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ABSTRACT With the development of the Internet of Things (IoT) technology, many end-users participate in
the smart city through their own intelligent mobile devices (such as personal wearable devices, smartphones.)
or sensors. The main challenge of the device sensing layer in the edge computing system of the IoT in the
smart city is to select the trusted participants. Because not all the intelligent devices of the IoT are trustworthy,
some intelligent devices of the IoT may maliciously damage the network or services and affect the service
quality of the system. On this basis, an intelligent device selective recommendation mechanism based on the
dynamic black-and-white list was proposed to solve the problem of selecting trusted participants to improve
the service quality of the edge computing system of the IoT in the smart city. We introduced the evolutionary
game theory to theoretically qualitatively study the validity and stability of the trust management mechanism
proposed in this paper. The Lyapunov theory was used to prove the validity and stability of the trust
management mechanism. The effectiveness of the trust management mechanism was verified by the actual
scenario of the personal health monitoring management system and the air-quality monitoring and analysis
system in the smart city environment. Experiments showed that the trust management mechanism proposed
in this paper has a significant role in promoting the cooperation of multi intelligent devices in the IoT edge
computing system. It more reliably resists the malicious attacks to service providers and is suitable for the
large-scale IoT edge computing system in the smart city.

INDEX TERMS Edge computing, Internet of Things, malicious attack, smart city, trust management
mechanism.

I. INTRODUCTION
With the development of the Internet of Things (IoT) tech-
nology [1], [2] and 5G communication technologies, mobile
edge computing (MEC) [3]–[5], [43] has become a hot
spot in the research of industry and academia. MEC is
developed from mobile cloud computing technology to pro-
cess data at the edge of the network, which reduces ser-
vice request response time, reduces mobile device energy
consumption, reduces network bandwidth, and ensures data
security. MEC has a wide range of applications, such
as computation offloading [6]–[8], big data storage [9],
face recognition-based video analysis, intelligent transporta-
tion [10], smart cities [11], [12], healthcare [13], collaborative
mobile edge computing [14], [15], and so on.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Sharif .

A smart city [19] uses advanced technologies such as IoT,
big data, cloud computing, and other technologies to realize
smart management and operation of the city, and thus create a
better lifestyle for people in the city. It includes smart homes,
intelligent transportation, intelligent healthcare, intelligent
weather.

In the IoT edge computing system of the smart city, many
smart devices in the sensing layer exist in more challenging
and complex scenarios. These intelligent devices interact
with each other in various areas of the city, such as roads,
buildings, or stadiums. Each end-user participates in the smart
city system through his or her intelligent mobile devices
(e.g., personal wearable devices, smartphones.) or sensors.
These smart terminal devices submit the data to the edge
service provider for processing. Due to the limited resources
of the edge service provider, when the user sent a large
amount of data to the edge service provider at the same time,
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it may cause the delay of the edge service provider. Therefore,
the smart terminal device offloads the task to another smart
device with idle resources, reducing service latency due to
extensive data submitted. The main challenge of the device
sensing layer in the edge computing environment of the IoT
in the smart city is to choose the trusted participants because
not all the intelligent devices of the IoT are trustworthy, some
smart devices of the IoTmaymaliciously damage networks or
services and affect the service quality of the system. Although
these smart devices significantly improve the quality of life of
the people and provide more convenience for our lives. How-
ever, there are various security risks and malicious attacks
in the edge computing system of the IoT in the real smart
city [34]–[41]. Therefore, the service provider of the edge
computing system of the IoT in the smart city must adopt
the trust management mechanism to ensure the quality of the
assistance behavior of the intelligent devices and improve the
satisfaction of the users. How to build an effective trust man-
agement mechanism for smart device collaboration behavior
and ensure the service quality of the system is the critical
content of this paper.

Some existing work has studied the trust management
mechanism. However, there are also some problems with
the trust management mechanism of edge computing. Most
trust value calculations do not adequately consider the trust
value between smart devices and edge service providers and
the trust value between smart devices. Besides, many previ-
ous studies have assumed that all participants in the system
adopted the proposed models, which ignores the participant’s
ability to choose independently. We review and compare the
actual work in Section II.

In this paper, we propose a smart device selective
recommendation mechanism based on the dynamic black-
and-white list to solve the problem of selecting trusted par-
ticipants. We verified through experiments that the proposed
management mechanism has excellent performance. In this
paper, we introduce evolutionary game theory to theoretically
study the validity and stability of the trust management mech-
anism. We use the Lyapunov theory to prove the validity and
stability of the trust management mechanism proposed in this
paper. The effectiveness of the trust management mechanism
is verified by the scenario of the personal healthcare monitor-
ing management system and the air-quality monitoring and
analysis system in the smart city.

This paper has the following contributions.
(1) We adopt the trust calculation method based on multi-

intelligent devices and multi-edge centers under the frame-
work of the smart city. Consider the trust between smart
devices and the trust relationship between edge service
providers and smart devices.

(2) We propose an evaluation mechanism of personalized
context content perception.

(3) We propose a personalized device selective recommen-
dation mechanism based on the dynamic black-and-white list
to improve the service quality of the IoT edge computing
systems in the smart city.

(4) We introduce evolutionary game theory to theoretically
study the validity and stability of the trust management mech-
anism. We use the Lyapunov theory to prove the validity and
stability of the trust management mechanism proposed in this
paper. The effectiveness of the trust management mechanism
is verified by the scenario of the personal health monitoring
management system and the air-quality monitoring and anal-
ysis system in the smart city.

The paper has been organized as follows: Section II
presents a review of related studies. Section III describes the
IoT edge computing trust management framework for smart
cities based on the cloud platform and presents the system
architecture, while Section IV outlines the details of the trust
management mechanism. Section V evaluates the model by
deploying a scenario and performs tests. Finally, the main
conclusions about the research and future lines of work are
presented.

II. RELATED WORK
With the development of IoT technology, many end-users
participate in the edge computing system of IoT in the smart
city through intelligent mobile devices (such as personal
wearable devices, smartphones.) and sensors. One of the
significant challenges in the edge computing system of the
IoT in the smart city is choosing trusted devices because
not all devices are trustworthy, and some IoT intelligent
devices may maliciously damage networks or services and
affect system service quality. Many kinds of literature have
studied the security and trust problems in different archi-
tectures and proposed corresponding solutions, for example,
authentication [44]–[48], security defense [49], [50], trust
management [51]–[55].

In particular, Kamvar et al. [23] proposed assigning a
unique global trust value to each peer based on the upload his-
tory of the peer. A distributed securitymethod based on Power
iteration is proposed to calculate the global trust value. Peers
use these global trust values to select peers. The network can
effectively identify malicious peers and isolate them from the
system. Su et al. [28] proposed a flexible trust management
tool ServiceTrust that provides network service quality sen-
sitivity and protection against attacks. ServiceTrust consists
of three unique features. First, it encapsulates feedback that
is sensitive to network service quality through a multi-scale
scoring scheme and translates user behavior into a local trust
algorithm. Second, ServiceTrust uses the similarity of two
user feedback behaviors to measure local trust values and
uses pairwise feedback similarity to aggregate local trust
values into global trust algorithms. ServiceTrust measures the
contribution score of the local trust value of the participant’s
global trust. Finally, the use of pairwise feedback similarity
weighted trust propagation further enhances the robustness of
global trust calculations to malicious or sparse feedback.

A personalized pre-trust management model, Personal-
Trust, was proposed by Li et al. [29] PersonalTrust leverages
individualized pre-trust delivery ability. Assume that in addi-
tion to those pre-trust peers selected by the system, each peer
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can choose its personalized pre-trust peer based on its interac-
tions with other peers on the network. By leveraging pre-trust
passability, obtain a pre-trust matrix containing information
to ensure that peer’s trust will only spread within the circle of
trusted friends. Also, PersonalTrust automatically updates the
pre-trust matrix. Fan et al. [31] proposed reliable trust man-
agement, GroupTrust, to provide secure trust management in
the case of dishonest ratings, malicious masquerading, and
malicious collusion. The GroupTrust solution is based on
the feedback credibility of pairwise similarity to improve the
resiliency of trust value calculations for the case of dishonest
ratings, defining trust propagation thresholds to control how
trust is propagated.

Yuan et al. [32] proposed a hybrid trust calculation method
for IoT edge device evaluation. The framework consists of
three different parts, namely global trust calculation based
on multi-source feedback, trust evaluation based on IoT edge
device cooperation, and trust factor calculation algorithm
based on objective information entropy theory. To effec-
tively calculate the trust, the entire process is done on the
edge device. When calculating the trust and incentives of a
particular IoT edge device, the two factors considered are
the interaction with other devices and the quality of service
provided by the IoT edge device.

He et al. [16] proposed a social trust scheme that enhances
security. When considering trust-based mobile social net-
works with mobile edge computing, caching, and device-
to-device, a new in-depth reinforcement learning approach
was adopted to make decisions to optimize the allocation of
network resources automatically. Huang et al. [17] proposed
a distributed vehicle edge computing reputation manage-
ment system. The system employs a vehicle edge computing
server to perform local reputation management tasks for the
vehicle. The multi-weight subjective logic method is used
to update the reputation value of the distributed vehicle
edge computing reputation management system. The sys-
tem collects, weights, and aggregates all reputation’s val-
ues in a region to form a final local reputation update
value. The service provider optimizes the resource allocation
in the computing offloading by considering the reputation
value of the vehicle, which plays a role in security protec-
tion and network efficiency. Goh et al. [18] designed three
schemes to solve the integrity challenges in edge comput-
ing. Each scheme provides different security functions, and
these schemes are suitable for different application require-
ments and resource configurations. Yuan and Li [20] pro-
posed a multi-source feedback-based edge computing trust
computing mechanism. Due to the use of the multi-source
feedback mechanism for global trust computing, this trust
computing scheme was more reliable, resisting malicious
attacks on malicious feedback providers. The authors also
used a lightweight trust evaluation mechanism to achieve
collaborative work between network devices. This mecha-
nism is beneficial to low-cost trust calculation algorithms
and is suitable for large-scale edge computing. Xu et al. [21]

proposed realizing trust by exploiting the non-repudiation
and non-tampering attributes of the blockchain and developed
a blockchain-based big data-sharing framework to support
various applications across the limited edges of resources.
The author designed a consensus-based mechanism with low
computational complexity, which was especially beneficial
for edge devices with low computing power. Blockchain
transaction filtering and unloading schemes can significantly
improve system efficiency. Xu et al. [42] presented a reverse
auction game to encourage edge nodes to provide caching ser-
vices with incentives cooperatively. With the model, mobile
users can determine the candidate of the edge nodes to cache
content based on the interaction between mobile users and
edge nodes. A trust management method is designed to eval-
uate the reliability of the selected candidate of the edge nodes
by considering the direct trust evaluation. Xu et al. [30] pro-
posed a novel secure caching scheme in heterogeneous net-
works for multihoming users. A trust mechanism is designed
to verify the reliability of each edge computing-enabled small
cell base station.

