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ABSTRACT At present, regions of the same class determined by Support Vector Machines (SVM) classifier,
Support Vector Domain Description (SVDD) classifier and Deep Learning (DL) classifier may occupy
regions of other classes or unknown classes in feature space. There exists a risk that samples of other classes
or unknown classes are wrongly classified as a known class. In this paper, the Support Vector Domain
Tightly Wrapping Description Design (SVDTWDD) method with appropriate rejection regions and the
corresponding incremental learning algorithm are proposed to overcome the above problem. The main work
includes: (1) We develop a construction algorithm of the tightly wrapping set for the homogeneous feature
set; (2) Based on the homogeneous feature set and tightly wrapping set, a novel algorithm is presented for
obtaining the tightly wrapping surface of the homogeneous feature region; (3) The method for constructing
all the public regions outside of the tightly wrapping surface and the intersections of wrapping regions in two
different tightly wrapping surfaces, as the rejection region of the classifier; (4) An incremental algorithm is
also presented based on the SVD-TWDDmethod. The experimental results with UCI data sets show that the
correct recognition rate of our proposed method is nearly100% even if with a low rejection rate.

INDEX TERMS Classifier, geometric algebra, pattern recognition, support vector machine, support vector
domain description, incremental learning, classification surface, wrapping learning.

I. INTRODUCTION
For easy understanding, we first introduce several concepts.
For a classifier, in the public test data sets, the ratio of the
number of rejected recognition samples to the total num-
ber of samples in the test data sets is called the rejection
recognition rate of a classifier. In the test data sets without
the rejected samples, the ratio of the number of correctly
classified samples to the total number of samples is called the
correct recognition rate with a certain rejection recogni-
tion region (set). Assume X ∈ RN denote the feature value
of samples, the area (set) Cω formed by the features of all
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samples of a classω is called the feature area (set) of homoge-
neous samples or the feature area (set) of actual homogeneous
samples. If the classifier maps a region (set) cCω to class
ω, and points outside the cCω are not mapped to class ω,
at all, then cCω is called the homogeneous feature region (set)
of the class ω. The set ωTC of the features of all training
samples is called the homogeneous training sample feature
set of the class ω.The region with ωTC and all the points
from RN with distance to ωTC that are less than δ is called
ωTC-determined δ region ωTCδ , simplified as homogeneous
class training feature region. As a result, there are 4 cases
for a classifier: (1) Cω = cCω, i.e., the feature area (set)
of homogeneous samples determined by the classifier equals
with the feature area (set) of actual homogeneous samples.
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In theory, the correct recognition rate of the classifier is
100%; (2) Cω ⊃ cCω, the feature area (set) of the homo-
geneous samples determined by the classifier loses part of
the feature area (set) of the actual homogeneous samples.
When the parts outside cCω are set as rejection recognition
areas (sets). Theoretically, the correct recognition rate of the
classifier with a certain rejection recognition area (sets) is
100%; (3) Cω ⊂ cCω, i.e., the feature area (set) of the
homogeneous sample determined by the classifier invades the
feature area (set) of known samples of the homogeneous class
or the feature area (set) of unknown samples of the homo-
geneous class. The classifier has the risk of misidentifying
a sample of a known or unknown class as a known class.
In theory, the correct recognition rate of the classifier cannot
reach 100%; (4) Cω− cCω 6= 8, and cCω−Cω 6= 8, i.e., the
feature regions (sets) of homogeneous samples determined
by the classifier not only occupy the feature regions (sets) of
known homogeneous samples of other types or the feature
regions (sets) of homogeneous samples of unknown classes,
but also lose the feature regions of some actual homogeneous
samples (set). The risk of classifier misclassification is rel-
atively large. In theory, the correct recognition rate of the
classifier cannot reach 100%.

Over the past decades, many prominent results [1]–[29]
in signal processing and in the design of classifiers have
been achieved by geometric and algebra. However, at present,
feature regions of the same class determined by Support
Vector Machines (SVM) classifier, Support Vector Domain
Description (SVDD) classifier and Deep Learning (DL) clas-
sifier may occupy feature regions of other classes or unknown
classes. There is a risk that samples of other classes or
unknown classes are wrongly classified as a known class.
Hence, some SVM classifiers with high correct recognition
rate, SVDD classifiers and DL classifiers still have about 2%
error recognition rate [6]–[29]. These classifiers cannot be
directly applied to the serious authentication and recognition
applications, such as major disease detection, human identity
authentication, and identification of banknote, bill, or terror-
ist. In these applications, it is often necessary to introduce a
suitable rejection mechanism [6], so that classifiers can either
reject a sample or classify it correctly. That is to say: (1) the
rejection rate is very low; (2) the correct recognition rate is
100% or nearly 100%. If the rejection rate is high, then the
applicable areas of the classifier are limited. If the correct
recognition rate is not close to 100%, users dare not to use
these classifiers to authenticate some particularly important
things or events directly. Obviously, low rejection rate and
high correct recognition rate are two contradictory events.

