment of reli-
ability attained through test execution and analysis [22]. it is
necessary to achieve the test coverage levels recommended or
mandated by safety standards and industry guidelines [23].
In order to achieve tests in a timely manner software test
automation is used to execute test cases in a reliable man-
ner [24]. Testing frameworks can be used to reduce testing
efforts by and improve test quality [25]. It is important during
the deployment of software test automation any test automa-
tion blockers or impediments are monitored and removed in
a timely manner to achieve efficient results [26].

Thus, thorough testing is needed with reliable setups for
testing the algorithmic integrity of 3D face authentication
algorithms.

IV. SOLUTION
A. SOFTWARE OVERVIEW
The 3D face authentication software solution under test con-
sists of three major blocks: The first block is the high-level
operation system (HLOS), which contains the 3DFA applica-
tion user interface. The 3DFA service and daemon are found
one layer beneath this block. The 3D face auth-daemon com-
municates with the 3D face authentication computing block
and extracts the face information that is obtained by a secure
camera via liveness detection, depth computing, face tem-
plate extraction, face landmark application and face detec-
tion algorithms using a FastRPC bridge. Then, the extracted
information is handled by the secure block, which matches
the information with the enrolled user face template. Based
on the obtained scores and the threshold settings, the soft-
ware determines whether the authentication is successful. The
block diagrams are shown in Fig. 2.

TABLE 1. List of the test cases from the 3DFA basic test requirements.

B. OBJECTIVE
The main objective of our testing on the 3D face authentica-
tion software is to determine the false-rejection rate (FRR)
and the latency of the authentication process using only
positive face models. False rejection means the end-to-end
app cannot authenticate using the enrolled user’s face. False-
rejection rate is calculated from dividing the number of failed
attempts by the numbers of face authentication performed.
The 3D face authentication test requirements are selected
from three categories: user face unlock distance from the sen-
sors; user face angles with the sensors, which are divided into
pitch, yaw and roll angles; and illumination, which includes
various indoor and outdoor lighting conditions. All the above
conditions have various effects on the software’s FRR and
latency. The test cases are listed in Table 1.

Since 3D face authentication is a relatively new technol-
ogy, few application testing methods that are based on this
technology have been developed. The traditional method of
testing such items is to set the conditions manually and repeat
the tests on the software application; however, this method is
highly time-consuming and inaccurate. Therefore, our objec-
tive is to automate these processes using a robotic arm system
to providemore efficient and accurate test results.We can also
expand the test cases into additional categories.

C. TEST SETUP
Since our objective is to automate the entire 3D face authenti-
cation test, we must find a solution for each testing sequence.
The physical motions that are required for end-to-end soft-
ware testing, such as changing the device distance, angles,
and angular motions, can be performed by a robotic arm
to simulate a tester’s motion in manual testing. We use the
Denso robot V87 series, which is a 6-DOF robotic arm
that has 6 programmable joints, to more accurately simulate
human motions. The robotic arm setup is shown in Fig. 3.
Since the 3DFA testing requires a real person’s face, the test
subject sits in a fixed location next to the robotic arm. The
main advantages of using a robotic arm are superior accuracy

46548 VOLUME 8, 2020



D. Banerjee, K. Yu: 3D Face Authentication Software Test Automation

FIGURE 3. Denso robotic arm setup for 3DFA.

and consistency compared with human testing. The robotic
arm can be programmed using several compatible software
programs and programming languages. We use ORiN2 and
WINCAPS3 software to program this robot.

D. GENERAL TEST AUTOMATION WORKFLOW
When executing an automated test case with the robotic arm,
a general automation workflow is followed, as illustrated
in Fig. 4. First, a test scheduler triggers a 3D face authen-
tication test job that runs a specified use case. The control
PC that connects with the robot will pick up the 3D-face-
authentication-related job. This test job runs through our
main Python automation test script with parameters that are
specified by the job’s XML. Then, it triggers the VisualBasic
executable file with a specified robot program and other
test options. The executable file uses ORiN2 as the robot
controller middleware to communicate with the controller to
run robotic programs that are stored in the controller. The
robotic programs directly define the robotic arm’s series of
motions by turning the 6 joints of the robot to the specified
6-DOF positions. The programming details will be discussed
in later sections.When the robotic arm picks up the test device
and places it in the initial test position, the main Python script
passes a command to the UI Automator, which performs the
UI touch events, such as tap, drag and select, name search or
UI ID search that a tester would otherwise perform manually.
At the same time, the robotic arm moves the test device
through various testing positions and motions that simulate
a human arm’s manual test execution. Upon completion, logs
and images are collected from the test device and sent to the
control PC. The python script calls the log parser function
to extract the result information from the logs. The Python
script uses this information to determine the results. Finally,
the results are posted to the job link and our database and the
job is complete.