Chen et al. [56] proposed adaptive and extensible trust
management to support service applications in SOA-based
IoT systems. A novel adaptive filtering technique was devel-
oped to determine the best way to combine direct and indirect
trust dynamically. This method minimizes convergence time
and trust estimation bias in the case of opportunistic ser-
vice and collusion attacking malicious nodes. For large-scale
mobile-cloud IoT systems, Chen et al. [57] proposed and
analyzed a service management protocol based on hierarchi-
cal trust called IoT-HiTrust. Hierarchical trust-based service
management protocol allows IoT users to report their service
experience to IoT service providers and query their subjective
service trust scores from IoT service providers by scalable
reporting and query designs.

The above research has not solved some problems well,
such as Reference [23] and [28]–[31] are the proposed mech-
anism that cannot be directly applied to the IoT edge com-
puting environment. Reference [42] shows the trust value
calculation of edge computing. Most trust value calculations
do not adequately consider the trust value between intelli-
gent devices and edge service providers and the trust value
between smart devices. References [30] and [32] assume that
the mechanism proposed by itself will be adopted by all
participants in the system, which ignores the participants’
ability to choose independently. These situations may result
in inaccurate or unfair results of the trust mechanism. The
comparison between this paper and other relevant literature
is shown in Table 1.

III. SYSTEM MODEL
In this section, we first introduce the smart city edge com-
puting framework of multi-terminal and multi-edge centers.
Secondly, present the structure of the trust mechanism pro-
posed in this paper, and finally, add the attack model used in
this paper.
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FIGURE 1. Edge computing framework for multi-intelligence terminals and multi-edge centers based on the cloud in the smart city.

TABLE 1. comparison of versatility for trust management.

A. SMART CITY EDGE COMPUTING FRAMEWORK
Fig. 1 shows the edge computing framework of the smart city
based on multi-terminal and multi-edge centers of the cloud
platform. Edge computing deploys the devices on the infras-
tructure, which is physically or logically close to the end
devices or users, thereby leveraging the various resources
owned by these nearer infrastructures to accomplish all kinds
of tasks. Because these nearer infrastructures generally have
lower latency, the response time of the job can be significantly
reduced, which in turn can improve the user quality of experi-
ence (QoE) and alleviate the dependence of cloud computing
on network bandwidth and delay, reduce to denial of service
attacks and improve service availability.

As shown in Fig. 1, the multi-terminal and multi-edge
centers smart city edge computing framework based on the

cloud platform consists of three parts: end-users, edge service
providers, and remote cloud service providers.

1) END-USERS
Devices access edge service providers via wired or wireless
networks and perform computing or storage capabilities can
be defined as end-users. Since the end-user will choose the
edge service provider closest to itself to access, the processing
time of all submitted service request tasks will significantly
reduce, and the end-user quickly obtains the execution result.
When the end-user completes the job, it provides feedback
on the evaluation of the service to the edge service provider.
Before the new task starts, the end-user sends a request to the
edge service provider to obtain the credibility of the relevant
collaborator.

2) EDGE SERVICE PROVIDERS
Edge service providers are composed of servers and related
devices distributed in the same area. They receive and process
service requests from multiple end-users near edge service
providers, and provide computing, storage, and other services
to end-users quickly and flexibly. Edge service providers
monitor the service behavior of devices and aggregate eval-
uation feedback from devices and users and then send the
results to cloud data centers. In the real edge computing
environment, there may be a large number of unreliable (or
malicious) devices and users’ aggressive behavior, and feed-
back from these deceptive devices and users will lead to dis-
honest evaluation feedback results. We extend the traditional
evaluation feedback mechanism to reduce edge computing
risks and improve the reliability of the system.

3) REMOTE CLOUD SERVICE PROVIDERS
Remote cloud service providers are responsible for managing
and monitoring the resources and services of edge service
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providers, and coordinating edge service providers to com-
plete the cloud computing services required by end-users.
Remote cloud service providers control the operation status
and resource usage of each edge service provider in real-
time by monitoring the services and resources provided by
each edge service provider. By collecting the services and
resources provided by each edge service provider, remote
cloud service providers coordinate and schedule resources
and services in each edge service provider to produce
more compelling cloud computing services for end-users.
We assume that remote cloud service providers are reliable
and always available, and attacks on remote cloud service
providers’ servers are beyond the scope of this paper.

B. AUTHENTICATION
Smart device authentication is required when sensing devices
and data are shared to ensure that illegal devices cannot
access the system in edge computing. Identity authentication
can be solved through symmetric or asymmetric password
schemes. It is necessary to select the trusted, smart device
based on identity authentication to establish the trust man-
agement mechanism.

Authentication is an essential process of establishing the
identity of both sides of communication in the edge com-
puting system of the IoT. During the end-user registration
phase, the authentication system assigns a unique identity ID
to each intelligent device. A shared symmetric key generated
between each end-user and each edge center. The registration
timestamp of each smart device is also different from prevent-
ing related attacks. Finally, the authentication system stores
information about the previous operation of the intelligent
device. During the registration phase of the edge center,
the authentication system assigns a unique identification to
each edge center and stores the related operation information
in the authentication system. In the authentication phase,
when the intelligent device wants to interact with the edge
center, the smart device first encrypts related settings and
obtains the current timestamp, and then sends the device ID,
the relevant parameters after the encryption calculation and
the timestamp to the edge center. When the edge center
receives the information submitted by the intelligent device,
it checks whether the timestamp is valid. If the timestamp
is correct, the relevant parameters are calculated through
decryption and judged at the same time. If the conditions met
and accurate, the edge center passes the authentication of the
intelligent device. Otherwise, the edge center terminates the
interaction with the smart device. After that, the edge cen-
ter encrypts the relevant parameters and obtains the current
timestamp, and then sends the relevant parameters after the
encryption calculation, the arrival time of the information
submitted by the smart device and the current timestamp to
the intelligent device. When the intelligent device receives
the information sent by the edge center, it checks whether the
timestamp is valid. If the timestamp is accurate, the relevant
parameters are calculated by decryption and judged. If the
conditions are met and legal, then the intelligent device has

passed the authentication of the edge center. Both the smart
device and the edge center maintain the same shared session
key during the authentication process.

C. COMPOSITION OF TRUST MECHANISM
The trust mechanism studied in this paper consists of direct
trust, indirect trust, and selective recommendation mecha-
nism. Direct trust is the feedback between the end-user and
other end-users, which are the most basic trust relation-
ship that encourages cooperation between end-users. Indirect
trust is feedback between the edge service provider and the
end-user, which is the crucial factor in reducing the risk
of malicious device attack, especially critical for the suc-
cessful deployment of edge computing services. The selec-
tive recommendation mechanism is based on the dynamic
black-and-white list to improve the service quality of edge
computing through a particular recommendation algorithm.
We define a trust mechanism.
Definition 1: Direct trust is the quantized value of the

end-user completing the requested task. This value is based
on the interaction history between end-users.
Definition 2: Indirect trust is a score based on the quan-

titative calculation of the edge service providers. After the
task unloading (or forwarding) completed, the edge service
provider will calculate the real-time trust of the end-user.
When another end-user submits a request to it, the edge
service provider sends the value to the requester.
Definition 3: The selective recommendation mechanism is

a selection and recommendation process based on a white
list and blacklist. Edge service provider dynamically adds or
removes records. The purpose of sifting devices is to select
suitable devices and improve the quality of service. At the
same time, resist the related malicious attacks.

D. ATTACK MODEL
There are different types of end-users in various practical sce-
narios of a smart city. Without loss of generality, we assume
that there are two types of end-users in the system: ordinary
end-users and malicious end-users. Ordinary end-users pro-
vide effective services and feedback on correct evaluation
information. Malicious end-users provide invalid services
and feedback for misleading evaluation information. This
paper considers the following four malicious attack models.

1) BAD-MOUTHING ATTACKS
In this attack model, malicious end-users exist independently,
and in a round of interaction, they provide invalid services and
dishonest trust evaluation, reduce the chance that this suitable
terminal device will be selected as a service provider.

2) GOOD-MOUTHING ATTACKS
In this attack model, malicious end-users exist independently,
and in a round of interaction, they provide invalid services and
provide good trust ratings for other malicious devices. They
are thereby increasing the chance that this malicious terminal
device is selected as a service provider.
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3) BALLOT-STUFFING ATTACK
In this attack model, there is a collusion relationship between
malicious terminal devices, they will give each other a proper
evaluation, and when they are selected as service providers,
they will provide invalid services.

4) SELECTIVE BEHAVIOR ATTACK
In this attack model, malicious terminal devices provide
effective services with a probability of f% to obtain higher
trust values to increase the chances of transmitting invalid
services.

IV. DESIGN OF TRUST MANAGEMENT MECHANISM
This section introduces the trust management mechanism
proposed in this paper from three aspects: the trust relation-
ship between end-users, the trust relationship between the
edge service provider and end-users, and the terminal device
selective recommendation mechanism.

A. THE TRUST RELATIONSHIP BETWEEN END-USERS
After a task completed, the requester end-user i evaluates the
provider end-user j based on the quality of service. We record
the evaluation as tr(i, j). tr(i, j) = 1 means that the end-user
i is satisfied with the service provided by the end-user j,
otherwise tr(i, j) = −1. We use sij =

∑
tr(i, j) to represent

the overall evaluation of the end-user i to end-user j, which is
direct trust.

The establishment of trust often requires many trust inter-
actions among participants, while untrustworthy interaction
is enough to destroy the established trust relationship between
participants. This paper introduces an evaluation mechanism
of personalized context content perception, in which we fix
the influence of negative evaluation on direct trust as 1, which
is recorded as tr(i, j) = −1. Then set a weight parameter
wi to indicate the impact of a positive evaluation on direct
trust. When the end-user j provides a satisfactory service to
end-user i, we use tr(i, j) = wi to indicate the end-user i’s
trust evaluation of the end-user j, where wi ∈ [0, 1]. The
smaller the value of wi, the easier it is for the end-user i to
establish a trust relationship. Under this mechanism, the end-
user i’s direct trust sij to end-user j can be expressed as
Equation (1).

sij = wi × sat(i, j)− unsat(i, j) (1)

where sat(i, j) and unsat(i, j) are respectively expressed as
the number of satisfactory and unsatisfactory services pro-
vided by the end-user j for the end-user i.
Different services have different degrees of importance.

For example, in an actual smart city scenario, the impor-
tance of services in a personal healthcare monitoring system
is often higher than that in an air-quality monitoring and
analysis system. Therefore, Equation (1) can be modified by
Equation (2).

sij = wi
∑

x∈sat(i,j)

DI (x)−
∑

x ′∈unsat(i,j)

DI
(
x ′
)

(2)

where DI (•) indicates the importance of the services.

