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ABSTRACT The development of integrated avionics systems and electromagnetic spectrum technology
has attracted widespread attention. It has further increased the performance requirements for modulation
signal recognition technology in complex electromagnetic environments. Therefore, this paper proposes
a deep joint learning technique, including deep representation and low-dimensionality discrimination,
to enhance feature stability and environmental adaptability. Specifically, we design a feature learning
network based on AlexNet to extract in-depth features and optimize it through parameter-based transfer
learning techniques, promote multi-level representation capabilities of features and reduce the sample size
requirements. Moreover, we propose a classification algorithm based on kernel collaborative representation
and discriminative projection to enhance the ability of low-dimensionality representation and between-class
discrimination, which optimized using the mini-batch random gradient descent method. As shown in the
simulation, the overall average recognition success rate of this method aiming at twelve radar signal
modulation types reaches 97.58% at SNR of −6dB. The results of simulation and analysis demonstrate
the superiority of the proposed model in terms of robustness, timeliness, and adaptability to small samples.

INDEX TERMS Radar signal modulation recognition, deep representation, kernel collaborative
representation, discriminative projection.

I. INTRODUCTION
Fast and efficient radar signal modulation recognition plays
a critical role in the electromagnetic frequency spectrum
domain confrontation. It directly affects the accuracy of
subsequent tasks, such as electronic countermeasures [1].
The traditional technology of modulation recognition relies
on feature engineering and classifier models, such as the
pulse description word (PDW) based recognition method [2],
artificial feature extraction and classification [3]–[5], and
the combined approach of nonlinear feature extraction and
machine learning classification [6]–[11]. These traditional
methods have been widely applied in this field and have
obtained many achievements. However, it is challenging
to adapt to multiple types of signals and complex electro-
magnetic environments because of its deficiency on fea-
ture deep representation. In recent years, many scholars
have studied modulation recognition technology based on
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the representation learning paradigm, including dictionary
learning and deep learning [12]–[15]. In [16]–[19], differ-
ent deep network structures were designed for classifica-
tion and other tasks, including a structured autoencoder
and multi-view linear discriminant analysis networks. As is
known, deep learning has stronger deep representation capa-
bilities and classification performance because of its deep
mapping mechanism. Recognition algorithms based on deep
networks and time-frequency features have achieved excel-
lent performance. In [20], the recognition method based
on a deep belief network (DBN) and short-time Fourier
transform (STFT) achieved a recognition success rate (RSR)
of 95% when the SNR is −5dB. In [21], the LeNet-5 based
convolution neural network (CNN) reaches an RSR of 93.7%
for eight types of radar signals when the SNR is −2dB.
In [22]–[28], pre-processing algorithms such as the sample
averaging technique, image noise reduction technique, and
convolutional denoising autoencoder enhanced the stability
of time-frequency features; and different CNNs improved
the recognition performance. However, these methods still
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depend on prior knowledge and feature enhancement pro-
cessing to some extent. In addition, deep learning requires
high computing costs and a large number of samples, so its
advantages can hardly be realized in cases of insufficient
samples. In [29], [30], deep learning-based transfer learning
algorithms and feature extraction algorithms were designed
to obtain deep features for subsequent recognition, thereby
reducing the sample size requirements of deep networks.
However, the high-dimensionality deep features learned from
transfer learning networks have poor interpretability, and full
connection (FC) layers of deep networks usually introduce
considerable parameters and large computational overheads,
which is not conducive to effective recognition. In addition,
the adaptability of deep migration networks to new samples
can be further improved through auxiliary classifiers [31].
Therefore, a well-designed joint recognition structure will
improve the low-dimensionality representation of features,
the computational complexity of FC layers, and adaptability
with small samples.