E. TEST AUTOMATION FOR VARIOUS
AUTHENTICATION DISTANCES
Testing under various distances between the user’s face
and the camera sensor is the most fundamental 3D face

FIGURE 4. 3DFA test automation workflow diagram.

authentication test scenario. Users should be able to suc-
cessfully authenticate their faces while holding their phones
at a comfortable distance. In this case, according to the
test requirements, the 3DFA and the camera sensors should
support face distances that are between 20 cm and 50 cm.
Therefore, we require an automation that verifies 3D face
authentication at 20 cm, 30 cm, 40 cm and 50 cm away from
the face. First, the test subject must sit at a fixed location
in front of the base of the robotic arm. In our case, the test
subject sits 100 cm away from the robotic arm and the center
of the face is approximately 30 cm above the robot base,
as indicated in Fig. 5. Fig. 5 shows a 3D illustration of the
robotic arm working environment and provides a reference
of the positions in the robotic arm programming.

When programming the robotic arm to hold the device
30 cm away from the face, for example, we must determine
the 6-DOF coordinates of the tip of the robotic arm at that
position. The 6-DOF coordinate system includes the position

VOLUME 8, 2020 46549



D. Banerjee, K. Yu: 3D Face Authentication Software Test Automation

FIGURE 5. Simulation of the robotic arm at 30 cm away from the test
subject.

information and the yaw, pitch, and roll rotational information
of the tip with respect to the base of the robotic arm in
terms of (X, Y, Z) and (RX, RY, RZ) coordinates. First,
we must calculate the X-axis coordinate of the tip, which is
AC = AB – BC = 100 – 30 = 70 cm. Since the test subject
is aligned with the robotic arm’s base, the Y-axis coordinate
should be 0 cm. The Z-axis coordinate, namely, CD, should
be the length of BE = 30 cm. After determining the posi-
tional coordinates of the tip of the robotic arm, the next step
is to determine the rotational coordinates. Since the tip of
the robotic arm directly faces the test subject without yaw,
pitch and roll, it is parallel to the XY-plane and rotational
coordinates RX and RZ should be 0◦. The RY-coordinate
should be 90◦ since the tip is rotated 90◦ with respect to the
Y-axis. Therefore, the 6-DOF position of the robotic arm is
determined to be (70, 0, 30, 0◦, 90◦, and 0◦) in the format of
(X, Y, Z, RX, RY, and RZ) for a 30 cm distance facing the test
subject. Via the same method, we can program the remaining
distances for the robotic arm.

F. TEST AUTOMATION FOR ANGULAR
POSITIONS SCENARIOS
In 3D face authentication functional and performance testing,
testing at various angles of the face is essential. It is critical to
determine how the software performs if the face that is used
to try to unlock the phone is not directly facing the sensors
and where its limits are. Additionally, to calculate the perfor-
mance metrics, we need to determine how the false-rejection
rate and the latency are affected when we push the face angle
to its limits. Similar to face recognition testing, we test the 3D
face authentication software under various pitch, yaw and roll
angles of the test subject’s face. According to the software
support limits, we test the pitch angles from −30◦ to 30◦

with an increment of 15◦. The support limits are −30◦ to
30◦ for the yaw angle and −45◦ to 45◦ for the roll angle.
An illustration is presented in Fig. 6. The red dots represent
the locations of the testing position device sensors and the
corresponding angles are specified.

FIGURE 6. Angles and positions for face angular testing.

FIGURE 7. 3DFA test automation workflow diagram.

The robotic arm is highly suitable for this testing scenario.
Once the arm has been programmedwith the precise location,
it is more accurate and consistent than a human tester who
is trying to move to these angles. In addition, the robot
also saves a substantial amount of time compared to manual
testing.

To program the robotic arm to perform yaw, pitch and roll
angular movements, we must determine the 6-DOF positions
of the robotic arm that will place the device at the 11 points
that are marked in Fig. 6. As an example, suppose a pitch
angle of 30◦ is desired. The robotic arm must rise from the
position that is illustrated in Figure 6 and form a 30 ◦ pitch
angle with the center of the test subject’s face. Since the
position of the test subject does not change, the distance,
namely, CD, and the height, namely, BE, remain the same
(CD = 100 cm and BE = 30 cm). We must calculate the
X-axis coordinate, namely, DE, and the Z-axis coordinate,
namely, AB, which are illustrated in Figure 7.

Since AB is the sum of AE and BE, where BE is known,
and DE is the difference between CD and CE, where CD is
known, we must determine the lengths of AE and CE. Points
ACE form a right triangle with one angle at 30◦ and one side,
namely, AC, that we want to keep at a distance of 30 cm.

46550 VOLUME 8, 2020



D. Banerjee, K. Yu: 3D Face Authentication Software Test Automation

FIGURE 8. Simulation of the robotic arm at a 30◦ yaw angle and a 45◦ roll
angle.

Using trigonometry, the other two sides, AE and CE, can be
determined.