To avoid false expansion of direct trust caused bymalicious
end-users, we need to perform the normalization operation
shown in Equation (3) for direct trust value among end-users.

cij =


max

(
0, sij

)∑
jmax

(
0, sij

) if
∑

j
max

(
0, sij

)
> 0

pj otherwise

(3)

where cij is the normalized direct trust that the end-user i
places on the end-user j. If the trusted end-user set P can be
obtained in advance, it assumed that each end-user in the setP
is trustworthy. For the end-user i who has no interaction with
other end-users,

∑
jmax

(
0, sij

)
= 0 can be obtained. if the

end-user j belongs to the trusted set P, then pj = 1
/
|P| is

established, otherwise pj = 0. If the trusted end-user set
cannot be obtained in advance, there is pj = 1

/
N , where

N is the total number of end-users.

B. THE TRUST RELATIONSHIP BETWEEN EDGE SERVICE
PROVIDERS AND END-USERS
When the end-user completes the task, the trust feedback
information as shown in Equation (3) is submitted to the edge
service provider. In the edge service provider, we construct a
N × N ’s Markov matrix C =

[
cij
]
to represent normalized

direct trust between any two end-users. The Markov matrix
is shown in Equation (4).

C =


c11 · · · c1j · · · c1N
· · · · · · · · · · · · · · ·

ci1 · · · cij · · · ciN
· · · · · · · · · · · · · · ·

cN1 · · · cNj · · · cNN

 (4)

Direct trust represents the trust relationship established
between end-users based on mutual interactions. Because
end-users have mobility features, in a large-scale smart city
IoT edge computing system, interactions often do not occur
only between familiar end-users. How to predict the potential
trust relationship between unfamiliar end-users based on the
existing direct trust relationship is a problem that needs to
be solved. This problem is also the task that the edge service
provider needs to accomplish. In human society, trust is often
transitive [24]. If the end-user i trusts end-user j and end-user j
trusts end-user k , even if there is no direct interaction between
i and k , we still infer that end-user i will trust end-user k with
a high probability. Equation (5) is used to formalize the idea
as mentioned above of trust transfer.

tik =
∑
j

cij × cjk (5)

End-user i establishes an indirect trust with k by referring to
the direct trust of all its friend’s j to k . Since Equation (5) only
considers the neighbor friends of the end-user, hencewe call it
one-degree trust propagation. We introduce vector−→ci =

[
cij
]

to represent end-user i’s normalized direct trust to all other
end-users. Vector−→ti =

[
tij
]
represents the indirect trust of the

end-user i for all other end-users. Therefore, the one-degree
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trust propagation shown in Equation (5) can be written in
matrix form as shown in Equation (6).

−→ti = CT
×
−→ci (6)

In an IoT edge computing systemwith sparse evaluation data,
the indirect trust evaluation obtained through one-degree trust
propagation often fails to meet the interaction requirements
of the end-user. To achieve a broader range of trust cognition,
end-user i learns from the evaluation information of friends of
his or her friends, which is called two-degree trust propaga-
tion. Two-degree trust propagation can be expressed formally
as Equation (7).

−→ti =
(
CT
)2
×
−→ci (7)

Similarly, m-degree trust propagation can be expressed as
Equation (8).

−→ti =
(
CT
)m
×
−→ci (8)

According to the convergence of the Markov matrix,
we know that when m is large enough, the arbitrary vector
−→ti (i ∈ {1, 2, . . . n}) will converge to the left principal eigen-
vector −→t of the matrix C , which represents the indirect trust
value of each end-user in the trust mechanism.

FIGURE 2. Evaluation of information network.

However, in the actual smart city system, malicious
end-users tend to choose to provide untrue trust feedbacks
to increase their chances of transmitting invalid services,
which poses a considerable challenge for accurate trust evalu-
ation. In the evaluation information network shown in Fig. 2,
end-user A and B are good end-users, which provide effective
services and real feedbacks. End-user C and D are malicious
end-users who provide invalid services and untrue feedbacks.
End-user E is a masquerading end-user, which will provide
useful services for end-user A and Bwith a certain probability
to obtain a high trust value. He or she will offer a high direct
trust evaluation for malicious end-user C and D. At this time,
end-user A and B will generate an indirect trust relationship
of 0.9 with end-user C, which is unreasonable. On receiving
a valid service, the trustworthy end-user will place a posi-
tive rating on the service provider, while the untrustworthy
end-user will set a negative rating. Therefore, trustworthy

and untrustworthy end-users always have dissimilar evalu-
ation information. Similarly, trustworthy and untrustworthy
end-users will also provide disparate ratings on receiving
invalid services. Sometimes, with a certain probability, smart
or strategic malicious end-users may feedback honest ratings
the same as the trustworthy end-users.

However, from a macro point of view, the evaluation sim-
ilarity between two trustworthy end-users usually is higher
than the evaluation similarity between a trustworthy end-user
and an untrustworthy end-user. For example, as shown in
Fig. 2, end-user A and E fed back a very different trust evalu-
ation for end-user D. Inspired by this observation; this paper
uses the cosine similarity method to measure the credibility
of end-user evaluation information.

For the end-user i and j, we use rij to indicate the evaluation
credibility of the end-user i for the end-user j, as shown in
Equation (9).

rij =



∑
k∈comn(i,j) cik × cjk√∑

k∈comn(i,j) (cik)
2
×

√∑
k∈comn(i,j)

(
cjk
)2

if |comn(i, j)| > 0
0.5 otherwise

(9)

where comn(i, j) is the set of end-users who have interacted
with end-user i and j, Equation (9) shows that the more
similar the evaluation information of the end-user j and i are,
the more reliable the evaluation information of the end-user j
is. By further considering evaluation credibility rij between
end-users, we rewrite the direct trust sij between end-users
into Equation (10).

sij = rij × sij (10)

After the normalization operation of Equation (3) and the
trust transfer operation of Equation (8), we get a more accu-
rate end-user indirect trust vector−→t . In this paper, the vector
−→t is used as the trust evaluation of each end-user by the edge
service provider.

C. THE PERSONALIZED DEVICE SELECTION MECHANISM
Many existing algorithms only consider the indirect trust
value of the end-user, ignoring the personalized direct trust
of the end-user. As shown in Fig. 3, end-user A feeds back
the lower direct trust value to end-user C. However, C may
obtain a higher indirect trust value than E. Furthermore, in the
case of a service request for end-user A, end-user C will have
a higher recommendation priority than end-user E, but this
ignores the end-user A’s personalized trust. To consider the
personalized direct trust, this paper proposes a personalized
end-user selection mechanism based on the black-and-white
list.

1) BLACKLIST MECHANISM
In the selection and recommendation mechanism, end-users
add untrustworthy end-users to their blacklists and reduce
the opportunities for interactions with them. Use set Bi to
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FIGURE 3. Example of a trust evaluation network.

FIGURE 4. Diagram of the relationship between pbij and xij .

represent the blacklist of the end-user i. Given |sat(i, j)| and
|unsat(i, j)| respectively represent the number of satisfactory
and unsatisfactory services provided by the end-user j for
the end-user i. The probability pbij that the end-user i adds
end-user j to the blacklist can be expressed by Equation (11).

pbij =
1

1+ e(1−xij)δi
(11)

where xij = |unsat(i, j)| − |sat(i, j)|, δi denotes end-user
i’s tolerance of unsatisfactory services. The larger value δi
is, the higher the probability that the end-user who provides
an invalid service will be added to the end-user i’s blacklist.
When δi is fixed to 5, the relationship between pbij and xij is
shown in Fig. 4.

2) WHITELIST MECHANISM
In the selection and recommendation mechanism, end-users
add honest end-users to their whitelists and increase opportu-
nities for interactions with them. Use set Wi to represent the
whitelist of the end-user i. Given |sat(i, j)| and |unsat(i, j)|
respectively represent the number of satisfactory and unsat-
isfactory services provided by end-user j for the end-user i.
The probability pwij that the end-user i adds end-user j to the
whitelist can be expressed by Equation (12).

pwij =
1

1+ e(1+xij)ηi
(12)

where ηi denotes end-user i’s satisfaction with satisfactory
services. The larger value ηi is, the higher the probability that

FIGURE 5. Diagram of the relationship between pwij and xij .

the end-user who provides a valid service will be added to the
end-user i’s whitelist. When ηi is fixed to 5, the relationship
between pwij and xij is shown in Fig. 5.

After introducing the black-and-white list mechanism,
we propose an end-user selectionmechanism that respects the
end-user personalized trust to improve the quality of service
in the smart city system. The end-user selection mechanism
is shown in Algorithm 1.

Algorithm 1 End-User Selection Mechanism Based on the
Black-and-White List
input:
i: End-user service request
Bi: Blacklist set of end-user i
Wi: Whitelist set of end-user i
R: End-user set responding to i service requests
tk : Indirect trust value of end-user k , k ∈ R
out:
j: Recommended service provider end-user
1: R← R− Bi
2: if R == ∅
3: Return-1
4: else
5: RW ← R ∩Wi
6: if RW 6= ∅
7: end-user j is randomly returned with a probability
tj = tj/

∑k=|RW |
k=0 tk

8: else
9: end - user j is randomly returned with a probability
tj = tj/

∑k=|R|
k=0 tk

3) BLACK-AND-WHITE LIST DYNAMIC
CONVERSION MECHANISM
In the selective recommendation mechanism, the behavior of
the device will exhibit changing characteristics. For example,
devices in the white list may use the high trust value they have
obtained to propagate invalid or malicious services. Devices
in the blacklist may provide excellent services to increase
their trust value. To capture the dynamic behavior of the
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Algorithm 2 Black-and-White List Dynamic Conversion
Mechanism

input:
i : End-user service request
Bi : Blacklist set of end-user i
Wi :Whitelist set of end-user i
Oi : Common set

out:
B′i : Blacklist of end-user i after conversion
W ′i :White list of end-user i after conversion
O′i : Common list of end-user i after conversion
1: B′i← Bi, W ′i ← Wi, O′i← Oi
2: ifWi 6= ∅

3: Calculate pwmij according to Equation (13)
4: rmd = rand()
5: if rmd ≤ pwmij
6: W ′i ← Wi − {i}
7: O′i← Oi ∪ {i}
8: else
9: Device jremains in Set Wi
10: if Bi 6= ∅
11: Calculatepbmij according to Equation (14)
12: ifpbmij = 1
13: B′i← Bi − {i}
14: O′i← Oi ∪ {i}
15: else
16: Device jremains in Set Bi
17: Return B′i, W

′
i ,O
′
i

device, this paper proposes a dynamic conversion mechanism
for black-and-white lists. The mechanism consists of two
parts: a white list removal mechanism and a blacklist removal
mechanism.