Dictionary learning (DL) has been widely applied in
fields such as cognitive radio, and image identification,
which can realize data-based essential feature learning and
discrimination with low-dimensionality representation.
Dimensionality reduction (DR) or low-dimensionality rep-
resentation is also an important issue for dictionary classifi-
cation. The performance of dictionary learning is strongly
dependent on the choice and optimization of various dis-
criminant items, such as regular constraints and discrimi-
nant constraints. In [32], regular constraints of l1-norm and
l1,2-norm strengthened the discriminative learning ability,
whereas the sparsity and computational complexity limited
their applications. Therefore, a collaborative representation
classification method with an l2-norm regular constraint was
proposed in [33], which is very efficient and time-saving.
In [34]–[44], discriminant constraint models such as the
label consistent K-SVD (LC-KSVD) dictionary, low-rank
shared dictionary, multilayer convolutional sparse dictionary,
scalable block-diagonal locality-constrained projective dic-
tionary, and structured analysis discriminative dictionary,
were designed to simultaneously enhance classification per-
formance and reduce the computational cost. However, these
methods perform DR and DL independently, which may
result in not fully exploiting the discriminative information
of the training data. In [45]–[47], a joint discriminative
dimensionality reduction and dictionary learning (JDDRDL)
model, a simultaneous dimensionality reduction and dic-
tionary learning (SDRDL) model, and a dictionary learn-
ing for sparse representation-based classification (DSRC)
model were proposed for simultaneous learning of low-
dimensionality representation and classification dictionary.
These models are suitable for linearly separable features.
In [48]–[50], the kernel methods were used to enhance the
nonlinear representation ability, which improved the lin-
ear inseparability of features. In [51], a kernel dictionary
learning-based discriminant analysis (KDL-DA) method was
proposed to learn low-dimensionality representation and

a classification dictionary in kernel space. However, the
KDL-DA easily falls into a locally optimal solution. There-
fore, we further combine the method of discriminative pro-
jection and kernel collaborative representation to enhance the
between-class differences and timeliness of dictionary clas-
sification. Although dictionary learning methods are diverse,
their deep representation capabilities are limited. Moreover,
deep learning and dictionary learning have advantages in
deep representation and low-dimensionality representation
of data, respectively. Therefore, this paper combines these
two representative learning paradigms for learning the low-
dimensionality discriminative representation in deep archi-
tecture and improving classification performance.

In this paper, the deep joint learning-based modulation
recognition algorithm is exploited. It aims to improve RSR
under small samples and a low signal-to-noise ratio (SNR)
environment. The overall performance of the proposed
method is verified for twelve radar signal modulation types,
including BPSK, LFM, Costas, Frank, P1-P4 codes, and
T1-T4 codes, under a wide range of SNR. Our major contri-
butions are summarized as follows. (1) Design a CNN-based
feature learning network, which is initialized by AlexNet
to extract in-depth features with higher stability for recog-
nition. (2) Propose a classification technique based on ker-
nel collaborative representation and discriminative projection
(KCRDP), in which the objective function is constructed by
the Fisher criterion and optimized by a mini-batch stochastic
gradient descent (MSGD) method with dynamic increment
constraints. The timeliness and stable low-dimensionality
representation ability of the model are emphasized. (3) Pro-
pose a deep joint learning algorithm based on CNN and
KCRDP (CNN-KCRDP), including deep learning and kernel
dictionary learning, which improves the adaptability of small
samples and reduces the computational complexity without
prior knowledge and feature enhancement processing.

The paper is organized as follows. The modulation recog-
nition system of the radar signal is introduced in Section II.
Section III describes the signal model and the pre-processing
method. Section IV describes the details of the deep joint
learning framework, including the deep network for fea-
ture learning, classification model, and optimization method.
Section V conducts a simulation comparison and makes dis-
cussions. Finally, the conclusions are drawn in Section VI.

II. SYSTEM OVERVIEW
The proposed modulation recognition system consists of two
parts: pre-processing and recognition. The details are shown
in Fig.1. First, intercepted intra-pulse signals are transformed
into time-frequency images (TFIs) by Choi-Williams distri-
bution (CWD) without feature enhancement processing, and
the TFI size is adjusted to fit CNN-KCRDP. Second, the TFIs
are divided into a training set and a testing set, which are
used for CNN-KCRDP optimization and classification test-
ing, respectively. Moreover, the structure of CNN-KCRDP
is shown in Fig.2, which includes the convolutional lay-
ers and equivalent FC layers (named KCRDP layers).
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FIGURE 1. The proposed modulation recognition system of the radar
signal.