AE = AC × sin 30◦ = 30× 0.5 = 15 cm

CE = AC × cos 30◦ = 30× 0.866 ≈ 26 cm

AB = AE + BE = 15+ 30 = 45 cm

DE = CD− CE = 100− 26 = 74 cm

Therefore, the X-axis and Z-axis positional coordinates are
determined, and the Y-axis coordinate remains at zero. The
next step is to find the rotational coordinates. Since the yaw
and roll angles remain at 0◦ and only the pitch angle changes
by 30◦, the rotational coordinate for the Y-axis, namely, RY,
is reduced by 30◦ and becomes 90◦ - 30◦ = 60◦. The robotic
arm tip’s 6-DOF coordinates for the 30◦ pitch angle are found
to be (74, 0, 45, 0◦, 60◦, 0◦). Then, this robotic arm’s 6-DOF
coordinates are programmed into the controller and the same
procedure can be followed to program the remaining pitch
angles of−30◦,−15◦, and 15◦. At each angle, the robotic arm
can remain in place temporarily to allow the UI Automator to
execute 3D face authentication multiple times before moving
on to the next angle.

To realize the various yaw angles, the robotic arm must
move the device so that it faces the left and right sides of
the subject’s face. We maintain the device at the same height
as the center of the face and a specified distance from the
face. As an example, consider a 30◦ yaw angle, as shown
in the left part of Fig. 8, and the same height (30 cm) and
face distance (30 cm) as in the previous example. The Z-axis
positional coordinate of the tip of the robotic arm is the
height of 30 cm. The X-axis and Y-axis coordinates must be
calculated. As shown in the diagram, point ABD forms a right
triangle. The length of CD is the X-axis coordinate and AD
is the Y-axis coordinate.

AD = AB× sin 30◦ = 30× 0.5 = 15 cm

BD = AB× cos 30◦ = 30× 0.866 ≈ 26 cm

CD = BC − BD = 100− 26 = 74 cm

FIGURE 9. 6-DOF coordinates mapping for simulating real-life device
motions.

For the rotational coordinates, since the pitch angle is 0◦,
the coordinate RY remains 90◦. The yaw angle is set to 30◦;
thus, RX should also be 30◦. RZ remains at 0◦. Therefore,
the robotic arm tip’s 6-DOF coordinates should be (74, 15,
30, 30◦, 90◦, and 0◦) for a 30◦ yaw angle with the face of the
test subject. The same calculation method is applied for the
remaining yaw angles.

For programming the roll angles, the device is positioned
facing the test subject’s face. Then, the device rotates clock-
wise or counterclockwise to the specified roll angles. This
rotation can be easily realized with the robotic arm starting
at the standard position facing the test subject, as explained
previously. Then, the tip joint – joint 6 – of the robotic arm
is rotated to realize the desired roll angle. In this case, it is a
45◦ roll angle, as shown in the right part of Fig. 8.

Therefore, the robotic arm can be used to perform all
the above face angle requirement tests. Once the positions
have been programmed and measured, the angular 3D face
authentication tests can be executed and repeated with much
higher efficiency and accuracy compared to manual testing.

G. TEST AUTOMATION FOR DEVICE MOTION SCENARIOS
In real-life scenarios, the most common use case of 3D face
authentication is the face unlock feature for smartphones.
Users may not always unlock their phones in a stationary
manner. Users may try to use their faces to unlock their
phones when pulling them out of pockets or looking at the
phones while they are raised to face level. By this time,
the phones should already be unlocked. A user may be walk-
ing or running while attempting to use the software or may be
sitting next to a table and pick up the phone from the left- or
right-hand side, such that the user’s arms move the phone to
his or her face to unlock it. In all these scenarios, face authen-
tication is performed while the device is in motion. We need
to closely simulate these 6-Dofmotions using the robotic arm.
First, the 6-Dof coordinates of the device in motion need
to be captured while the tester manually performing these
face authentication motions. This positional information can
be collected using the device’s gyroscope and accelerome-
ter. The coordinates are usually saved in quaternion format
(z, y, x, qw, qz, qy, qx) based on time stamps. Then, we need
to sample these coordinates and convert them into robotic
arm system’s 6-Dof coordinates (X, Y, Z, RX, RY, RZ) as
demonstrated in figure 9. A proper conversion requires the
alignment of the 3-dimenstional coordinates of device and

VOLUME 8, 2020 46551



D. Banerjee, K. Yu: 3D Face Authentication Software Test Automation

FIGURE 10. Workflow of the device motion test automation.

the base of the robotic arm, as well as the rotational angle
system calculation. For example, the angular coordinates
conversion can be performed usingMatlab software function:
[r1, r2, r3] = quat2angle(q), where q = (qw, qz, qy, qx).

Finally, after obtained the necessary robot system coordi-
nates, we can program the robotic arm to move through these
points to simulate device motions like device jitter while user
is running and pulling the device out of pocket.

When testing 3D face authentication in motion, the motion
speed is a factor that will affect the success rate and the
authentication latency. Therefore, the test can be performed
under various motion speeds to study the effects. Since the
robotic arm’s speed can be set by its controller, we can
program the robotic arm to run the motions with different
speeds. The 3D face authentication tests are performed in
parallel while the robotic arm performs the device motion,
as shown in the workflow diagram in Fig. 10.