a: WHITE LIST REMOVAL MECHANISM
Assume that device j is a device in the device i’s white list,
if the device i obtains an invalid or malicious service from the
device j, then it will remove the device j from the white list
to the ordinary user list with probability pwmij . The probability
pwmij is related to the following four attributes: (1) The ratio
of the number of dissatisfied services to the total number of

services is |unsat(i,j)|
|unsat(i,j)+sat(i,j)| . If the larger value is, the higher

the frequency of invalid service provided by the device j is.
The probability that the corresponding device j is removed
from the white list is more elevated. (2) In order to prevent the
device from strategically providing unsatisfactory services
while maintaining a highly effective service provision ratio,
we also need to consider the number of invalid services
|unsat(i, j)| supplied by the device j. If the more significant
value is, the probability that the device j will be removed
from the white list is higher. (3) The importance of service
DI (x) ∈ [0, 1]. If the device j provides false feedback on a
highly valuable service, the probability that the device j will
be removed from the white list is higher. (4) The sensitivity

φi ∈ R of the device j to invalid or malicious services.
If the more significant value φi is, it means that the tolerance
of the device i to invalid or malicious service smaller is.
The probability of the device j being moved out is higher.
In summary, we define pwmij as shown in Equation (13).

pwmij =
2

1+e
−φi×|unsat(i,j)|×

∑
χ∈unsat(i,j) DI (χ)∑

χ∈unsat(i,j) DI (χ)+
∑
9∈sat(i,j) DI (9)

−1

(13)

where unsat(i, j) represents the service transaction set that
device i is not satisfied with the device j, sat(i, j) represents
the service transaction set that device i is satisfied with the
device j. χ and ψ represent a service between devices, and
function DI (•) indicates the importance of service.

b: BLACKLIST REMOVAL MECHANISM
It is assumed that the device j is a blacklisted device from
the device i, considering that the device j may change its
original untrusted behavior in order to improve its trust value.
In order to capture the behavior characteristics of the device j
dynamically, the device i periodically calculates a probability
value pbmij that moves the device j from the blacklist to the
common list. The probability pbmij is related to the following
three attributes: (1) The attitude of neighbor k towards the
device j is attitude(k, j). In this paper, devices that have inter-
acted with each other are defined as neighbors. We assume
that attitude(k, j) = a1 indicates the device k puts the device j
into the blacklist. attitude(k, j) = a2 indicates device k puts
the device j into the common list, and attitude(k, j) = a3
indicates device k put the device j into the white list, where
a1, a2, a3 ∈ N+ and a3 > a2 > a1. If the attitude of the
device k to the device j is better, the probability that the
device jwill be removed from the blacklist by the device iwill
be higher. (2) For the device i, the evaluation credibility rik of
neighbor k . If rik is higher, the influence of neighbor k on pbmij
is more significant. (3) The abhorrence of the device i against
invalid or malicious services is ξi. If the value ξi is higher,
the possibility that the device j is removed from the blacklist
is less. In summary, we define pbmij as shown in Equation (14).

pbmij =


1 if

∑
k∈N (i)

attitude(k, j)× rik
a3 × |N (i)|

≥ ξi

0 otherwise

(14)

where N (i) represents the neighbor device set of the device i.
The black-and-white list dynamic conversion mechanism is
shown in Algorithm 2.

V. THEORETICAL ANALYSIS OF TRUST
MANAGEMENT MECHANISM
Evolutionary game theory provides a powerful mathemati-
cal framework for studying the interaction between rational
individuals [22], [33]. Therefore, we introduce evolutionary
game theory to qualitatively analyze the validity and stability
of the trust management mechanism. A trust management
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mechanism can be modeled as a non-cooperative game. The
participants in the game model are intelligent devices. In this
section, we will introduce the game model proposed in this
paper from three parts: strategy set, strategy expectation fit-
ness, and evolutionary strategy.

A. STRATEGY SET
In this paper, there are three types of users in the system.
One is a malicious user, one is a user who adopts the mech-
anism proposed in this paper, and one is a user who does
not use the mechanism proposed in this paper. Our game
model has a three-strategy set S = {s1, s2, s3}. s1 repre-
sents the behavior used by good devices, and the strategy
will always provide effective services and feedback on real
evaluation. s2 is behavior used by malicious devices. This
strategy will always provide invalid services and untrue feed-
back evaluation. s3 represents the device behavior utilized by
the selective recommendation mechanism proposed in this
paper. This strategy will provide effective services for the
trusted devices determined by the system and feedback from
the actual evaluation. Without loss of generality, we assume
that the total number of users in the game model at a time
t is M(t), and the number of devices using the strategies
s1, s2, and s3 are M1(t), M2(t), and M3(t), respectively.
M1(t) + M2(t) + M3(t) = M(t). We introduce the vector
X(t) = [x1(t), x2(t), x3(t)] to represent the proportion of the
strategy distribution in the system, where xi(t) = Mi(t)

/
M(t).

For convenience, we simplify the representation ofMi(t) and
xi(t) as Mi and xi. It should be noted that (1) In order to
facilitate theoretical analysis and reduce the impact of other
factors on user strategies, this paper only considers the above
three strategies. (2) In this paper, we assume that the strategy
s3 takes effective services and provides real feedback. The
strategy s3 takes the case of providing invalid services and
feeding back untrue evaluations, which we discuss in another
paper.

B. STRATEGY EXPECTATION FITNESS
1) ASSUMPTIONS
Due to the influence of data noise and other factors, when
the trusted device selection and recommendation mechanism
proposed in this paper is deployed, the system will not
only judge the well-performing devices (such as the devices
using the strategy s1 and the strategy s2 in the game model)
as trusted devices. Sometimes, malicious devices (such as
devices using the strategy s3 in the game model) are mistak-
enly judged as trusted devices. Therefore, we assume that the
probability of such error occurring is ε, with ε ∈ [0, 1]. For
the following two considerations: (1) To avoid the influence
of network topology on device behavior. (2) In order to
facilitate theoretical analysis, the game model in this paper
considers a mixed uniform interaction scenario. The device
will use probability x1, x2, and x3 to provide services for
other devices using the strategy s1, s2, and s3, respectively.
We model the system as a time-discrete model and assume

that in a time step, each device expects to initiate a service
request.

2) EXPECTED FITNESS OF STRATEGY
a: EXPECTED FITNESS OF THE STRATEGY s1
Mechanism calculates the expected profit ERs1(t) of the device
using the strategy s1. When a device adopting strategy s1
initiates a request, due to the interactive setting of well mixed,
the device will provide services for the devices utilizing
strategies s1, s2, and s3 with the expected number x1, x2, and
x3, respectively. Therefore, ERs1(t) can be expressed as shown
in Equation (15).

ERs1(t) = (x1 + x3)bp + x2bn (15)

where bp and bn represent the positive revenue when the
requester device receives a valid service and the negative
revenue when an invalid service is received, so there is
bp > 0 > bn. We calculate the expected loss EPs1(t) of the
device using the strategy s1. When the device adopting the
strategy s1 is used as the service provider, the device will
provide the device with the strategy s1 and the device with the
strategy s2 as the expected number x1 and x2, respectively, in a
one-time step due to the mixed interaction setting. Because
the requester using strategy s3 uses the trust selective rec-
ommendation mechanism proposed in this paper, it interacts
with the device using the strategy s1 with a higher probability.
Under the setting of the recommended error probability ε,
the number of services that the devices adopting the strategy
s1 expect to provide for the devices utilizing the strategy s3
in a one-time step is M3

M1+εM2+M3
=

x3
x1+εx2+x3

. EPs1(t) can be
expressed as shown in Equation (16).

EPs1(t) =
(
x1 + x2 +

x3
x1 + εx2 + x3

)
cp (16)

where cp ∈ <+ represents the positive loss when the device
contributes a useful service. The expected fitness f̄s1(t) using
the strategy s1 in the time step t can be expressed as described
in Equation (17).

f̄s1(t) = ERs1(t)− E
P
s1(t) = (x1 + x3)bp + x2bn

−

(
x1 + x2 +

x3
x1 + εx2 + x3

)
cp (17)

b: EXPECTED FITNESS OF THE STRATEGY s2
When a device adopting strategy s2 initiates a request, due to
the interactive setting of well mixed, the device will provide
services for the devices adopting strategies s1, s2, and s3 with
the expected number x1, x2, and εx3, respectively. Therefore,
ERs2(t) can be expressed as shown in Equation (18).

ERs2(t) = (x1 + εx3)bp + x2bn (18)

When the device adopting the strategy s2 is used as the
service provider, the device will provide invalid services for
the device with the strategy s1 and the device with the strategy
s2 as the expected number x1 and x2, respectively. When the
recommended error probability is ε, the size of the device
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interaction set using strategy s3 isM1+εM2+M3. If the cur-
rent device using strategy s2 can be judged as a trusted device
with the probability of ε, the expected number that the device
provides invalid services for the device using the strategy s3
is M3

M1+εM2+M3
=

x3
x1+εx2+x3

. On the contrary, the number of

invalid services offered by the device for the device adopting
strategy s3 is 0. In general, devices adopting the strategy s2
provide invalid services for devices adopting the strategy s3
with the expected number εx3

x1+εx2+x3
. Therefore, EPs2(t) can be

expressed as shown in Equation (19).

EPs2(t) =
(
x1 + x2 +

εx3
x1 + εx2 + x3

)
cn (19)

where cn ∈ <− represents the negative loss when the device
contributes an invalid service. The expected fitness f̄s2(t)
using the strategy s2 in the time step t can be expressed as
described in Equation (20).

f̄s2(t) = ERs2(t)+ E
P
s2(t) = (x1 + εx3)bp + x2bn

+

(
x1 + x2 +

εx3
x1 + εx2 + x3

)
cn (20)

c: EXPECTED FITNESS OF THE STRATEGY s3
Since the device adopting the strategy s3 selects an interactive
object based on the trust selective recommendation mecha-
nism when the device acts as a service requester, it obtains
valid services and invalid services with the expected number

x1+x3
x1+εx2+x3

and εx2
x1+εx2+x3

, respectively. Therefore, ERs3(t) can

be expressed as shown in Equation (21).

ERs3(t) =
x1 + x3

x1 + εx2 + x3
bp +

εx2
x1 + εx2 + x3

bn (21)

When the device adopting the strategy s3 is used as the service
provider, it takes the expected number x1, εx2, and

εx3
x1+εx2+x3

as the device adopting the strategy s1, and the device adopting
the strategy s2 and the device adopting the strategy s3 to
provide effective services. Therefore, EPs3(t) can be expressed
as shown in Equation (22).

EPs3(t) =
(
x1 + εx2 +

εx3
x1 + εx2 + x3

)
cp (22)

The expected fitness f̄s3(t) using the strategy s3 in the time
step t can be expressed as described in Equation (23).

f̄s3 (t)=E
R
s3 (t)− E

P
s3 (t) =

x1+x3
x1+εx2+x3

bp+
εx2

x1+εx2+x3
bn

−

(
x1 + εx2 +

εx3
x1 + εx2 + x3

)
cp − cr (23)

where cr (cr > 0) indicates that the device adopting the
strategy s3 needs extra cost when using the trust selective
recommendation mechanism.