In order to achieve a low rejection rate and high correct
recognition rate, it is necessary to design a classifier that
making the feature region cCω of the same ω class of samples
(any point in the region is regarded as class ω, while the
point outside the region is regarded as another class point
or rejection recognition point), which contains almost all the
actual feature region Cω formed by the sample points of ω
class (almost without losing its own domain), and almost

does not invade the feature regions of other known classes
and unknown possible classes. A good recognition system
should also have the incremental learning function [7]. The
incremental learning function enables the recognition system
to inherit most of the existing knowledge of the system, opti-
mize and upgrade the system continuously when the number
of training samples or classes varies.

Aiming at solving the above problems, in this paper,
we present a support vector domain tightly wrapping descrip-
tion design (SVDTWDD) method for classifier designing.
In our method, a tightly wrapping surfaces of homogeneous
samples for classification is constructed, in this way, we can
obtain a classifier with high correct recognition rate as well
as maintain a low rejection rate. Three contributions are made
in our work.
1. We prove the existence of tightly wrapping Set of Homo-

geneous Training Feature Set.
2. The construction algorithm of tightly wrapping Set of

homogeneous Training Feature set is given in our paper.
3. Based on the tightly wrapped set and sets from other

classes, we develop an algorithm for tightly wrapping
surface of homogeneous training feature region.

Based on the SVDTWDD, a novel method for incremental
learning is developed.

II. RELATED WORKS
In this section, previous works of popular classifiers are
reviewed.

The motivation of SVM is that SVM maps all feature
vectors into a high-dimensional space, in which a maxi-
mally spaced hyperplane is established, and the correspond-
ing primitive space surface of the hyperplane is regarded as
the classification decision surface. Two parallel hyperplanes
are constructed on both sides of a hyperplane that separates
two types of eigenvectors (data). Separating hyperplanes
maximizes the distance between two parallel hyperplanes.
Obviously, the same kind of feature region cCω determined
by SVM are usually unbounded regions, while the actual
homogeneous feature regionsCω are bounded. Therefore, the
homogeneous feature regions cCω are determined by SVM
encroach on the actual feature regions of other classes or the
feature regions of unknown classes. Moreover, the embezzle-
ment is serious and there is a greater risk of misclassification
of samples. Therefore, it is not suitable for the applications,
such as identification of major diseases, identification of
people through biological characteristics, identification of
banknotes, identification of bills and identification of terror-
ists. Moreover, when new training samples or new class are
added, the work of solving SVM needs to be re-carried out.
In the design of multi-classification SVM classifier [8], [9],
when changing a training sample or adding a new category,
the corresponding classifier learning and training process
need to start over, and the classifier cannot inherit any results
from the previous training process, so the multi-classifier of
SVM has no incremental learning function. Among those
improved SVM methods [10]–[13] (taking into account the
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imbalance of different feature regions and other character-
istics), there exist two drawbacks: (1) There is no suitable
rejection recognition mechanism and it is inconvenient to
determine the rejection recognition region. Because the cur-
rent methods may not improve the correct recognition rate by
determining the rejection recognition region; (2) The same
type of feature region cCω determined by SVMmay encroach
on the feature region of the unknown classes, and there is
a risk of misjudging the other classes or a unknown-class
sample as a known-class one. Generally, the SVM classifier
has about 2% error recognition rate, and the correct recogni-
tion rate cannot approach 100%. The known feature regions
determined by SVM tend to occupy the unknown feature
space as much as possible; (3) The SVM classifier has no
incremental learning function: when the number of classes
are added or subtracted, the learning and training work need
to be completely restarted. Similarly, if any training data
varies, the learning and training work need to start over again.

The idea of SVDD or hypersphere SVM classification
algorithm [14]–[19] is to map all feature vectors into a high-
dimensional space, in which a minimum radius hypersphere
satisfying some constraints is established, the hypersphere
contains almost all the homogeneous sample points. The
original space surface corresponding to the hypersphere or
concentric hypersphere is regarded as the classification deci-
sion surface. In the second section, the experiments show
that the bread-wrapping region cCω of SVDD or hypersphere
SVM classification decision-making may encroach on the
feature region Cω, of unknown classes, that is, the actual
feature region Cω of homogeneous samples is not tightly
wrapped in the classification decision-making region cCω.
Therefore, there are similar problems in the hypersphere
SVM classifier: (1) No suitable rejection recognition mech-
anism is introduced. Because it is not convenient to deter-
mine the appropriate rejection recognition region, or to
determine the rejection recognition region reluctantly, but
it may not improve the correct recognition rate; (2) clas-
sification decision-making bread-wrapped region cCω may
encroach on the feature region Cω, of the unknown class,
and there is a risk of misclassifying the samples from other
classes or unknown class as known classes. In general, the
classifier still has about 2% error recognition rate, the correct
recognition rate cannot approach 100%; (3) the classifier has
no incremental learning function. If the number of training
data or classes varies, the learning and training work need to
start over again.

In the era of big data, various deep learning classifiers are
constantly developed to improve the correct recognition rate,
and some object recognition tasks can achieve 99% correct
recognition rate. In the past, it was almost impossible to
recognize street scenery characters. Nowadays, the correct
recognition rate of street scenery characters is also very
high [20]–[26]. Unfortunately, these classifiers still have an
error rate of about 2%, and they share similar problems as
SVM and SVDD. Therefore, these classifiers are not suitable
for the serious authentication and identification applications.