After the robotic program has finished all the iterations,
the 3D face authentication execution stops on the test device.
The test logs and data are collected for postprocessing to cal-
culate the false-rejection rate from the authentication during
the device motion; the face recognition scores, 3D liveness
scores and latency results are also captured for comparative
analysis.

H. TESTING ON VARIOUS FACIAL APPEARANCES
In our 3D face authentication test plan, we covered many
other real-life scenarios, such as the various facial appear-
ances of the enrolled users. We seek to ensure that users can

TABLE 2. Test scenario table for various appearances, expressions and
lighting conditions.

still unlock their device using their faces if they are wearing
different accessories or have slightly different appearances
each day. The first column of Table 2 lists common variations
in a user’s appearance.

Test subjects enroll themselves before applying the facial
changes and the accessories. When conducting the 3D face
authentication tests, the subjects can wear hats, caps, various
types of helmets, thick-frame reading glasses and sunglasses
to try to alter their appearance. These appearance changes
are easy to implement and return valuable test results. These
changes can also be used in face model training.

In addition, the enrolled users are asked to vary their facial
expressions during the 3D face authentication. Expressions
such as smile, laughter, surprise, sadness, anger and sleepi-
ness are listed in the second column of Table 2. The difference
between smile and laugh is laugh shows teeth with mouth
open while smile doesn’t. Surprise expression will have the
user with eyes and mouth wide open, while sleepy expression
requires the user open the eyes halfway. These expressions
cause the user’s appearance to differ from the enrolled appear-
ance. The differences in the expressions challenge the facial
landmarks and face recognition algorithm’s ability to identify
the key features of the user. If the face recognition scores
drop below the threshold score, it will not authenticate the
user correctly and therefore reduces authentication accuracy.
Our test automation for this use case only requires the user to
sit in front of the robotic arm. Our test script includes a voice
guidance feature that tells the user which expressions to make
during the test, and an image chart of each expression that the
user can follow.

Finally, various lighting conditions are also key scenarios
for testing 3D face authentication and have always been part
of the test requirements. As listed in the third column of
Table 2, we test the common lighting conditions that users
may encounter during 3D face authentication. These include
normal light, low light, bright light, colored light and no light
in an indoor scenario and bright light, side light, low light and
night light in an outdoor lighting scenario. We simulate the
indoor lighting conditions by installing multiple controllable
light sources in the robotic arm lab. By programming the light
sources to turn on/off and changing the brightness, we can
control the light intensity in the testing environment, as shown
in Fig. 11.

46552 VOLUME 8, 2020



D. Banerjee, K. Yu: 3D Face Authentication Software Test Automation

FIGURE 11. Indoor test environment with bright light, low light, no light
and colored light conditions.

Even though we have full control of the indoor test lighting
conditions, we are unable to simulate the outdoor conditions
in the lab. The tests are executed manually outside to obtain
the most realistic results.

V. RESULTS
A. RESULTS FROM THE ANGULAR
POSITION SCENARIO TESTS
We initiated the angular 3D face authentication test by recruit-
ing 10 people as test subjects, and we ran the entire angular
test sequence 10 times for each person. Thus, a total of 100
results were collected for each angular position. Fig. 12a
shows sample snapshots from the frontal position and the
15◦, 30◦ and 40◦ yaw angle positions. Fig. 12b shows sample
snapshots from the ±15◦ and ±30◦ pitch angle positions.
In addition, Fig. 12c shows the sample snapshots from the
15◦, 30◦ and ±45◦ roll angle positions.

In this angular 3D face authentication test, we measured
face angular position impacts on the authentication latency,
the accuracy (false-rejection rate), as well as 2D face recog-
nition scores and the 3D liveness scores by leaving all other
conditions that same and only changing the face angles. The
face recognition score measures how close the face features
extracted from the frames compare to the enrolled face tem-
plates. The 2D face recognition score ranges from 0 to 1.0,
and the threshold for accepting a face is 0.7 in the application
under test. The 3D liveness scoremeasures howwell themesh
represent a 3D face. The range is from 0 to 1.0 and threshold
for accepting as real face is 0.8. Finally, all the test results
were averaged and listed in Table 3.

According to this table, at the frontal position, the aver-
age latency was 200 ms; we used this as the base latency.

FIGURE 12. a. Snapshots from yaw angle position tests. b. Snapshots
from pitch angle position tests. c. Snapshots from roll angle position tests.