C. EVOLUTIONARY STRATEGY
Because the actual scenario of the smart city IoT edge
computing system is very complex, it can’t be pre-set with
the optimal strategy and intelligent devices will constantly

adopt learning methods to update their behavior. In gen-
eral, a strategy with a high degree of fitness is expected to
increase its proportion in the game model and vice versa.
Therefore, we use the replication dynamics equation that
has been widely used in the evolutionary game to formalize
the evolution process of strategy. The replication dynamics
equation of the game model is shown in Equation (24).

ẋsi(t) = xi(t)
(
f̄si(t)− f̄ (t)

)
(24)

where f̄ (t) =
N∑
i=1

xi(t)f̄si(t) represents the expected profit of

the whole game model. We can find the stability point of the
system.
Definition 4: According to the Lyapunov stability theory,

let O be the optimal solution of the dynamic system2. If the
real part of each eigenvalue of O’s Jacobian matrix is not
positive, and the eigenvalue with zero real part is the single
root of the minimum polynomial, then O is the asymptotic
stability point of the dynamic system 2.
Proposition 1: When bp = 7, bn = −15, cp = 1,

cn = −10, cr = 4, (0.205791 0.140849 0.653360) is the
evolution stable state of the model. The proof of the theory
is given in the appendix. We have verified the game model in
detail in the experimental part of this paper.

VI. EXPERIMENT AND ANALYSIS
A. EXPERIMENT SETUP
The experimental setup is shown in Table 2. There are
1000 different end-users in the experiment. The number
of preset trusted end-users is 5. Without losing generality,
this paper assumes that all end-users have the same toler-
ance δi and the same recognition ηi. According to litera-
ture [25]–[27], δi = ηi = 10 is usually used. There are
2000 different services in the system. At the beginning of
the system, each end-user has an average of 15 services.
We introduce 1000 rounds of warm-up interactions to build
trust relationships between end-users initially. The percent-
age of collaborative devices (PCD) is set to 10%, 20%,
40%, and 100%, respectively, indicating that the IoT edge
computing system is idle, busy, highly busy, and extremely
busy. We use num_trans to indicate the number of service
requests initiated by the ordinary end-user, and num_valid
to represent the number of valid services obtained by the
ordinary end-user. In the experiment, we measure the per-
formance of the trust model by using the effective service
acquisition rate as r = num_valid

/
num_trans. To facilitate

the representation of bad-mouthing attacks, good-mouthing
attacks, ballot-stuffing attacks, and selective behavior attacks,
we have abbreviated the attack models as Model A, Model B,
and Model C, respectively. Since bad-mouthing attacks and
good-mouthing attacks are similar, we classify them into
one category. In this paper, we consider an edge computing
scenario of the Internet of things in a smart city to complete
simple tasks. In the domain of trust management, simula-
tions [23], [31], [32], [34], [41] based on synthetic data have
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TABLE 2. Simulation setting.

been widely used. In the future, we will check the perfor-
mance of the proposed model once the relevant real dataset
is released. All the experiments and simulations were run on
a Win7 machine with Intel Core I5-4590 3.3GHz processor
and 8 GB memory.

B. WEIGHT INFLUENCE
We assume that all end-users have the same weight setting w
for valid service. We set the experimental scenario to be 70%
of the system as ordinary end-users, and 30% of end-users of
the attack model C. The PCD is set to be 100%. The experi-
mental results are shown in Fig. 6. We find that the value of w
has a significant influence on the effective service acquisition
rate. At the time ofw = 0, since the positive evaluation cannot
be obtained by providing an effective service, the system
receives the worst performance, and the effective service
ratio is less than 90%. At the time of w = 1, the effective
service acquisition rate was 92.86%, because there is no dis-
tinction between positive and negative evaluation. Through
experiments, it is found that in the experimental environment
given in Table 2, when w = 0.8, the system performs best,

FIGURE 6. Weight influence.

and the end-user obtains effective service with a probability
of 94.29%. Experiments have achieved similar results with
different end-user settings and collaboration ratio settings.

C. PERFORMANCE RESULTS AND ANALYSIS
1) SINGLE ATTACKS
In order to study the performance of this model in quality of
service assurance, we aim at (1) Different attackmodels, from
attack model A to attack model C. (2) Different malicious
end-user ratio, from 10% to 50%. (3) Different end-user
cooperation degree, from 10% to 100%. We measure the
availability of effective services in the IoT edge computing
system for the above three different experimental settings.

In Fig. 7 and Fig. 8, end-user collaboration degrees are set
to be 100% and 10%, respectively. The former is an extremely
busy IoT edge computing system, while the latter is an idle
IoT edge computing system. Fig. 7 (a) shows the impact of the
attack model A on the system under the different proportions
of malicious end-users. We find that (1) The accumulation of
trust evaluation information further helps the model to eval-
uate the credibility of each end-user accurately. Therefore,
as time goes by, the rate of effective service acquisition in the
system will gradually improve. Especially in the high pro-
portion of malicious end-users’ scenarios, the performance
improvement will be more obvious. (2) In 10%, 20%, 30%,
40%, and 50% malicious end-users’ scenarios, the model in
this paper achieve 99.3%, 97.9%, 97.7%, 95.5%, and 92.6%
effective service access rates respectively in the 10000 rounds
of interaction. This result illustrates the effective performance
of the proposed model in guaranteeing the quality of ser-
vice of the IoT edge computing system.

Fig. 7(b) and Fig. 7(c) show the impact of attack model B
and model C on the system under the different proportions
of malicious end-user settings, respectively. Similar to the
results in Fig. 7 (a), the performance of the model also be
improved progressively over time. Under the attack model
B and C with 50% malicious end-user distribution, this
model achieves about 90% effective service acquisition rate
in 10000 rounds of interaction, which also shows the robust
performance of the model in resisting different malicious
attacks.
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FIGURE 7. Task success ratio performance in contrast with different
attack models. (a) PCD=100% and the attack model is Model A.
(b) PCD=100% and the attack model is Model B. (c) PCD=100% and the
attack model is Model C.

In a 10% idle IoT edge computing system, the model can-
not accurately estimate the credibility of each end-user due
to limited trust feedback information. As shown in Fig. 8(a),
Fig. 8(b), and Fig. 8(c), the performance of the system will
repeatedly oscillate over time, and progressive improvement
cannot be achieved. How to improve the end-users trust
evaluation under the condition of less feedback information
is the goal of this paper’s future work. In the IoT edge
computing system with 20% and 40% collaborative sys-
tems, the performance of the model is between PCD=10%
and PCD=100%. In order to save space, it is not shown
here.

FIGURE 8. Task success ratio performance in contrast with different
attack models. (a) PCD=10% and the attack model is Model A.
(b) PCD=10% and the attack model is Model B. (c) PCD=10% and the
attack model is Model C.

2) COMPLEX ATTACKS
In the real-world edge computing scenario, there may be
multiple types of malicious users at the same time. Therefore,
in order to further study the effectiveness and robustness of
the trust model in this paper, we need to consider complex
attacks (that is, complex attacks that include multiple attack
models at the same time) on the experimental performance.
The experimental settings for the complex attack scenarios
considered in this article are as follows: (1) The distribution
ratio of malicious end-users are 10%, 20%, 30%, 40%, and
50%, respectively; (2) The values of PCD are 10%, 20%,
40%, and 100%, respectively; (3) To study the impact of
different proportions of complex attackmodels on the success
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FIGURE 9. Task success ratio performance in contrast with different complex attack models under PCD=10%.

ratio of the task, we consider four complex attack scenarios:
Case1 (malicious end-users randomly select Models A, B,
and C with a 1 / 3 probability respectively), Case2 (mali-
cious end-users randomly select Models A, B, and C with a
probability of 15%, 60%, and 25%. At this time, Model B is
dominant.), Case 3 (malicious end-users select Models A, B,
and C with a probability of 60%, 25%, and 15%, respectively.
At this time, Model A is dominant.) and Case 4 (malicious
end-users choose Models A, B, and C with a probability
of 25%, 15%, and 60%, respectively. At this time, Model C
is dominant.). The results are shown in Fig. 9 and Fig.10, and
we can get the following three findings: (1) As the distribution
of malicious end-users increases, it is expected that the task
success ratio will decrease, but the decrease rate is relatively
slow, which indicates that the trust model in this paper has
robust performance; (2) With the increase of PCD (that is,
the increase of transaction data), the task success ratio will
also increase, especially when PCD = 100%, even under the
50% of malicious users, the average success ratio of the task
can reach 80%, which shows the effectiveness of the model
proposed in this paper; (3) Under different proportions of
complex attackmodels, the trust model proposed in this paper
can achieve similar results, which verifies the mechanism’s
ability to resist attacks against complex models. To sum up:
under the complex attack model, the trust model proposed in
this paper can still maintain good performance.

D. THE EFFECT OF VALUE f ON THE PERFORMANCE
OF THE MODE
We further study the impact of the ‘‘selective behavior
attack’’ misbehaves (i.e., f ) on the performance of the

proposed trust model. Notably, the parameter f is arranged
from 10% to 90% with an interval of 10%. The experimental
results are shown in Fig. 11 and Fig. 12. It can be seen from
the figure that as the value of f increases, the success ratio of
the task increases. Fig. 11 and Fig. 12 show that with the same
value f , the more malicious nodes, the lower the task success
ratio. Because there are many experiments, only parts of the
content are shown here, and other experimental results are
similar to the results shown.

E. COMPARATIVE EXPERIMENT
In Fig. 13, the performance of this model will be compared
with TCM [32], Eigen Trust [23], and Group Trust [31].
The reason we chose EigenTrust, GroupTrust is because dis-
tributed P2P technology has been similar to the edge comput-
ing model, but the latter has extended the former to extend
the concept of P2P to network edge devices. So we want to
compare whether the algorithm proposed in this paper is bet-
ter than these excellent algorithms. We choose TCM because
TCM is a new IoT system trust management mechanism.
It is an adaptive model based on information entropy theory,
which calculates the indirect trust value of the device from the
direct evaluation information. In the experimental scenario
with PCD=10% and attack model B, as shown in Fig. 13(a)
and Fig. 13(b), we find that: (1) Set with 10%, 20%, 30%, and
40% malicious end-user ratio, the proposed model achieves
the best performance with 91.026%, 88.501%, 76.990%, and
67.677% of the task completion rate. However, under the
50% malicious end-user ratio setting, the performance of
the proposed model is slightly worse than the performance of
the GroupTrust model due to the randomness problem caused
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FIGURE 10. Task success ratio performance in contrast with different complex attack models under PCD=100%.

by the lack of evaluation information. (2)With the increase of
the malicious end-user ratio, the system performance shows
a gradual downward trend. In the experimental scenario with
PCD=20% and attack model B, there is an absolute increase
in the number of interactions between end-users. As shown
in Fig. 13(b) and Fig. 13(c), we find that: (1) The proposed
model achieves optimal performance under 20%, 30%, 40%,
and 50% malicious end-user distribution ratios. However,
because the trust evaluation information is still not enough,
the model proposed in this paper cannot evaluate the credi-
bility of the end-user very accurately and then achieves a task
completion rate slightly worse than the Group Trust model
under the 10%malicious end-user ratio setting. (2) Compared
with the scenario of PCD=10%, there is an absolute increase
in trust evaluation information. The task completion rate of
the system in the scenario of PCD=20% has been improved.