The convolutional layers are initialized through transfer
learning and fine-tuned through the training set to extract
in-depth nonlinear features. The convolution, pooling, and
normalization processes in the convolutional layers make it
robust to the geometrical distortions. In addition, KCRDP
layers are optimized through MSGD based kernel discrim-
inative dictionary learning to reduce the feature dimension-
ality. Specifically, the KCRDP layers are divided into three
parts: a kernel mapping for enhancing feature separability,
a collaborative representation for improving the timeliness
of classification, and a discriminative projection for forming
low-dimensionality representation.

III. SIGNAL MODEL AND PRE-PROCESSING
A. SIGNAL MODEL
In the electromagnetic environment, the intercepted single-
pulse signal is disturbed by additive white Gaussian noise
(AWGN). The sampling sequence model is given by

x (k) = Aexp (j (2π f0k + ϕ (k)+ θ0))+ n (k) (1)

where k is an integer, and A is amplitude. f0 is the initial
frequency, θ0 is the initial phase, ϕ(·) is the instantaneous
phase, which implies the intra-pulse modulation information,
and n(·) is the Gaussian white noise. We mainly consider
twelve types of radar signals, including frequency modu-
lated signals (such as LFM, Costas), phase-modulated signals
(BPSK), polyphase codes (such as Frank, P1, P2, P3, and P4),
and polytime codes (such as T1, T2, T3, and T4) [52]. The
instantaneous phase of the radar signal is shown in Table 1.

TABLE 1. The instantaneous phase representation of twelve radar signal
types considered in this paper.

B. CHOI-WILLIAMS DISTRIBUTION AND
TIME-FREQUENCY ANALYSIS
The time-frequency transform of the Choi-Williams distribu-
tion (CWD) has a relatively stable characterization ability for
local characteristics and overall structure. The CWD can be
expressed as

C(ω, t)

=

∫∫∫
∞

f (η, τ )ej2πη(s−t)x(s+τ
/
2)x∗(s−τ

/
2)ejωτdηdsdτ

(2)

where C(ω, t) is the time-frequency distribution function,
ω and t refer to coordinates of time and frequency, f (η, τ )
is a kernel function and satisfies f (η, τ ) = e(πητ)

2/2δ , δ is
the controllable factor to suppress the cross terms, and cross
terms decrease with δ. δ is set to 1 balanced resolution and
cross terms.

The time-frequency images of the CWD shown in Fig.3
have good time-frequency structure and high-resolution
details. In addition, polyphase codes (P1 and P4, Frank
and P3) and polytime codes (T1 and T3, T2 and T4) have

FIGURE 2. An example using the proposed deep joint learning algorithm for classification. The primary processing of CNN-KCRDP includes deep
feature extraction, kernel mapping, collaborative representation, low-dimensionality representation, and classification.
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FIGURE 3. The image displays the time-frequency distribution (TFD) of twelve radar signals at SNR of 30dB.

higher similarity in structure. Feature enhancement algo-
rithms such as noise reduction and dimensionality reduc-
tion [15], [20]–[22], [28], [30] have been widely used in
radar signal recognition, which reduces the need for clas-
sifier capabilities. However, these algorithms require more
expertise and may introduce additional computational com-
plexity and a certain degree of information loss. In this paper,
the CWD feature is used as the initial feature without any
other feature enhancement processing, and it is adjusted to a
suitable size for the network input by a bicubic interpolation
algorithm [53].

IV. THE PROPOSED DEEP JOINT LEARNING FRAMEWORK
In this section, the deep joint learning framework is given,
which combines the deep representation advantages of CNN
and the discrimination advantages of kernel dictionary learn-
ing. Specifically, CNN is used to extract in-depth features,
and KCRDP is used to achieve low-dimensionality represen-
tation and efficient recognition.