The false-rejection rate was 0%; hence, all the authentication
attempts succeeded at the frontal position. As the pitch angle
increased, the latency increased by 24.5% at 15◦ pitch up and
down and by 77.5% at 30◦ pitch angles. Additionally, at 30◦

pitch angles, the 1% FRR demonstrated that the 3D face
authentication might start failing beyond ±30◦ pitch angles.
However, the results also demonstrated that these pitch angles
were not yet at the limit of what this 3D face authentication
software could support. At yaw angles of ±15◦, the average
latency increased to 22% similar to the pitch angles. The
FRR was already at 2%. At ±30◦ yaw angles, the latency
increased to 117.5%, which was significantly higher than
the increase rate of the pitch angles. The FRR became 24%;
hence, at ±30◦ yaw angles, we could no longer consistently
authenticate faces. In addition, at ±40◦ yaw angles, we were
obtaining a 247% increase in latency and the software was
having difficulty authenticating the faces since almost half
of the faces were hidden. The FRR was 72%; hence, the 3D
face authentication had reached the support limit and timed
out and most of the time, it was unable to recognize the
faces at ±40◦ yaw angles. As the roll angles increased,
the latency increased from 15.5% at ±15◦ to 86% at ±30◦

angles. At ±45◦ roll angles, the latency increased 250%,
similar to the yaw angles at±40◦. The FRR increased by 2%
for every 15◦ increase in the angle. In addition, the 2D face
recognition scores follow the same trend as the FRR. When
the average face recognition score fell below 0.7, the false

VOLUME 8, 2020 46553



D. Banerjee, K. Yu: 3D Face Authentication Software Test Automation

TABLE 3. Latency and accuracy results under various face angles.

rejection rate increased significantly. Finally, the 3D liveness
scores stayed above 0.9 since we used real user’s face in this
experiment. The test result data were plotted in the bar graphs
in Fig. 13a, Fig. 13b and Fig. 13c.

According to the bar graph, the 3D face authentication
latency grew exponentially as the face angles increased.
Additionally, the authentication accuracy was most sensitive
to changes in the face yaw angles; changes in the pitch and
roll angles had smaller effects on the accuracy in the lower
angle range.

B. RESULTS FROM DEVICE MOTION TESTS
In the device motion automated testing experiment,
we designed the robotic arm to perform device authentication
under running motion simulation with low, medium and high
device motion speeds. For each speed level, the automation
executed 3D face authentication 100 times. This test was
repeated with a 3rd-party face unlock solution on another
device to study and compare the effects of device motion
on the face authentication latency and accuracy. The results
were collected and averaged from both solutions after the
automated tests were completed. The latency, accuracy, 2D
face recognition score and 3D liveness score results are listed
in Table 4.

FIGURE 13. a. Bar graph of the average latencies at nine face angles. b.
Bar graph of the false-rejection rates at nine face angles. c. Bar graph of
the face recognition scores at nine face angles.

According to this result table, the face authentication
latency began to increase as the motion speed increased.
Comparing the 3DFA application and the 3rd-party applica-
tion latency results, the 3DFA application had lower latency
than the 3rd-party application on all the motion speeds in
the table. This result could be due to the 3DFA applica-
tion used PMD 3D sensors, which captured clearer depth
images than the 3rd-party application’s sensors. In addition,
the combination of our optimized 3D face authentication
software algorithm and the accelerated-hardware solutions
resulted in an overall face authentication time that was 23.9%
faster under this device’s motion test scenario. A comparison
bar graph is shown in Fig. 14 to facilitate visualization of
the data.

As shown in the bar graph, at lower speed, the latency
increased more slowly, and at higher speed, the latency

46554 VOLUME 8, 2020



D. Banerjee, K. Yu: 3D Face Authentication Software Test Automation

TABLE 4. Device motion experiment on 3D face authentication
applications test result comparison table.

FIGURE 14. Bar graph for the yaw and pitch device motion scenario
latency comparison.

increased more rapidly. This result could be caused by the
blurriness in the face image that was captured for face authen-
tication, which was induced by the device motion. At this
latency growth rate, we anticipated that at high enough device
motion speeds, there would be a large performance impact on
the latency, which could cause the authentication process to
time out and eventually fail. However, such high-frequency
device motion scenarios rarely occur in daily usage.

From the face authentication accuracy performance per-
spective, the FRR increased slightly as the device motion
speed increased. The 3rd-party application also had slightly
higher FRR than the 3DFA application. Therefore, the
3rd-party application had higher chance to fail the face
authentication while the device was in motion. On the other
hand, the 2D face recognition scores and 3D liveness scores
were not affected much by the device motion. Since these
score metrics were only depend on the user’s face, and
the user’s face had little variation during device’s motion,
if the frames captured had the complete user’s face inside,
the scores should remain unaffected.

FIGURE 15. Sample snapshots with the test subject wearing reading
glasses, sunglasses, a cap and a helmet.

C. RESULTS OF THE FACIAL-APPEARANCE
SCENARIO TESTS
During the facial-appearance automated testing, three main
tests were conducted, in which the following characteristics
were varied: accessories, expressions and lighting conditions.
These 3D face authentication tests required a real person to
be the test subject. We again invited 10 people to be our test
subjects.