In the experimental scenario with PCD=40% and attack
model B, the interaction between end-users is more frequent.
As shown in Fig. 13(c) and Fig. 13(d), we find that: (1) With
the increase of trust evaluation information, the model pro-
posed in this paper more accurately evaluates the credibility
of end-users and then achieves the optimal performance under
different malicious end-user distribution ratios. (2) Compared
with the scenario of PCD=20%, the task success rate of the
system has been further improved.

In the experimental scenario of PCD = 100% and attack
model B, the edge computing system is extremely busy.
As shown in Fig. 13(d) and Fig. 13(e), we find that:

(1) Similar to the results in PCD=40%, the proposed model
achieves the optimal performance under different malicious
end-user distribution ratios. (2) Compared with PCD= 40%,
the success rate of the system has been greatly improved.
Even under the 50% malicious end-user distribution ratio,
the proposed model achieves a success rate of 84.907%.
Fig. 13 shows only the experimental comparison results in
the scenario of the attack model B. In the scenario of attack
Model A and Model C, we still get similar results.

F. EVOLUTIONARY GAME EXPERIMENT
In this part, we use experimental methods to verify the game
model proposed in this paper. We experimented with two
scenarios. The first scenario is the personal healthcare mon-
itoring management system scenario in a smart city, and
the other is an air-quality monitoring and analysis system.
The personal healthcare monitoring management system is a
monitoring system for various personal health data such as
heartbeat, blood pressure, blood oxygen saturation, human
posture. It provides real-time monitoring and early warn-
ing for patients. The air environment analysis system is an
intelligent system for collecting, analyzing, and forecasting
indicators such as ozone, carbon dioxide, nitrogen dioxide,
sulfur dioxide, carbonmonoxide, and PM2.5 in themonitored
area. In the experiment, we set the experimental parameters
as shown in Table 2. It should be noted that in real life, due
to the importance of human life, the loss of invalid services
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FIGURE 11. Task success ratio performance (a) PCD=40% and f=0.1. (b) PCD=40% and f=0.2. (c) PCD=40% and f=0.3. (d) PCD=40% and f=0.4.
(e) PCD=40% and f=0.5. (f) PCD=40% and f=0.6. (g) PCD=40% and f=0.7. (h) PCD=40% and f=0.8. (i) PCD=40% and f=0.9.

in the personal healthcare monitoring system must be higher
than that in the air-quality analysis system, and the cost of
invalid services in the former is higher than that in the latter.

1) THE IMPACT OF THE COST OF CHOOSING THE
RECOMMENDATION SERVICE ON THE
GAME MODEL
We studied the effect of cr on the game model of the personal
healthcare monitoring system under ε = 0 and ε = 0.1
settings. The value of cr is set to a positive integer between
0 and 12 when ε = 0. From the experimental results, it can
be found that strategy s3 finally dominates the whole system
when cr <= 1, because the strategy s3 obtains the highest
expected fitness. The system is in the state of oscillation when
cr = 2. Based on Definition 4, we prove this phenomenon.
The three strategies coexist when 2 < cr <= 8. When
cr = 4, the proportion of each strategy when the system

is stable is x1 = 0.205791, x2 = 0.140849, and x3 =
0.653360, which indicates that the acceptance rate of the
recommended system is 0.65336 and verifies the evolutionary
stability shown in Proposition 1. With the increasing value
of cr , the profit of the strategy s3 gradually decreases, so the
proportion of the strategy s2 will be higher in the steady-state.
The coexistence of strategy s1 and strategy s2 occurred when
8 < cr <= 11. This phenomenon is because the expected fit-
ness of the strategy s3 promotes the growth of the strategy s2,
while the increase of the strategy s2 inhibits the proliferation
of the strategy s1 population, which eventually leads to its
disappearance from the system. When cr = 12, the strat-
egy s2 dominates the whole system because the strategy s2
achieves the highest expected fitness. In summary, we find
that the proportion of the strategy s2 in the system is posi-
tively correlated with the value cr . The results are shown in
Fig. 14.
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FIGURE 12. Task success ratio performance (a) PCD=100% and f=0.1. (b) PCD=100% and f=0.2. (c) PCD=100% and f=0.3. (d) PCD=100% and f=0.4.
(e) PCD=100% and f=0.5. (f) PCD=100% and f=0.6. (g) PCD=100% and f=0.7. (h) PCD=100% and f=0.8. (i) PCD=100% and f=0.9.

The value of cr is set to a positive integer between 0 and 12
when ε = 0.1. From the experimental results, it can be
found that strategy s3 finally dominates the whole system
when cr = 0 because the strategy s3 obtains the highest
expected fitness. The system is in the state of oscillation when
0 < cr = 2. The three strategies coexist when 2 < cr <= 5.
With the increasing value of cr , the profit of the strategy s3
gradually decreases, so the proportion of the strategy s2 will
be higher in the steady-state. When cr = 6, the strategy
s2 dominates the whole system. In summary, we find that
the proportion of the strategy s2 in the system is positively
correlated with the value cr . We find that in the case of ε = 0,
the strategy s2 dominates the entire system when cr = 12,
and in the case of ε = 0.1, as long as cr = 6, the strategy s2
dominates the whole system. In the case of a recommended
error rate, we should appropriately reduce the recommended
cost cr to ensure the effective operation of the system. The
results are shown in Fig. 15.

We studied the effect of cr on the game model of the air-
quality monitoring and analysis system under ε = 0 and
ε = 0.1 settings. The value of cr is set to a positive integer

between 0 and 9 when ε = 0. From the experimental results,
it can be found that strategy s2 finally dominates the whole
system when cr = 9. The results are shown in Fig. 16.

The value of cr is set to a positive integer between
0 and 1when ε = 0.1. From the experimental results, it can be
found that the strategy s3 finally dominates the whole system
when 0 < cr <= 0.5. The system is in the state of oscillation
when 0.6 < cr <= 0.8. When cr > 0.8, the strategy s2
dominates the entire system. The results are shown in Fig. 17.

Based on the experimental results in Fig. 14, Fig. 15,
Fig. 16, and Fig. 17, we find that in the data-sensitive scenario
of a personal healthcare monitoring system, users have a high
degree of acceptance of the recommendation cost. While in
the insensitive data scenario of air quality monitoring and
analysis system, users are often unable to accept the higher
recommendation cost.

2) THE IMPACT OF THE ERROR RATE ON THE GAME MODEL
Due to data sparsity, data noise, and other reasons, the selec-
tive recommendation system is often less than 100% accurate,
so it is necessary to study the impact of the recommended
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FIGURE 13. Task success ratio performance in contrast with different trust models.

error rate on the game model. We studied the effect of ε on
the gamemodel of the personal healthcare monitoring system
under cr = 0.5(low cost) and cr = 1(high cost)settings.

As shown in Fig. 18, when cr = 0.5 and the error rate
is ε <= 0.25 since strategy s3 obtains the highest expected
fitness. Therefore, strategy s3 dominates the entire model.
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FIGURE 13. (Continued.) Task success ratio performance in contrast with different trust models.

As the error rate increases, the expected fitness of strategy s3
gradually decreases. When ε >= 0.3, strategy s2 dominates
the whole model.

As shown in Fig. 19, when cr = 1 and the error rate is
ε <= 0.25, the game model is always in three strategic
oscillation states. The Lyapunov principle can demonstrate

this phenomenon in Definition 4. When ε >= 0.3, because
strategy s2 achieves the highest expected fitness, so strategy
s2 dominates the whole model.
By comparing the experimental results in Fig. 18 and

Fig. 19, we find that in the case of cr = 0.5, as long as
ε <= 0.25, the strategy s3 dominates the whole model.
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FIGURE 13. (Continued.) Task success ratio performance in contrast with different trust models.

FIGURE 14. The effect of cr on the game model of the personal healthcare monitoring system under ε = 0.

However, in the case of cr = 1, the strategy s3 cannot achieve
the highest expected fitness. Therefore, the smaller the value
cr is, the higher the tolerance of the model to the error rate is.

We studied the effect of ε on the gamemodel of the air-quality
monitoring and analysis system under cr = 0.5 and cr = 1
settings. When cr = 0.5, the result is similar to that
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FIGURE 15. The effect of cr on the game model of the personal healthcare monitoring system under ε = 0.1.

FIGURE 16. The effect of cr on the game model of the air-quality monitoring and analysis system under ε = 0.

in Fig. 16. The strategy s3 dominates the whole model when
ε <= 0.3. The strategy s2 dominates the whole model when
ε >= 0.4. The results are shown in Fig. 20.

Fig. 21 shows the experimental results with cr = 1, which
is similar to the results in Fig. 19. The model is always in the
three-strategy oscillation state when ε <= 0.15. The strategy
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FIGURE 17. The effect of cr on the game model of the air-quality monitoring and analysis system under ε = 0.1.

FIGURE 18. The effect of ε on the game model of the personal healthcare monitoring system under cr = 0.5.

s2 dominates the whole model when ε >= 0.2. Based on the
experimental results of Fig. 18, Fig. 19, Fig. 20, and Fig. 21,
we found that in the data-sensitive scenario of the personal
healthcare monitoring system, users are more inclined to use

the selective recommendation mechanism, so they have a
greater acceptance of the recommendation error rate. To the
extent that the air-quality analysis system is not sensitive
to data, users do not have a strong willingness to use the
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FIGURE 19. The effect of ε on the game model of the personal healthcare monitoring system under cr = 1.

FIGURE 20. The effect of ε on the game model of the air-quality monitoring and analysis system under cr = 0.5.

selective recommendation mechanism, so they have a small
acceptance of the recommended error rate.

G. INFLUENCE OF TOLERANCE VALUE
In order to study the impact of different tolerance values
on the trust model in this paper, we set the user tolerance

value to a random value from 1 to 100 and compared the
experimental results with the experimental results of similar
tolerance values as shown in Fig. 22, Fig. 23, and Fig. 24. In
Fig. 22, we set the malicious user to adopt the attack model A.
By comparing with the homogeneous tolerance value sce-
nario (δi = 10), we can find that under the user heterogeneous
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FIGURE 21. The effect of ε on the game model of the air-quality monitoring and analysis system under cr = 1.

FIGURE 22. The effect of tolerance value on the trust model of under
Model A.