III. AN EXAMPLE OF THE SVDD CLASSIFICATION
DECISION SURFACE THAT FAILS TO TIGHTLY WRAP THE
HOMOGENEOUS SAMPLES IN FEATURE SPACE
Example 1: As shown in Figure 1, in a two-dimensional
space, there exists an actual feature field surrounded by a
regular triangle. 1000 points are sampled by using uniform
sampling, and the decision surface is obtained by using a
Gauss kernel function and SVDD training with penalty coef-
ficient C = 0.5. The surface is approximately a circle.
The inner circle is the feature region cCω of the classifier.
Obviously, the feature region cCω occupies the actual other
known or unknown class feature region Cω, (i.e. part of the
region outside the regular triangle) and loses part of its own
feature region cCω (i.e. two small regions of the regular
triangle).

FIGURE 1. For SVDD, its classification decision surface cannot tightly
wrap the homogeneous feature space.

IV. THE EXISTENCE THEOREM OF TIGHTLY WRAPPING
SET OF HOMOGENEOUS TRAINING FEATURE SET
Given a point set ωTC ⊆ RN and the constants ε >

0, r > 1, we call the set ωTC is a ε/
√
rN com-

pact connected set if for any two points X ,Y of ωTC ,
there exist different points X1, · · · ,Xh such that all the
distances δ(X ,X1), δ(X1,X2), · · · , δ (Xh,Y ) are less than
ε/
√
rN . The parameters ε and r mainly been used to

describe ‘‘compact connectivity’’ of discrete point sets.
If ε = 0.01,N = 100, r = 9, then ε/

√
rN = 0.0003.

ε/
√
rN = 0.0003 show that ωTC very tightly connected.

At the same time, it shows that there must be other points
in the sphere domain of any point with a radius of 0.0003 in
the set ωTC .

Define the set Cε/
√
rN = ωTC ∪ {X : X ∈

RN , δ(X , ωTC) ≤ ε/
√
rN }}, we call the set ωTC is a ε/

√
rN

compactly simple connected set if Cε/
√
rN is mathematically

simple connected. δ(X , ωTC) = min{δ(X ,Y ) |Y ∈ ωTC} is
the minimum distance from X to this finite number of points.
Intuitively, there exists no hole in a compactly simple con-
nected set. We call the set ωTC is a ε/

√
rN compactly convex

set if there exists any straight line segments, whose start

47916 VOLUME 8, 2020



G. Yang et al.: SVDTWDD Method for High Correct Recognition Rate Classifier With Appropriate Rejection Recognition Regions

FIGURE 2. The new coordinate system with origin
X = (x1, · · · , xi , · · · , xN ) ∈ ωT C .

point and end point are all in Cε/
√
rN . Obviously, a ε/

√
rN

compactly simple connected set must be a ε/
√
rN compact

connected set. And a ε/
√
rN compactly convex set must be a

ε/
√
rN compactly simple connected set.

Furthermore, we call the point X of ωTC being ε/
√
rN

compact boundary point if δ
(
X , bd

(
Cε/
√
rN

))
= ε/
√
rN ,

where bd
(
Cε/
√
rN

)
denotes the boundary of the set Cε/

√
rN .

At last, define the set Cε = ωTC ∪ {X : X ∈ RN ,
δ(X , ωTC) ≤ ε}}.
Theorem 1: Let ωTC ⊆ RN be a ε/

√
rN convex com-

pactly connected bounded set and 0 be the quantity of
ε/
√
2N compact boundary points. For any point X =

(x1, · · · , xi, · · · , xN ) ∈ ωTC , one can obtain 2N points
compactly connected:

(x1 ± ε, · · · , xi, · · · , xN ) , · · · · · · , (x1, · · · ,

xi ± ε, · · · , xN ) , · · · · · · , (x1, · · · , xi, · · · , xN ± ε). (1)

Let ε/
√
rN − ε tightly wrapping set:

I (ωTC) =
(
Cε − Cε/

√
rN

)
∩ {(x1, · · · , xi±ε, · · · , xN ) |(x1, · · · , xi, · · · , xN )∈ωTC} .

(2)

Then, when r > (
√
N+
√
2)

2

N , there exist 0 points in I (ωTC)
at least. And for each boundary point in ωTC , at least one of
above mentioned 2N points is in I (ωTC) . Furthermore, for
any X = (x1, · · · , xi, · · · , xN ) ∈ I (ωTC),

δ
(
X , hy

(
Cε/
√
rN

))
> ε/
√
rN , (3)

where hy
(
Cε/
√
rN

)
denotes a hyper plane in Cε/

√
rN .

Proof: (i) Let X = (x1, · · · , xi, · · · , xN ) ∈ ωTC be a
ε/
√
rN compact boundary point. Thus one has:

δ
(
X , bd

(
Cε/
√
rN

))
= ε/
√
rN . (4)

As illustrated in Figure 2, one can construct a new coor-
dinate system with X being the origin, and denote the
coordinate axis passing the points X and (x1, · · · , xi ±
ε, · · · , xN ) by XXi, i = 1, · · · ,N . Then, one can obtain a
sphere B(x1, · · · xi−1, xi± ε, xi+1 · · · , xN ) with sphere center
(x1, · · · xi−1, xi± ε, xi+1 · · · , xN ) and its radius ε/