In the first test, all the test subjects were enrolled in the 3D
face authentication software. Then, they put on accessories
that we prepared as part of the setup to change their appear-
ances, including fake mustaches, wigs, caps, hats, helmets,
reading glasses and sunglasses. The robotic arm placed the
test device in the standard frontal position while the automa-
tion authenticated their faces. Sample snapshots from the
3D face authentication testing with accessories are shown
in Fig. 15.

The 3D face authentication software was able to correctly
authenticate the test subjects when they were wearing mus-
taches, wigs, caps and hats. These accessories did not change
the appearance of the key features of the faces. The software
also performedwell on the test subjects when they were wear-
ing glasses since the face model that the software used was
trained to recognize glasses. Additionally, the near-infrared
sensor was able to penetrate most lenses of the sunglasses,
as shown in the second image in Fig. 16, in which the areas
of the face are clearly visible.

The second test required the test subjects to make various
expressions to change their appearance. The robotic arm
placed the device in the frontal position and the automated test
system used voice guidance and expression chart to tell the
test subjects what expressions to make. Fig. 16 shows sample
images from the 3D face authentication test application with
various facial expressions.

Since the test subjects were in the frontal position and
only changed their expressions, we expected them to pass the
depth and liveness tests. The main variation would be in the
face recognition scores because extreme expressions might
make the faces look substantially different from the enrolled
faces. This test was intended to challenge the face recognition
algorithm, which is part of the 3D face authentication process.
We parsed the logs and collected the face recognition scores
from each run; the average scores are listed in Table 5.

The face recognition score quantified the similarity
between the input face profile and the enrolled face profile.

VOLUME 8, 2020 46555



D. Banerjee, K. Yu: 3D Face Authentication Software Test Automation

FIGURE 16. Sample result images with six facial expressions: laugh,
smile, surprise, sad, angry and sleepy.

TABLE 5. Average face recognition scores for six expressions.

FIGURE 17. Bar graph of the face recognition scores for six facial
expressions.

The face recognition score threshold was set to 0.7; faces
whose scores exceeded this threshold passed the test. Since
all the scores for faces with the various facial expressions
exceeded 0.7, they all passed the face recognition check
process. However, according to the bar graph in Fig. 17,
the scores varied among the expressions.

The smile, sad and sleepy expressions corresponded to
face recognition scores of approximately 0.83. Hence, when
making these expressions, the facial features still matched
the neutral enrolled expression well, but with lower eye

FIGURE 18. Face images that were obtained by the camera sensors under
various lighting conditions.

openness scores. The laugh, surprise and angry expressions
corresponded to scores that were between 0.72 and 0.77,
which were noticeably lower because these expressions are
more extreme and the mouth was open in these cases. The
facial features deviated further from the enrolled expression.
The results of this test demonstrated that common expressions
were able to pass the face recognition test and the overall 3D
face authentication test. Certain extreme expressions might
take more frames to find a face match resulted in slightly
higher face authentication latency. According to table 5, most
expressions had averaged latency within 250 ms which were
not far from the average latency of 200 ms without expres-
sions. Therefore, this 3D face authentication application is
suitable for use on faces with expressions.

The third test that we conductedwas 3D face authentication
under various lighting conditions. Our robotic lab used a
multiple-dimmable-light setup that simulated various indoor
lighting conditions. Since the 3D face authentication software
used a near-infrared sensor, the test subjects’ faces were
clearly visible in the NIR and depth maps, even in a dark
room, as shown in Fig. 18. The images in the middle were
obtained by the NIR and depth sensors under normal indoor
light conditions and are shown for comparison. The images
on the right were captured outdoors under direct sunlight.
We still obtained clear NIR images under this bright-light
condition. In the depth images, there was slight interference
from the sunlight in collecting the emitted LED lights that
were reflected by the test subject. These illumination tests
depended heavily on the camera sensors that were used on
the test device for obtaining good images under the extreme
lighting conditions. Overall, the 3D face authentication tests
were passed in all the indoor and outdoor lighting conditions.

D. COMPARISON WITH OTHER TEST METHODS
Since the advance in technology, 3D face authentication
and face unlock become a secure biometric identification
option. Many researches have been done on the 3D face

46556 VOLUME 8, 2020



D. Banerjee, K. Yu: 3D Face Authentication Software Test Automation

authentication software algorithms and the validation of algo-
rithms on 3D datasets. However, there are very little research
on testing the end-to-end 3D face authentication applications
in the field. Most of the application level testing are still
conducted manually. Survey based 3D face authentication
application data collection and performance evaluation are
most common. Volunteers are told to hold the devices with
applications at different angles and posts. Testers have to
manually change lighting conditions or move to outdoor
scenes. These manual testing and data collection method are
error-prone and time consuming depend on how familiar the
users are with operating the application. Our purposed auto-
mated testingmethod takes complete control of the test device
and the 3D face authentication application. The users only
need minimal involvement. And the automation provides
exceptional motion accuracy and efficiency. The entire set
of performance evaluation tests using the automation system
takes less than half the time conducted in a manual survey.