FIGURE 23. The effect of tolerance value on the trust model of under
Model B.

tolerance value setting, the trust model in this paper obtains
similar results with δi = 10, which shows that when the

FIGURE 24. The effect of tolerance value on the trust model of under
Model C.

attack model is A, the heterogeneous tolerance value will not
have a significant impact on the trust model proposed in this
paper. Similarly, as shown in Fig. 23, we can find that in
the case of the attack model B, the heterogeneous tolerance
value will not have a significant impact on the trust model
proposed in this paper. However, as shown in Fig. 24, we find
that when the attack model is C, compared with the setting
of the homogeneous tolerance value, the different tolerance
values can further improve the performance of the trust model
proposed in this paper. The reason for this phenomenon is:
In the experiment, the user tolerance value is set to a random
value from 1 to 100. At this time, the tolerance value of
most users will be higher than 10, and the strict tolerance
value setting will well inhibit the camouflage users from
obtaining high trust value. Therefore, when the attack model
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is C, the trust model proposed in this paper can achieve better
performance under the setting of different tolerance values.

VII. CONCLUSION
This paper presents a reliable IoT edge computing trust man-
agement mechanism for smart cities. In this paper, an intel-
ligent device selective recommendation mechanism based
on the dynamic black-and-white list is proposed to solve
the problem of selecting trusted participants to improve the
service quality of the edge computing system of the IoT in
the smart city. Experiments show that the trust management
mechanism proposed in this paper has a significant role in
promoting the cooperation of multi intelligent devices in
the IoT edge computing system. It more reliably resists the
malicious attacks to service providers and is suitable for the
large-scale IoT edge computing system in the smart city.
Future work includes how to improve the accuracy of the
end-user trust assessment with less feedback and how to solve
the trust problem of a large number of complex malicious
users in IoT edge computing.

APPENDIX
According to the Equation (17), Equation (20), and Equation
(23), f̄ (t) is obtained as shown in the Equation (25).

f̄ (t) =

(
x21 + x1x3 + x1x2 + εx2x3 +

x1x3 + x23
x1 + εx2 + x3

)
bp

+

(
x1x2 + x22 +

εx2x3
x1 + εx2 + x3

)
bn

+ (x1x2 + x22 +
εx2x3

x1 + εx2 + x3
)cn

−

(
x21 + x1x2 +

x1x3
x1 + εx2 + x3

+ x1x3 + εx2x3

+
εx23

x1 + εx2 + x3

)
cp

− x3cr (25)

The dynamic replication equations of the strategies s1, s2,
and s3 are shown in Equation (26), Equation (27), and Equa-
tion (28), respectively. In this paper, the Lyapunov stability
theory is used to prove the stability of the game model. For
the replication dynamic equations of Equation (26), Equa-
tion (27), and Equation (28), the Jacobian matrix as shown
in Equation (29) can be obtained.

ẋs1
= x1(t)

(
f̄s1(t)− f̄ (t)

)
=

(
x21+x1x3−x

3
1−x

2
1x3−x

2
1x2−εx1x2x3+

−x21x3−x1x
2
3

x1+εx2+x3

)
bp

+

(
−x21−x1x2+x

3
1+x

2
1x2+x

2
1x3+εx1x2x3

+
εx1x23

x1+εx2+x3
−

x1x3
x1+εx2+x3

+
x21x3

x1+εx2+x3

)
cp

+

(
x1x2−x21x2−x1x

2
2−

εx1x2x3
x1+εx2+x3

)
bn

− (x21x2+x1x
2
2+

εx1x2x3
x1+εx2+x3

)cn+x1x3cr (26)

ẋs2
= x2(t)

(
f̄s2(t)− f̄ (t)

)
=

(
x1x2+εx2x3−x21x2−x1x2x3−x1x

2
2

− εx22x3+
−x1x2x3−x2x23
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)
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2−x

3
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εx22x3
x1+εx2+x3

)
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+

(
x21x2+x1x

2
2+

x1x2x3
x1+εx2+x3

+x1x2x3

+ εx22x3+
εx2x23

x1+εx2+x3

)
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+(−x1x22−x
3
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εx22x3
x1+εx2+x3

+ x1x2+x22+
εx2x3

x1+εx2+x3
)cn+x2x3cr (27)

ẋs3
= x3(t)

(
f̄s3(t)− f̄ (t)

)
=

(
x1x3+x23

x1+εx2+x3
−x21x3−x1x

2
3−x1x2x3

− εx2x23+
−x1x23−x
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(
x23−x3
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+
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J=


∂ ẋs1
∂xs1

∂ ẋs1
∂xs2

∂ ẋs1
∂xs3

∂ ẋs2
∂xs1

∂ ẋs2
∂xs2

∂ ẋs2
∂xs3

∂ ẋs3
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∂ ẋs3
∂xs2

∂ ẋs3
∂xs3

 =
 J11 J12 J13
J21 J22 J23
J31 J32 J33

 (29)

Proposition 1 is obtained by Definition 4.
Proposition 1: When bp = 7, bn = −15, cp = 1, cn =
−10, cr = 4, (0.205791 0.140849 0.653360) is the stable
evolution state of the model.

Proof: When x1 = 1, x2 = 0 and x3 = 0 are
substituted into the Jacobian matrix, the eigenvalues are
λ1 = −12, λ2 = 11, and λ3 = −6. According to
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Definition 4, since the eigenvalue λ2 is positive, the value
is not a stable point. When x1 = 0, x2 = 1, and x3 = 0
are substituted into the Jacobian matrix because there is a
case where the denominator is 0. According to Definition 4,
the value is not a stable point. When x1 = 0, x2 = 0, and
x3 = 1 are substituted into the Jacobian matrix, the eigen-
values are λ1 = −3, λ2 = 3, and λ3 = −3. According to
Definition 4, since the eigenvalue λ2 is positive, the value is
not a stable point. When x1 = 0.205791, x2 = 0.140849,
and x3 = 0.653360 are substituted into the Jacobian matrix,
the eigenvalues are λ1 = −1.39000232+1.69496275j,
λ2 = −1.39000232-1.69496275j, and λ3 = −0.09492218.
According to Definition 4, since the eigenvalue λ2 is not
positive, the value is a stable point.

REFERENCES
[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
Jun. 2015.

[2] A. Botta, W. de Donato, V. Persico, and A. Pescapé, ‘‘Integration of cloud
computing and Internet of Things: A survey,’’ Future Gener. Comput. Syst.,
vol. 56, pp. 684–700, Mar. 2016.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[5] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, ‘‘A survey
on mobile edge networks: Convergence of computing, caching and com-
munications,’’ IEEE Access, vol. 5, pp. 6757–6779, 2017.

[6] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[7] A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, ‘‘A survey
of mobile cloud computing application models,’’ IEEE Commun. Surveys
Tuts., vol. 16, no. 1, pp. 393–413, Jul. 2014.

[8] C. You, K. Huang, H. Chae, and B.-H. Kim, ‘‘Energy-efficient resource
allocation for mobile-edge computation offloading,’’ IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[9] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, ‘‘IoT-based big data storage
systems in cloud computing: Perspectives and challenges,’’ IEEE Internet
Things J., vol. 4, no. 1, pp. 75–87, Feb. 2017.

[10] H.Menouar, I. Guvenc, K.Akkaya, A. S. Uluagac, A. Kadri, andA. Tuncer,
‘‘UAV-enabled intelligent transportation systems for the smart city: Appli-
cations and challenges,’’ IEEE Commun. Mag., vol. 55, no. 3, pp. 22–28,
Mar. 2017.

[11] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, ‘‘Internet of
Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1, pp. 22–32,
Feb. 2014.

[12] B. Ahlgren, M. Hidell, and E. C.-H. Ngai, ‘‘Internet of Things for smart
cities: Interoperability and open data,’’ IEEE Internet Comput., vol. 20,
no. 6, pp. 52–56, Nov. 2016.

[13] S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K.-S. Kwak,
‘‘The Internet of Things for health care: A comprehensive survey,’’ IEEE
Access, vol. 3, pp. 678–708, 2015.

[14] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, ‘‘Collaborative mobile
edge computing in 5G networks: New paradigms, scenarios, and chal-
lenges,’’ IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, Apr. 2017.

[15] Z. Ning, X. Kong, F. Xia, W. Hou, and X. Wang, ‘‘Green and sustainable
cloud of things: Enabling collaborative edge computing,’’ IEEE Commun.
Mag., vol. 57, no. 1, pp. 72–78, Jan. 2019.

[16] Y. He, F. R. Yu, N. Zhao, and H. Yin, ‘‘Secure social networks in
5G systems with mobile edge computing, caching, and device-to-device
communications,’’ IEEE Wireless Commun., vol. 25, no. 3, pp. 103–109,
Jun. 2018.

[17] X. Huang, R. Yu, J. Kang, and Y. Zhang, ‘‘Distributed reputation manage-
ment for secure and efficient vehicular edge computing and networks,’’
IEEE Access, vol. 5, pp. 25408–25420, 2017.

[18] S.-T. Goh, H. Pang, R. H. Deng, and F. Bao, ‘‘Three architectures for
trusted data dissemination in edge computing,’’Data Knowl. Eng., vol. 58,
no. 3, pp. 381–409, Sep. 2006.

[19] A. Gharaibeh, M. A. Salahuddin, S. J. Hussini, A. Khreishah, I. Khalil,
M. Guizani, and A. Al-Fuqaha, ‘‘Smart cities: A survey on data manage-
ment, security, and enabling technologies,’’ IEEE Commun. Surveys Tuts.,
vol. 19, no. 4, pp. 2456–2501, 4th Quart., 2017.

[20] J. Yuan and X. Li, ‘‘A multi-source feedback based trust calculation
mechanism for edge computing,’’ in Proc. IEEE Conf. Comput. Com-
mun. Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, Apr. 2018,
pp. 819–824.

[21] C. Xu, K. Wang, P. Li, S. Guo, J. Luo, B. Ye, and M. Guo, ‘‘Making
big data open in edges: A resource-efficient blockchain-based approach,’’
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 4, pp. 870–882, Apr. 2019.

[22] J. Hofbauer, andK. Sigmund,EvolutionaryGames and PopulationDynam-
ics. Cambridge, U.K.: Cambridge Univ. Press, 1998.

[23] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, ‘‘The eigentrust
algorithm for reputation management in P2P networks,’’ in Proc. 12th Int.
Conf. World Wide Web (WWW), Budapest, Hungary, 2003, pp. 640–651.

[24] S. Papadopoulos, K. Bontcheva, E. Jaho, M. Lupu, and C. Castillo,
‘‘Overview of the special issue on trust and veracity of information in social
media,’’ ACM Trans. Inf. Syst., vol. 34, no. 3, pp. 1–5, Apr. 2016.

[25] G. Szabó and C. Tõke, ‘‘Evolutionary prisoner’s dilemma game on a square
lattice,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,
vol. 58, no. 1, p. 69, 1998.