√
rN . As a

result, the points (x1, · · · , xi−1, xi±
√
rN−
√
2

√
rN

ε, xi+1, · · · , xN )
are the intersection between coordinate XXi and sphere B.
Let us denote 5ij···, i, j = 1 · · · ,N as the tangent

plane of spheres B(x1, · · · xi−1, xi + ε, xi+1 · · · , xN ) and
B(x1, · · · xj−1, xj + ε, xj+1 · · · , xN ) which are vertical to
coordinate planes XiXXj · · · , i, j = 1, · · · ,N . Then, there
exist two intersection points between 5ij··· and coordinate
system, which are

(x1, · · · xi−1, xi +

√
rN −

√
2

√
rN

ε, xi+1 · · · , xN ) and

(x1, · · · xj−1, xj +

√
rN −

√
2

√
rN

ε, xj+1 · · · , xN ). (5)

According the definition of hyper plane, given N different
points, if they are not in any N − 2 dimension hyper plane,
there exists an N − 1 dimension hyper plane such that these
N points are all in it. Given 2N points:

(x1 ±

√
rN −

√
2

√
rN

ε, x2 · · · , xN ), · · · , (x1, · · · , xi−1, xi

±

√
rN −

√
2

√
rN

ε, xi+1, · · · , xN ), · · · , (x1, · · · , xN−1, xN

±

√
rN −

√
2

√
rN

ε). (6)

There are CN
2N different ways to choose N points, where for

someways theN points are all in someN−1 dimension hyper
plane, but not in anyN−2 dimension hyper plane. As a result,
the number of N− 1 dimension hyper plane, which does not
contain the origin point X = (x1, · · · , xi, · · · , xN ) ∈ ωTC
and (x1, · · · , xi−1, xi ±

√
rN−
√
2

√
rN

ε, xi+1, · · · , xN ), is

C1
2NC

1
2N−2 · · ·C

1
2

N !
= 2N . (7)

For example, the result formula (7) is equal to 8 in three
dimensional space.

And the polyhedron enclosed by these N − 1 dimension
hyper planes are convex, denoted as �. Among all polyhe-
drons with 2 N points (6) as vertexes, the �’s volume is the
smallest. The point X = (x1, · · · , xi, · · · , xN ) ∈ ωTC is the
center points of �.

(ii) On the contrary, one can assume that the 2N points:
(x1 ± ε, · · · , xi, · · · , xN ) , · · · · · · , (x1, · · · , xi ± ε, · · · ,xN ),
· · · · · · , (x1, · · · , xi, · · · , xN ± ε) are all in Cε/

√
rN . Accord-

ing the definition of Cε/
√
rN , there are the 2N points:(

x ′1 ± ε, · · · , x
′
i , · · · , x

′
N
)
, · · · · · · ,

(
x ′1, · · · , x

′
i ± ε, · · · ,

x ′N
)
, · · · · · · , (x ′1, · · · , x

′
i , · · · , x

′
N ± ε) (8)
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in ωTC is in the sphere B
(
x ′1, · · · , x

′
i ± ε, · · · , x

′
N

)
. �′ is the

smallest convex polyhedron with (8) as vertexes. Then �′

must be inCε/
√
rN , since the ωTC is a ε/

√
rN convex compact

set. Obviously, X = (x1, · · · , xi, · · · , xN ) ∈ �′, and �′ is
also enclosed by 2N hyper planes. The intersection points
between coordinate XXi and hyper planes with common
vertex

(
x ′1, · · · , x

′
i + ε

′, · · · , x ′N
)
are not inside of the line

segment with endpoints of points X = (x1, · · · , xi, · · · , xN )
and (x1, · · · , xi−1, xi +

√
rN−
√
2

√
rN

ε, xi+1, · · · , xN ), but in
the extension of above-mentioned line segment. Thus
the vertex angle of �′ corresponding the vertex point(
x ′1, · · · , x

′
i + ε

′, · · · , x ′N
)

covers the (x1, · · · , xi−1, xi +
√
rN−
√
2

√
rN

ε, xi+1, · · · , xN ), so

(x1, · · · , xi−1, xi +

√
rN −

√
2

√
rN

ε, xi+1, · · · , xN ) ∈ �′. (9)

Homogeneously, one has (x1, · · · , xi−1, xi −
√
rN−
√
2

√
rN

ε,

xi+1, · · · , xN ) ∈ �′. According the definition of the smallest
convex set, one has

X = (x1, · · · , xi, · · · , xN ) ∈ � ⊂ �′ ⊂ Cε/
√
rN . (10)

Next, we prove that the distance δ
(
X , hy

(
Cε/
√
rN

))
>

ε/
√
rN holds, when r >

(√
N+
√
2
)2

N . In fact one
can verify that the hyper plane equation passing the
points (x1 +

√
rN−
√
2

√
rN

ε, x2 · · · , xN ), · · · , (x1, · · · , xi−1, xi +
√
rN−
√
2

√
rN

ε, xi+1, · · · , xN ), · · · , (x1, · · · , xN−1, xN +
√
rN−
√
2

√
rN

ε) is:

(y1 − x1)+ · · · + (yN − xN )−

√
rN −

√
2

√
rN

ε = 0 (11)

Note that this hyper plane is one of the boundary planes
of �. According to the distance definition between point and
surface, the distance between X = (x1, · · · ,xi, · · · ,xN ) and
surface of � is

ρX� = ρY=X

=
|A1 (y1 − x1)+ · · · + An (yN − xN )+ B|√

A21 + A
2
2 · · · + A

2
n

=

∣∣∣(y1 − x1)+ · · · + (yN − xN )− √rN−√2√
rN

ε

∣∣∣√
A21 + A

2
2 · · · + A

2
n

=

√
rN −

√
2

N
√
r

ε > ε/
√
rN , (12)

which is a contradiction with � ⊂ �′ ⊂ Cε/
√
rN and X =

(x1, · · · , xi, · · · , xN ) ∈ ωTC is a ε/
√
rN compact boundary

point. Note that (
√
N +
√
2)∧ 2/N decreases as N increases,

and its value is not bigger than 5.8289.