Some other test methods involved unit testing where
canned 3D face data is used to bypass camera sensors for
face authentication. This test method can verify the software
algorithm performance without user involvement at testing
stage. However, the camera sensor calibration used for user
data collection is very sensitive to the trained model file and
the test app used for unit testing. It is unlikely that user data
from an online 3D face dataset will work for the enrollment
and authentication of a unit test app. On the other hand,
our end-to-end test automation system will ease the users
face data collection process under different test scenarios.
The user data can be collected efficiently with high precision
and consistency for both end-to-end application testing and
offline unit testing.

VI. CONCLUSION
The development of the 3D face authentication test automa-
tion has helped us improve the testing efficiency. We con-
sidered various test scenarios and collected test results
from facial-appearance scenario tests, device motion tests,
and angular position scenario tests on a 3DFA end-to-end
application. We also used this automated test system to
compare the hardware-accelerated solution of 3DFA with
3rd-party solutions and observed a 23.9% difference in the
latency for face authentication under user running motion test
scenarios.

The test automation is proven to be more reliable and
efficient than manual face authentication testing. This test
system can be easily used to benchmark various performance
attributes across multiple 3D face authentication software
application products. It helps to study the strengths and weak-
nesses of each product under different performance impacting
scenarios. We are continue working on developing new test
automations with robotic arm testing 3D face authentica-
tion applications as they evolve with software optimization,
enhanced camera sensors and new hardware designs. New
test gates and metrics can be added for more comprehensive
3D face authentication end-to-end application testing.

REFERENCES
[1] S. Omidshafiei, A.-A. Agha-Mohammadi, Y. Fan Chen, N. K. Ure,

S.-Y. Liu, B. T. Lopez, R. Surati, J. P. How, and J. Vian, ‘‘Measurable aug-
mented reality for prototyping cyberphysical systems: A robotics platform
to aid the hardware prototyping and performance testing of algorithms,’’
IEEE Control Syst. Mag., vol. 36, no. 6, pp. 65–87, Dec. 2016.

[2] J. P. How, B. Behihke, A. Frank, D. Dale, and J. Vian, ‘‘Real-time indoor
autonomous vehicle test environment,’’ IEEE Control Syst. Mag., vol. 28,
no. 2, pp. 51–64, Apr. 2008.

[3] Y. Li, S. Li, Q. Song, H. Liu, and Q.-H. M. Meng, ‘‘Fast and robust data
association using posterior based approximate joint compatibility test,’’
IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 331–339, Feb. 2014.

[4] R. C. Luo and C.-C. Chang, ‘‘Multisensor fusion and integration: A review
on approaches and its applications in mechatronics,’’ IEEE Trans Ind.
Informat., vol. 8, no. 1, pp. 49–60, Feb. 2012.

[5] S. Ergur and M. Ozkan, ‘‘Trajectory planning of industrial robots for
3-D visualization a ROS-based simulation framework,’’ in Proc. IEEE
Int. Symp. Robot. Manuf. Automat. (ROMA), Kuala Lumpur, Malaysia,
Dec. 2014, pp. 15–16.

[6] R. B. Rusu and S. Cousins, ‘‘3D is here: Point cloud library (PCL),’’ in
Proc. IEEE Int. Conf. Robot. Autom., Shanghai, China, May 2011, pp. 1–4.

[7] R. B. Rusu, N. Blodow, and M. Beetz, ‘‘Fast point feature histograms
(FPFH) for 3D registration,’’ inProc. IEEE Int. Conf. Robot. Autom., Kobe,
Japan, May 2009, pp. 3212–3217.

[8] R. B. Rusu, N. Blodow, Z. C. Marton, andM. Beetz, ‘‘Aligning point cloud
views using persistent feature histograms,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Sep. 2008, pp. 3384–3391.

[9] R. Awad, G. Heppner, A. Roennau, and M. Bordignon, ‘‘ROS engineer-
ing workbench based on semantically enriched app models for improved
reusability,’’ in Proc. IEEE 21st Int. Conf. Emerg. Technol. Factory Autom.
(ETFA), Berlin, Germany, Sep. 2016, pp. 1–9.

[10] Y. Hua, S. Zander, M. Bordignon, and B. Hein, ‘‘From AutomationML
to ros—A model-driven approach for software engineering of industrial
robotics using ontological reasoning,’’ in Proc. IEEE 21st Conf. Emerg.
Technol. Factory Automat. (ETFA), Sep. 2016, pp. 1–8.

[11] D. Banerjee and K. Yu, ‘‘Robotic arm-based face recognition software test
automation,’’ IEEE Access, vol. 6, pp. 37858–37868, 2018.

[12] D. Banerjee, K. Yu, and G. Aggarwal, ‘‘Hand jitter reduction algo-
rithm software test automation using robotic arm,’’ IEEE Access, vol. 6,
pp. 23582–23590, 2018.

[13] Y. Wang, L. Gu, Y. Xu, and X. Cao, ‘‘Practical tracking control of robot
manipulators with continuous fractional-order nonsingular terminal slid-
ing mode,’’ IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6194–6204,
Oct. 2016.