[26] Z. Wang, A. Szolnoki, and M. Perc, ‘‘Different perceptions of social
dilemmas: Evolutionary multigames in structured populations,’’ Phys. Rev.
E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 90, no. 3,
Sep. 2014, Art. no. 032813.

[27] K. Nagashima and J. Tanimoto, ‘‘A stochastic pairwise Fermi rule mod-
ified by utilizing the average in payoff differences of neighbors leads to
increased network reciprocity in spatial prisoner’s dilemma games,’’ Appl.
Math. Comput., vol. 361, pp. 661–669, Nov. 2019.

[28] Z. Su, L. Liu, M. Li, X. Fan, and Y. Zhou, ‘‘ServiceTrust: Trust manage-
ment in service provision networks,’’ in Proc. IEEE Int. Conf. Services
Comput., Santa Clara, CA, USA, Jun. 2013, pp. 272–279.

[29] M. Li, Q. Guan, X. Jin, C. Guo, X. Tan, and Y. Gao, ‘‘Personalized pre-
trust reputation management in social P2P network,’’ in Proc. Int. Conf.
Comput., Netw. Commun. (ICNC), Kauai, HI, USA, Feb. 2016, pp. 1–5.

[30] Q. Xu, Z. Su, Q. Zheng, M. Luo, B. Dong, and K. Zhang, ‘‘Game
theoretical secure caching scheme in multihoming edge computing-
enabled heterogeneous networks,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 4536–4546, Jun. 2019.

[31] X. Fan, L. Liu, M. Li, and Z. Su, ‘‘GroupTrust: Dependable trust manage-
ment,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4, pp. 1076–1090,
Apr. 2017.

[32] J. Yuan and X. Li, ‘‘A reliable and lightweight trust computing mechanism
for IoT edge devices based on multi-source feedback information fusion,’’
IEEE Access, vol. 6, pp. 23626–23638, 2018.

[33] X. Jin, M. Li, G. Cui, J. Liu, C. Guo, Y. Gao, B. Wang, and X. Tan,
‘‘RIMBED: Recommendation incentive mechanism based on evolutionary
dynamics in P2P networks,’’ in Proc. 24th Int. Conf. Comput. Commun.
Netw. (ICCCN), Las Vegas, NV, USA, Aug. 2015, pp. 1–8.

[34] A. Mosenia and N. K. Jha, ‘‘A comprehensive study of security of
Internet-of-Things,’’ IEEE Trans. Emerg. Topics Comput., vol. 5, no. 4,
pp. 586–602, Oct. 2017.

[35] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
‘‘A survey on the edge computing for the Internet of Things,’’ IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[36] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A sur-
vey on Internet of Things: Architecture, enabling technologies, security
and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[37] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, ‘‘A survey on security and
privacy issues in Internet-of-Things?’’ IEEE Internet Things J., vol. 4,
no. 5, pp. 1250–1258, Oct. 2017.

[38] L. Chen, S. Thombre, K. Järvinen, E. S. Lohan, A. Alén-Savikko,
H. Leppäkoski, M. Z. H. Bhuiyan, S. Bu-Pasha, G. N. Ferrara, S. Honkala,
J. Lindqvist, L. Ruotsalainen, P. Korpisaari, and H. Kuusniemi, ‘‘Robust-
ness, security and privacy in location-based services for future IoT: A sur-
vey?’’ IEEE Access, vol. 5, pp. 8956–8977, 2017.

[39] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, ‘‘IoT
middleware: A survey on issues and enabling technologies,’’ IEEE Internet
Things J., vol. 4, no. 1, pp. 1–20, Feb. 2017.

46398 VOLUME 8, 2020



B. Wang et al.:Reliable IoT Edge Computing Trust Management Mechanism for Smart Cities

[40] I. Farris, T. Taleb, Y. Khettab, and J. Song, ‘‘A survey on emerging SDN
and NFV security mechanisms for IoT systems,’’ IEEE Commun. Surveys
Tuts., vol. 21, no. 1, pp. 812–837, 1st Quart., 2019.

[41] I. U. Din, M. Guizani, B. S. Kim, S. Hassan, and M. K. Khan, ‘‘Trust man-
agement techniques for the Internet of Things: A survey,’’ IEEE Access,
vol. 7, pp. 29763–29787, 2019.

[42] Q. Xu, Z. Su, Q. Zheng, M. Luo, and B. Dong, ‘‘Secure content delivery
with edge nodes to save caching resources for mobile users in green cities,’’
IEEE Trans Ind. Informat., vol. 14, no. 6, pp. 2550–2559, Jun. 2018.

[43] M. Tiwary, D. Puthal, K. S. Sahoo, B. Sahoo, and L. T. Yang, ‘‘Response
time optimization for cloudlets in mobile edge computing,’’ J. Parallel
Distrib. Comput., vol. 119, pp. 81–91, Sep. 2018.

[44] D. Balfanz, D. Smetters, P. Stewart, and H. C.Wong, ‘‘Talking to strangers:
Authentication in ad-hoc wireless networks,’’ in Proc. 9th Annu. Symp.
Netw. Distrib. Syst. Secur., Feb. 2002, pp. 1–3.

[45] S. Bouzefrane, A. F. B. Mostefa, F. Houacine, and H. Cagnon, ‘‘Cloudlets
authentication in NFC-based mobile computing,’’ in Proc. 2nd IEEE Int.
Conf. Mobile Cloud Comput., Services, Eng., Oxford, U.K., Apr. 2014,
pp. 72–267.

[46] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, ‘‘Security,
privacy and trust in Internet of Things: The road ahead,’’ Comput. Netw.,
vol. 76, pp. 146–164, Jan. 2015.

[47] I. Garcia-Magarino, S. Sendra, R. Lacuesta, and J. Lloret, ‘‘Security in
vehicles with IoT by prioritization rules, vehicle certificates, and trust
management,’’ IEEE Internet Things J., vol. 6, no. 4, pp. 5927–5934,
Aug. 2019.

[48] P. Gope, A. K. Das, N. Kumar, and Y. Cheng, ‘‘Lightweight and physically
secure anonymous mutual authentication protocol for real-time data access
in industrial wireless sensor networks,’’ IEEE Trans Ind. Informat., vol. 15,
no. 9, pp. 4957–4968, Sep. 2019.

[49] H. Hui, C. Zhou, X. An, and F. Lin, ‘‘A new resource allocation mechanism
for security of mobile edge computing system,’’ IEEE Access, vol. 7,
pp. 116886–116899, 2019.

[50] F. Lin, Y. Zhou, X. An, I. You, and K.-K.-R. Choo, ‘‘Fair resource allo-
cation in an intrusion-detection system for edge computing: Ensuring the
security of Internet of Things devices,’’ IEEE Consum. Electron. Mag.,
vol. 7, no. 6, pp. 45–50, Nov. 2018.

[51] Z. Yan, P. Zhang, and A. V. Vasilakos, ‘‘A survey on trust management
for Internet of Things,’’ J. Netw. Comput. Appl., vol. 42, pp. 120–134,
Jun. 2014.

[52] F. Bao, I.-R. Chen, and J. Guo, ‘‘Scalable, adaptive and survivable trust
management for community of interest based Internet of Things sys-
tems,’’ in Proc. IEEE 11th Int. Symp. Auton. Decentralized Syst. (ISADS),
Mexico City, Mexico, Mar. 2013, pp. 1–7.

[53] D. Gessner, A. Olivereau, A. S. Segura, and A. Serbanati, ‘‘Trustworthy
infrastructure services for a secure and privacy-respecting Internet of
Things,’’ in Proc. IEEE 11th Int. Conf. Trust, Secur. Privacy Comput.
Commun., Liverpool, U.K., Jun. 2012, pp. 998–1003.

[54] S. Sicari, A. Coen-Porisini, and R. Riggio, ‘‘DARE: Evaluating data
accuracy using node REputation,’’ Comput. Netw., vol. 57, no. 15,
pp. 3098–3111, Oct. 2013.

[55] Z. Yan and C. Prehofer, ‘‘Autonomic trust management for a component-
based software system,’’ IEEE Trans. Depend. Sec. Comput., vol. 8, no. 6,
pp. 810–823, Nov./Dec. 2011.

[56] I.-R. Chen, J. Guo, and F. Bao, ‘‘Trust management for SOA-based IoT
and its application to service composition,’’ IEEE Trans. Services Comput.,
vol. 9, no. 3, pp. 482–495, May/Jun. 2016.

[57] I.-R. Chen, J. Guo, D.-C. Wang, J. J. P. Tsai, H. Al-Hamadi, and I. You,
‘‘Trust-based service management for mobile cloud IoT systems,’’ IEEE
Trans. Netw. Service Manage., vol. 16, no. 1, pp. 246–263, Mar. 2019.

BO WANG received the B.S. degree in computer
science and technology from the Anshan Univer-
sity of Science and Technology, in 2005, and the
M.S. degree in computer application and tech-
nology from the University of Science and Tech-
nology Liaoning, China, in 2008. He is currently
pursuing the Ph.D. degree with the School of Soft-
ware Technology, Dalian University of Technol-
ogy (DLUT), China. His current research interests
include edge computing, resource scheduling, trust
management, and game theory.

MINGCHU LI received the B.S. degree in mathe-
matics from Jiangxi Normal University, in 1983,
the M.S. degree in applied science from the
University of Science and Technology Beijing,
in 1989, and the Ph.D. degree in mathematics from
the University of Toronto, in 1997. He was an
Associate Professor with the University of Sci-
ence and Technology Beijing, from 1989 to 1994.
He was involved in research and development on
information security at Longview Solution Inc.,

Compuware Inc., from 1997 to 2002. Since 2002, he has been a Full Professor
with the School of Software, Tianjin University. Since 2004, he has also been
a Full Professor, a Ph.D. Supervisor, and the Vice Dean with the School of
Software Technology, Dalian University of Technology. His main research
interests include theoretical computer science and cryptography.

XING JIN received the bachelor’s degree in com-
puter science from Lanzhou University, China,
in 2012. He is currently pursuing the Ph.D. degree
with the School of Software Technology, Dalian
University of Technology (DLUT), China. His
research interests include trust management, coop-
eration theory, and evolutionary game theory.

CHENG GUO received the B.S. degree in com-
puter science from the Xi’an University of Archi-
tecture and Technology, in 2002, and the M.S.
and Ph.D. degrees in computer application and
technology from the Dalian University of Technol-
ogy, Dalian, China, in 2006 and 2009, respectively.
From July 2010 to July 2012, he was a Postdoc-
toral Researcher with the Department of Computer
Science, National Tsing Hua University, Hsinchu,
Taiwan. Since 2013, he has been an Associate

Professor with the School of Software Technology, Dalian University of
Technology. His current research interests include information security and
cryptology.

VOLUME 8, 2020 46399