V. THE CONSTRUCTION ALGORITHM OF TIGHTLY
WRAPPING SET OF HOMOGENEOUS
TRAINING FEATURE SET
In this paper, the so-called ε/

√
rN—ε tightly wrapping

set is I (ωTC) = (ωTCε − ωTCε/
√
rN ) ∩ {(x1, · · · , xi ±

ε, · · · , xN ) |(x1, · · · , xi, · · · , xN ) ∈ ωTC }. It is a set related
to a certain set ωTC , the points of which are restricted within
a skin cavity (region) with thickness less than ε − ε/

√
rN ,

the skin cavity wraps the outer side of set ωTC .

A. OPTIMIZATION ALGORITHM OF
COMPACTNESS PARAMETER
Let us define set C ⊆ RN as the homogeneous feature points
set coming from the homogeneous feature region T ⊆ RN ,
and assume ωTC as a ε/

√
5.9N convex compact bounded set.

If the homogeneous feature region T is fixed, the number of
points in ωTC increases as ε decreases.
On one hand, given the convex set T and parameter ε, it’s

easy to construct a set ωTC to be ε/
√
5.9N convex compact.

On the other hand, given a set ωTC as ε/
√
5.9N convex com-

pact, it’s difficult to compute the smallest ε. Next, we present
an algorithm to find the smallest ε. This algorithm is based on
the theory that a simplex determined by N + 1 points, which
are not in the same hyper plane, is a minimal volume convex
polyhedron containing these N + 1 points. The algorithm
details are shown as follows.

Algorithm 1 Optimization Algorithm of Compactness
Parameters
Input: M points in ωTC , denoting these points by
X1,X2 · · · ,XM .
Step 1: compute the 1st neighbor Xj1 of point Xj:

j1 = argmini 6=j
∥∥Xj − Xi∥∥

Step 2: compute the 2nd neighbor Xj2 of point Xj:
j2 = argmini 6=j,i 6=j1

∥∥Xj − Xi∥∥
...

Step N+1: compute the (N + 1)th nearest neighbor XjN+1
of point

Xj : jN+1 = argmini/∈{j,j1,...,jN }
∥∥Xj − Xi∥∥

Step N+2: compute the max distance between Xj and its
neighbors:

g(X j) = max i∈{j1,...,jN }
∥∥Xj − Xi∥∥

Step N+3: compute the sub-optimal ε:
ε ≥
√
5.9N max1≤j≤Mg(X j)
=
√
5.9Nmax1≤j≤Mg(X j)

Output: ε

One can prove under the ε obtained by the above algorithm,
the ωTC is ε/

√
5.9N convex compact. Besides, the algorithm

is convergent and the computation complexity is O(M2) when
M is finite.
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B. THE CONSTRUCTION ALGORITHM OF TIGHTLY
WRAPPING SET
This part illustrates how to construct a ε/

√
5.9N − ε tightly

wrapping set I (ωTC):

I (ωTC) =
(
Cε − Cε/

√
5.9N

)
∩
{(
xj1, · · · , xji ± ε, · · · , xjN

)
|

×
(
xj1, · · · , xji, · · · , xjN

)
∈ ωTC

}
(13)

Firstly, we can construct a ε/
√
5.9N hyper-spherical neigh-

borhood discriminant function

fj (X) = ε/
√
5.9N −

∥∥X − Xj∥∥ , 1 ≤ j ≤ M . (14)

If fj (X) ≥ 0, then X lies in the hyper-spherical neigh-
borhood

∏
(X j), whose spherical center is Xj and radius is

ε/
√
5.9N .

Secondly, for each point Xj =
(
xj1, · · · , xji, · · · , xjN

)
, 1 ≤

j ≤ M , one can construct 2N points:(
xj1, · · · , xji ± ε, · · · , xjN

)
, 1 ≤ i ≤ N (15)

Thirdly, check if each constructed point is in
∏
(X j), 1 ≤

j ≤ M . Then the set of the all points, which are not in any∏
(X j), 1 ≤ j ≤ M , is a ε/

√
5.9N − ε tightly wrapping

set, i.e., I (ωTC) . Based on Theorem 1, the number of points
in I (ωTC) is not less than the number of boundary points
of ωTC .

FIGURE 3. Illustration of tightly wrapping surface.