A. CNN-BASED FEATURE LEARNING
The parameters of deep neural networks are mainly included
in the FC layers, whereas the parameters of the convolutional
layers are relatively small and time-efficient. In addition, the

convolutional layers have the characteristics of parameter
sharing and translation invariance. These well-known trans-
mission capabilities of convolutional layers have been veri-
fied by various classic CNNs, such as AlexNet, GoogleNet,
and VGG-net. In our frameworks, the convolutional layers
have the same structures as the corresponding baseline
models, whereas all FC layers after the final pooling layer
are replaced with the KCRDP layers. In general, problems
such as poor convergence and reduced timeliness increase as
the network deepens in the case of small samples. It is more
reasonable to choose a medium-sized network and use trans-
fer learning technology for optimization [54]. In this paper,
AlexNet is selected for feature learning. Then, the CNN
parameters are initialized by performing pre-training and
fine-tuning using its original network. Specifically, the net-
work can be pre-trained through the ImageNet database to
reduce sample capacity requirements caused by random ini-
tialization; and fine-tuned through the TFI dataset to enhance
the adaptability of the radar dataset further. The deep features
extracted from the convolutional layer will be more stable
than CWD features.

Compared with the conventional method, the proposed
feature learning network has the following advantages. First,
the network is optimized through parameter-based transfer
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FIGURE 4. The structure and optimization process of the feature learning
network based on CNN.

learning, which reduces the sample capacity requirements
and the computational overhead caused by random initial-
ization. Second, the features are extracted using convolu-
tional layers, which avoids the considerable calculations of
the FC layer, thereby improving the timeliness of feature
learning. Moreover, it has greater flexibility in choosing
the right network structure for more practical applications.
In addition, the selection of medium-sized or large-sized
networks can effectively reduce the need for feature
pre-processing.

The structure and optimization process of the CNN-based
feature learning are shown in Fig.4. We keep layers 1-7
(i.e., convolutional layers and FC layers) of our Ima-
geNet pre-trained network (named pre-trained AlexNet)
fixed, to initialize of the CNN-FC. CNN-FC network dif-
fers from AlexNet only in the classification layer. Then,
we fine-tune the CNN-FC and replace the FC layers with
KCRDP as a follow-up strategy. In the structure of AlexNet
and CNN-FC, the 54.53 million parameters of the two
FC layers create a large number of calculations, and the
output 4096-dimensionality features are not conducive to
low-dimensionality representation and efficient recognition,
especially for recognition cases with fewer categories.
When performing radar signal recognition, the TFI dataset
is expressed as S ∈ R227×227×3×N , where N is the
total number of TFI samples. The l-dimensionality feature
samples extracted from convolutional layers are expressed
as X ∈ Rl×N , which send to the KCRDP layers to
complete the classification and identification. The output
features will be effectively reduced to m dimensionality
(m� l).

B. THE KERNEL COLLABORATIVE REPRESENTATION AND
DISCRIMINATIVE PROJECTION BASED CLASSIFICATION
Kernel mapping helps improve the feature space resolution.
The discriminative projection in the kernel space reduces
feature redundancy and enhances discriminative ability, and
collaborative representation methods improve classification
timeliness. In the l-dimensionality feature space, the training
samples are expressed as X = [X1,X2, . . . ,XC ] ∈ Rl×N ,

where X i ∈ Rl×Ni are the training samples of class i.
The dictionary model considering l̃-dimensionality kernel
space mapping and m-dimensionality discriminative space
projection is

J(P,D,α) = arg min
P,D,α

∥∥∥PTφ (y)− PTφ (D)α
∥∥∥2
F
+ λ ‖α‖2F (3)

where P =
[
p1, p2, . . . , pm

]
∈ Rl̃×m is the discriminative

projection matrix, φ (·) ∈ Rl̃ is the kernel function, α ∈ RK̃

is the coding coefficient, P and D can be represented lin-
early by using the atoms of the kernel sample space. Any
column is represented as a linear combination of all ker-
nel samples, such as pj =