[14] D. Banerjee, K. Yu, and G. Aggarwal, ‘‘Image rectification software test
automation using a robotic ARM,’’ IEEE Access, vol. 6, pp. 34075–34085,
2018.

[15] D. Banerjee, K. Yu, and G. Aggarwal, ‘‘Object tracking test automation
using a robotic arm,’’ IEEE Access, vol. 6, pp. 56378–56394, 2018, doi:
10.1109/ACCESS.2018.2873284.

[16] R. Bormann, T. Zwolfer, J. Fischer, J. Hampp, and M. Hagele, ‘‘Person
recognition for service robotics applications,’’ in Proc. 13th IEEE-RAS
Int. Conf. Humanoid Robots (Humanoids), Atlanta, GA, USA, Oct. 2013,
pp. 15–17.

[17] D. Banerjee, K. Yu, and G. Aggarwal, ‘‘Robotic arm based 3D reconstruc-
tion test automation,’’ IEEE Access, vol. 6, pp. 7206–7213, 2018.

[18] D. Banerjee and K. Yu, ‘‘Integrated test automation for evaluating a
motion-based image capture system using a robotic arm,’’ IEEE Access,
vol. 7, pp. 1888–1896, 2019, doi: 10.1109/ACCESS.2018.2886272.

[19] S. Gurbuz, E. Oztop, andN. Inoue, ‘‘Model free head pose estimation using
stereovision,’’ Pattern Recognit., vol. 45, no. 1, pp. 33–42, 2012.

[20] N. Uchida, T. Shibahara, T. Aoki, H. Nakajima, and K. Kobayashi, ‘‘3D
face recognition using passive stereo vision,’’ in Proc. IEEE Int. Conf.
Image Process., Genova, Italy, Nov. 2005, p. 950.

[21] C. C. Queirolo, L. Silva, O. R. P. Bellon, and M. P. Segundo, ‘‘3D
face recognition using simulated annealing and the surface interpenetra-
tion measure,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 2,
pp. 206–219, Feb. 2010.

[22] D. Cotroneo, R. Pietrantuono, and S. Russo, ‘‘RELAI testing: A technique
to assess and improve software reliability,’’ IEEE Trans. Softw. Eng.,
vol. 42, no. 5, pp. 452–475, May 2016.

[23] R. Baker and I. Habli, ‘‘An empirical evaluation of mutation testing for
improving the test quality of safety-critical software,’’ IEEE Trans. Softw.
Eng., vol. 39, no. 6, pp. 787–805, Sep. 2012.

VOLUME 8, 2020 46557

http://dx.doi.org/10.1109/ACCESS.2018.2873284
http://dx.doi.org/10.1109/ACCESS.2018.2886272


D. Banerjee, K. Yu: 3D Face Authentication Software Test Automation

[24] P. E. Strandberg, E. P. Enoiu, W. Afzal, D. Sundmark, and R. Feldt, ‘‘Infor-
mation flow in software testing—An interview study with embedded soft-
ware engineering practitioners,’’ IEEE Access, vol. 7, pp. 46434–46453,
2019.

[25] M. Becker, D. Baldin, C. Kuznik, M. M. Joy, T. Xie, and W. Mueller,
‘‘XEMU: An efficient QEMU based binary mutation testing framework
for embedded software,’’ in Proc. 10th ACM Int. Conf. Embedded Softw.
(EMSOFT), 2012, pp. 33–42.

[26] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, ‘‘Impediments for
software test automation: A systematic literature review,’’ Softw. Test.,
Verification Rel., vol. 27, no. 8, p. e1639, Sep. 2017.

DEBDEEP BANERJEE (Member, IEEE) received
the M.S. degree in electrical engineering from the
Illinois Institute of Technology.

He has more than 11 years of industry experi-
ence in the field of software/systems engineering.
He is the software/systems development engi-
neer test lead for the computer vision project and
is responsible for test automation design, plan-
ning, development, deployment, code reviews, and
project management. He works closely with the

software/system teams. He also works in the graphics software test devel-
opment for machine learning and Vulkan projects. He has been working
with the software test automation team since the inception of the computer
vision project at Qualcomm and is involved in managing and developing
the robotic arm software that is used in the Computer Vision Laboratory.
He is currently a Senior Staff Engineer and an Engineering Manager with
QualcommTechnologies, Inc., USA. He is also the author of seven published
IEEE engineering articles.

KEVIN YU was born in Shenyang, Liaoning,
China, in 1987. He received the B.S. degree
in electrical engineering from the University of
California, San Diego, in 2013.

He is currently a Senior Test Engineer with
Qualcomm Technologies, Inc., USA. He has con-
tributed to test automation validation for continu-
ous integration and regression tests for computer
vision algorithms. He has worked on robotic arm
test automations for computer vision software

testing. He is also the author of seven published IEEE engineering articles.

46558 VOLUME 8, 2020