VI. THE ALGORITHM FOR TIGHTLY WRAPPING SURFACE
OF HOMOGENEOUS TRAINING FEATURE REGION BASED
ON THE TIGHTLY WRAPPED SET AND THE OTHER
CLASS SAMPLE SET
A feature transformation φ : RN → H can maps the feature
space to a high dimensional space, denoting the correspond-
ing kernel function as k : RN

×RN
→ R. As illustrated

in Figure 3, we assume the radius of small hyper sphere and
big one are r and

√
r2 + ρ2 respectively. The ‘∗’ points in the

small sphere are mapped points of the corresponding ones in
ωTC . The ‘+’ points outside the big sphere are mapped points
of the corresponding ones in I (ωTC) and the other class
sample set

⋃
j 6=i
Cj. We aim to pursue a proper transformation

φ : RN
→ H such that the small sphere almost contains

all ‘∗’ points with smallest r and largest
√
r2 + ρ2. As a

result, the primal space surface corresponding to the small
hyper sphere of high dimension is the tightly wrapped surface
of ωTC .

For easy calculation, we assume there are m1 points in
ωTC , andm2 = n−m1 points in I (C)∪

⋃
j 6=i
Cj, the point c is the

center of high dimensional sphere. We construct the tightly
wrapped surface of the homogeneous area by computing the
optima of the following optimization function.

min
r,c,ρ,ξ

(r2 − υρ2 + 1
υ1m1

m1∑
i=1
ξi +

1
υ2m2

n∑
j=m1+1

ξj),

s.t. ‖φ(Xi)− c‖2 ≤ r2 + ξi, 1 ≤ i ≤ m1,∥∥φ(Xj)− c∥∥2 ≥ r2 + ρ2 − ξj, m1 ≤ j ≤ n,

0 ≤ ξk , 1 ≤ k ≤n, (16)

where ξi, ξj are slacking variables, 1
υ1m1

, 1
υ2m2

denote the pun-
ishment terms. To solve this optimization problem, we utilize
the Lagrange function as:

L(r, c, ξ, α, β) = r2 − vρ2 + 1
υ1m1

m1∑
i=1
ξi +

1
υ2m2

n∑
j=1
ξj

+

m1∑
i=1

αi(‖φ(Xi)− c‖2 − r2 − ξi)

−

n∑
j=m1+1

αj(‖φ(Xi)− c‖2 − r2 − ρ2 + ξj)

−

n∑
k=1

βkξk (17)

Then the optima should satisfy the following conditions:

∂L
∂r
= 2r(1−

n∑
i=1

αiyi) = 0

∂L
∂ρ
= 2ρ(−υ +

n∑
j=m1+1

αiyi) = 0

∂L
∂ξi
=

1
υ1m1

− αi − βi = 0, 1 ≤ i ≤ m1

∂L
∂ξj
=

1
υ2m2

− αj − βj = 0, m1 + 1 ≤ j ≤ n

∂L
∂c
= 2c

n∑
i=1

αiyi − 2
n∑
i=1

αiyiφ(Xi) = 0

(18)

As a result, we can obtain:

c =

∑n
i=1 αiyiφ(Xi)∑n

i=1 αiyi
=

n∑
i=1

αiyiφ(Xi) (19)

So, the dual problem is as follows:

max
α

n∑
i=1

αiyiφ(Xi) · φ(Xi)−
n∑
i=1

n∑
j=1

αiαjyiyjφ(Xi) · φ(Xj)

s.t. 0 ≤ αi ≤
1

υ1m1
, 1 ≤ i ≤ m1

0 ≤ αj ≤
1

υ2m2
, m1 + 1 ≤ j ≤ n

n∑
i=1

αiyi = 1,
n∑
i=1

αi = 2v+ 1 (20)
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where φ(Xi) · φ(Xj) are instead by K (Xi,Xj), the above opti-
mization can be rewritten as:

max
α

n∑
i=1

αiyiK (Xi,Xi)−
n∑
i=1

n∑
j=1

αiαjyiyjK (Xi,Xj)

s.t. 0 ≤ αi ≤
1

υ1m1
, 1 ≤ i ≤ m1

0 ≤ αj ≤
1

υ2m2
, m1 + 1 ≤ j ≤ n

n∑
i=1

αiyi = 1,
n∑
i=1

αi = 2υ + 1 (21)

This is a quadratic optimization problem and there exist
many algorithms for solving it, such as the sequential mini-
mum optimization algorithm and the complexity of this algo-
rithm is o(n2).

Furthermore, to obtain r, ρ2 and r2 + ρ2, we consider
following two sets:

S1 = {xi |0 < αi <
1

υ1m1
, 1 ≤ i ≤ m1},

S2 = {xj |0 < αj <
1

υ2m2
, m1 + 1 ≤ j ≤ n} (22)

Let n1 = |S1| , n2 = |S2| , by KTT conditions, we have:

r2 =
1
n1
P1, ρ2 =

1
n2
P2 −

1
n1
P1. (23)

where

P1 =
∑
xi∈S1

‖φ(Xi)− c‖2 =
∑
xi∈S1

(k(Xi,Xi)

−2
n∑

k=1

αkykk(Xi,Xk )+ 〈c, c〉) (24)

P2 =
∑
xj∈S2

‖φ(Xi)− c‖2 =
∑
xj∈S2

(k(Xj,Xj)

−2
n∑

k=1

αkykk(Xj,Xk )+ 〈c, c〉) (25)

〈c, c〉 = 〈
n∑
i=1

αiyiφ(Xi),
n∑
j=1

αjyjφ(Xj)〉

=

n∑
i=1

n∑
j=1

αiαjyiyjk(Xi,Xj) (26)