∑N
i=1 qj,iφ (xi). The discrimi-

native projection matrix expressed as P = φ (X)Q, where
Q ∈ RN×m is the pseudo-random transformation matrix.
The kernel dictionary is expressed as φ (D) = φ (X)A =
[φ (D1) , φ (D2) , . . . , φ (DC )], where φ (Di) = φ (X i)Ai ∈
Rm̃×K̃i is the sub-dictionary associated with each class i,
and A ∈ RN×K̃ is a dictionary coefficient matrix that
satisfies

A =


A1

A2
. . .

AC

 (4)

where Ai ∈ RNi×K̃i is the sub-dictionary coefficient matrix
corresponding to class i. Substituting the above represen-
tation, the dictionary learning model based on kernel col-
laborative representation and discriminant projection can be
expressed as follows

J(Q,A,α) = arg min
Q,A,α

∥∥∥QTK (X, y)− QTK (X,X)Aα

∥∥∥2
F

+ λ ‖α‖2F (5)

where K (·) is the kernel gram function and K (X, y) =
φ (X)T φ (y). K (X,X) = φ (X)T φ (X) is a semi-definite
matrix. The coding coefficient of any sample y is given
by

α̂ =
(
ATK (X,X)T QQTK (X,X)A+ λI

)−1
·ATK (X,X)T QQTK (X, y) (6)

where α̂ =
[
α̂1; α̂2; · · · ; α̂C

]
∈ RK̃ is the coding coefficient,

and α̂i ∈ RK̃i is the coding coefficients belong to class i.
The classification error of the sample associated with each
dictionary i is defined as

ei (y) =
∥∥∥QTK (X, y)− QTK (X,X i)Aiα̂i

∥∥∥2
F

/∥∥α̂i∥∥2F (7)

The category label is determined as id (y) = argmin
i
{ei}.

Misclassification is mainly caused by differences between
classes, which can be reduced by strengthening the differ-
ences between the correct type and the nearest misclassifi-
cation. For any training sample x, define Ẽc as within-class
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reconstruction error and Ẽc =
∥∥QTK (X, x)− QTK (X,Xc)

Acα̂c
∥∥2
F . Define Ẽ

d as the minimum between-class recon-
struction error, and the most adjacent misclassification class
d can be expressed as

d = argmin
k
Ẽk =

∥∥∥QTK (X, x)− QTK (X,Xk)Ak α̂k
∥∥∥2
F

s.t. k 6= c (8)

The batch representation and Fisher criterion [47], [49] are
introduced to enhance the stability of the gradient update. The
objective function of the error loss is defined as

JB(Q,A) = argmin
Q,A

1
B

c∑
i=1

Bi∑
j=1

(
S
(
R
(
xi,j
))
+ λ

∥∥∥â(i,j)∥∥∥2
F

)
(9)

where S(x) = (ex − e−x)/(ex + e−x) is the quantization
function, xi,j is the training sample of class i with number
j, B =

∑C
i=1 Bi is the batch size of the training set, Bi

is the random sample size with each class i, and α̂(
i,j) is

the coding coefficient solved by (6). The effectiveness and
stability of gradient updates are guaranteed through batch
random partitioning and batch iteration mechanisms. Define
R(x) = Ẽc/Ẽd as the error quantization ratio. There are
mainly two cases: (1) Ẽc < Ẽd , correct classification to class
c can be realized, and the incorrect classification probability
is reduced; (2)Ẽc > Ẽd , signals can be easily misclassified
into class d . The MSGD algorithm [55] helps to correct the
error.