Thus, the class decision function is given by:

f (x) = sgn(r2 − ‖φ(X )− c‖2)

= sgn(r2 + 2
n∑

k=1

αkykk(X ,Xk )− k(X ,X )− 〈c, c〉)

(27)

The class decision surface W is given by

r2 − ‖φ(X )− c‖2

= r2 + 2
n∑

k=1

αkykk(X ,Xk )− k(X ,X )− 〈c, c〉 = 0 (28)

The construction procedures of tightly wrapped set and
classification decision surface show that the constructed sur-
face can compactly wrapping the region of homogeneous fea-
tures, i.e., the volume difference between the wrapped region
and the homogeneous feature region is less than a certain
bounded number multiplying ε. Furthermore, the distances,
also called projection magnitudes, between the boundary of
feature region and boundary of class decision surface are all
less than ε.

VII. TIGHTLY WRAPPING LEARNING THEOREM
Theorem 2 (Tightly Wrapping Learning Theorem): Let δ > 0
and ωTC is a ε/

√
rN compact compactly connected set of

points with bounded M in a N -dimensional feature space
RN and ωTC is a ε/

√
rN compact convex set with ε <

δ

2NN (M+1)N−1
, r > 5.9. Then the difference between the

volume of Cε/
√
rN and the volume of the region enclosed

by the surface W of (28) is less than δ. That is, when δ
is sufficient small, the surface W tightly wraps the feature
region of the same kind.

Proof: Based on the theory of the hyper-sphere SVM
or SVDD method, as long as the surface W of (28) (the
approximate solution can be obtained by numerical calcula-
tion method for points on the surface) is found, the distance
from the boundary of the feature region to the classification
decision boundary in each coordinate direction (the projec-
tion length of the coordinate direction) is greater than ε/

√
rN

and less than ε, according to the spatial position of the surface
of (28). The difference between the volume of Cε/

√
rN and

volume of the region enclosed by the curved surface is less
than the difference (2M+2ε)N − (2M )N between the volume
of the cube with the edge length 2M and the cube with the
edge length (2M+2ε). So the difference between the volume
of Cε/

√
rN and volume of the region enclosed by the curved

surface is less than 2N εN (M + ε)N−1.
Hence the difference between the volume of Cε/

√
rN and

the volume of the region enclosed by the surfaceW of (28) is
less than

2N εN (M + ε)N−1 < δ (29)

That is, as long as δ is small enough, the surface W is
able to tightly wraps the feature region of the homogeneous
class.

The above ‘‘The construction algorithm of tightly wrap-
ping set of homogeneous feature set’’ and ‘‘The algorithm
for tightly wrapping surface of homogeneous feature region
based on wrapping set and the other class sample set ’’ are
collectively referred as the SVDTWDD method for support
vector domain tightly wrapped description design.
Example 2: Figure 4 is the set of tightly wrapping points

and tightly wrapping surfaces of feature region of an object
(identifying the same feature region of an object) enclosed by
an equilateral triangle in example 1. Obviously, the wrapping
surface obtained by this method is much tighter than that
obtained by SVDD (as in example 1).
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FIGURE 4. The set of the tight wrapping points and tight wrapping
surfaces of feature domains. The blue dots and green crosses represent
samples of two different classes respectively in feature space, the red
circles are the support vectors of the decision surface represented by the
magenta curve.

VIII. APPROPRIATE REJECTION RECOGNITION REGIONS
FOR MULTI-CLASS CLASSIFIERS
For the multi-class classification problem, we assume η
classes as ω1, · · · , ωη. By using the above algorithm, we can
find a small parameter ε. The discriminant functions of each
class are given as follows:

jf (X ) = sgn(jr2 −
∥∥φ(X )− jc

∥∥2)
= sgn(jr2 + 2

n∑
k=1

jαkykk(X ,Xk )− k(X ,X )− 〈jc, jc〉)

1 ≤ j ≤ η, (30)

And the decision surfaces are:
If there is only one j that jf (X ) ≥ 0, then judge X belongs

to class ωj.
If there are more than two j that jf (X ) ≥ 0, then judge

X belongs to the intersection of wrapping regions by two
different tightly wrapping surfaces and rejection recognition
regions. The intersections of wrapping regions by two
different tightly wrapping surfaces are the areas of Maxi-
mum decision risk for classifier. Adding the intersections to
the rejection recognition regions will ensure that the correct
recognition rate of the classifier with certain rejection recog-
nition regions is 100% or close to 100%.

If jf (X ) < 0 for all j, then judge X belongs to the rejection
recognition regions.

As a result, the rejection recognition regions can be defined
as the public regions outside of all the tightly wrapped sur-
faces and the intersections of wrapping regions by two differ-
ent tightly wrapping surfaces.

IX. ALGORITHM FOR INCREMENTAL LEARNING
Let’s say that the samples of new classes the intersections of
wrapping regions by two different tightly wrapping surfaces.
When new classes are added, all the results of the previous
work need to be retrained. For the sample set of new classes,
one only needs to pursue the wrapped set, classification

TABLE 1. Description of the data sets.

TABLE 2. The parameter values of different datasets in our method.

decision functions and the classification decision tightly
wrapped surfaces. At the same time, the rejection recognition
region should be adjusted accordingly.

When new training samples are added and the previous
classifier can classify correctly, the classifier does not need to
make any adjustment. Otherwise, only the wrapped point set
corresponding to the misclassification and rejection recogni-
tion samples (Note: New boundary points can be judged) need
to be recalculated, and the classification decision function
and classification decision-making surface based on the new
class sample set and wrapping set can be recalculated. At the
same time, the rejection recognition region should be adjusted
accordingly.

When subtracting the misclassification samples from the
training data, only the set of wrapping points corresponding
to themisclassification samples (note: boundary points can be
judged) need to be retrieved from the set of wrapping points
(note: most of the previous calculation results can be used)
and the classification decision function and classification
decision-making tightly wrapped surface based on the new
class sample set and the wrapped set can be obtained. At the
same time, the rejection recognition region should be adjusted
accordingly.

X. EXPERIMENTS
The effectiveness of the proposed algorithm is evaluated
on UCI data set, in which our proposed method is com-
pared to the classic SVM, support vector data description
SVDD, small sphere largemargin SVM (SSLM-SVM). Some
description of data set is displayed in Table 1, where ‘pos’
and ‘neg’ denote the samples number of ‘+’ class and ‘−’
class. The symbols m1, m2 denote the number of selected
samples in the experiments, d denotes the number of the
feature dimensions.

The parameters in experiments are decided by using the
grid searching and cross validating methods. The Gaussian
kernel function is used:

K (u, v) = exp(−
1
δ
‖u− v‖2) (31)
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TABLE 3. Experiment results.

The parameter δ is selected in {
σ 20
16 ,

σ 20
8 ,

σ 20
4 ,

σ 20
2 , σ 2

0 , 2σ
2
0 ,

4σ 2
0 , 8σ

2
0 , 16σ

2
0 } where σ

2
0 is the average norm of samples.

For the SVDD-SVM, the parameters C1 is selected in
{0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500} and C2 in
{
1
4 ×

m1
m2
, 12 ×

m1
m2
, 2× m1

m2
, 4× m1m2

}
.

For the SSLM-SVM and our proposed method, the param-
eters v is selected as {10,30,50,70,90}, v1 and v2 as {0.001,
0.01, 0.1}. The parameter values of different datasets in the
SVDTWDD method are displayed in Table 2.

According to [14], the positive class samples and negative
class samples are selected from the data set and trained by
using SVM, SVDD, SSLM, deep sensing network and wrap-
ping learning algorithm respectively. The remaining samples
are used for testing. For the problem of two classifications
using the wrapping learning algorithm, the experimental
method is: first, the wrapping learning algorithm is imple-
mented for the classes (positive classes) with more training
samples, and during the implementation of the wrapping
learning algorithm, the other class of samples are added to
the wrapping sample set for training. Secondly, the initial dis-
criminant function is used to test and optimize the classifica-
tion method. In order to satisfy the test results, it is necessary
to scale the discriminant function or to add the wrong samples
to the training set for retraining. If the correct recognition rate
of the test results is 100% or fairly satisfactory, then there
is no need to implement the wrapping learning algorithm
for the other class (negative class) samples. No rejection
recognition region is set. If the result of the test is not satisfac-
tory, the wrapping learning algorithm is applied to the other
class of (negative) samples to repeat the above process, and
the discriminant region of this class (negative) is set as the
wrapping region of this class to remove the other (positive)
discriminant region, i.e., the positive class discriminant prior-
ity. Otherwise we set the positive discriminant region as the
positive discriminant region and remove the other (negative)
discriminant region, i.e., the negative discriminant priority.
The problem whether positive or negative classes are to be
taken as priority, is determined based on the test results.
Then, the rejection recognition region is set outside the pos-
itive discrimination region and the negative discrimination
region. Finally, the rejection recognition rate is calculated.

Generally, if the rejection recognition region is relatively
large, even very large, the rejection recognition rate is rel-
atively small. Table 3 below show the experimental results.
It can be seen that the wrapping learning algorithm is effective
and can be used to design a classifier with high correct
recognition rate and suitable rejection recognition region.

XI. CONCLUSION AND DISCUSSION
In this paper, we have presented a novel method for designing
a classifier with high recognition rate. In the biometric areas,
such as identity identification, banknote identification, and
ticket authentication, many existing classifiers, such as SVM,
SVDD, hyper-sphere SVM and deep learning, still have some
drawbacks. One is the lack of appropriate rejection recogni-
tion mechanism and the other one is the correct recognition
rate is not 100%. To overcome these drawbacks, this paper
demonstrates that the homogeneous features are not tightly
wrapped in the decision-hyperplane of the hypersphere SVM
using a concrete example. Then we give the theorem proof
of the existence of tightly wrapping set of homogeneous
features.

As a conclusion, we have proposed the novel SVDTWDD
method: the optimization algorithm of compactness
parameters, construction algorithm of tightly wrapping set of
homogeneous features, the algorithm of the tightly wrapping
surface of homogeneous feature region based on homoge-
neous feature set and tightly wrapping set, and the method
of setting the rejection region of the multi-class classifier.
Furthermore, we have discussed the incremental learning
algorithms for cases of adding new categories, increasing or
decreasing training samples. The experiments on UCI data
show that the proposed classifier can achieve nearly 100%
recognition rate with a low rejection rate.
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