During the optimization, partial derivatives of the pseudo-
random transformation matrix and dictionary coefficient
matrix are obtained by

gQ=
∂JB
∂Q
=

1
B

∑
i

∑
j

S ′
(
R
(
xi,j
))
R
(
xi,j
)(∇QẼci,j

Ẽci,j
−
∇QẼdi,j
Ẽdi,j

)

gA=
∂JB
∂A
=

1
B

∑
i

∑
j

S ′
(
R
(
xi,j
))
R
(
xi,j
)(∇AẼci,j

Ẽci,j
−
∇AẼdi,j
Ẽdi,j

)
(10)

where S ′ (x) = 1 − S2 (x) is the partial derivative of S(x).
Influences of α̂g (g ∈ {c, d}) on the gradient are neglected,
and the partial derivative of Ẽg can be expressed as follows

∇QẼg = 2
(
K (X, x)− K

(
X,Xg

)
Agâg

)
·

(
QTK (X, x)− QTK

(
X,Xg

)
Agâg

)T
∇AẼg = −2 KT (X,Xg

)
Q

·

(
QTK (X, x)− QTK (X,X)Agâg

)
âTg (11)

The gradient descent direction used to update Q and A under
the MSGD algorithm can be expressed as follows{

Q(t) = Q(t − 1)+ U(t)
A(t) = A(t − 1)+ V (t)

(12)

FIGURE 5. The CNN-KCRDP structure consists of a features extraction
module and a full connection module.

where U (t) = αQU (t − 1) − γ gQ and V (t) =

αAV (t − 1) − ηgA. αQ and αA are the momentum factor, γ
and η are learning rates. When the batch learning strategy is
used, the gradient averaging is performed on (10). Hence, the
learning rate varies with the batch parameters. Learning rates
in case that γ = Bγ0

/
C and η = Bη0

/
C , γ0 and η0 is the

initial learning rate. The KCRDP optimization process based
on MSGD is described in Algorithm 1.

Algorithm 1 The KCRDP Algorithm Based on MSGD

Input: Dictionary learning parameters of λ, m, N1, and K̃ ;
Kernel function; MSGD parameters of αQ, αA, γ0, η0, and
B;
1: Perform samples kernel mapping and kernel matrix
centralization. Initialize A(0) as a Gaussian random matrix.
Initialize Q(0) by KPCA algorithm, t = 0;
2: while not converged do
3: t ← t+1;
4: Randomly divide the training set into NUM batches;
5: for i = 1: NUM do
6: Update the coding coefficient α̂(t) by (6). Update d (t)

by (8);
7: Update g(t)Q and g(t)A by (10) and (11);
8: Update Q(t) and A(t) by (12);
9: end for
10: end while
Output: Q and A.

C. CNN-KCRDP BASED RECOGNITION
Fig.5 depicts the structure of CNN-KCRDP, in which the con-
volutional layers have the same structures as the correspond-
ing classical CNN models, whereas all full connection layers
are replacedwith the KCRDP layer. As Fig.5 shows, the inter-
cepted radar signal is converted into the time-frequency
images. Then, the CNN extracted the multi-level nonlin-
ear features by processing such as convolution and pooling.
Learning appropriate low-dimensionality representations of
deep features plays a critical role as a pre-processing proce-
dure for the success of recognition, because of its convenience
on geometric interpretations and its parsimony on compu-
tations [56]. The KCRDP is a classifier for DR learning
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and discrimination. When ignoring the kernel mapping and
collaborative representation, the parameters of KCRDP are
approximately N (m+ K̃ ), where m and K̃ are both relatively
small, which significantly reduces the parameter quantity and
feature dimensionality of the full connection layers. For radar
signal modulation recognition, the CNN-KCRDP model is
optimized by Algorithm 2. The recognition result is given by
the smallest class obtained by formula (7).

Algorithm 2 The Deep Joint Learning Algorithm of CNN-
KCRDP

Input: Radar intra-pulse signal and partial initialization
parameters;
Initialization: Initialize CNN parameters by the AlexNet
network, which is pre-trained through the ImageNet
database;
Pro-processing: Perform formula (2) and bicubic interpo-
lation algorithm to obtain the TFI dataset S;
Optimization:
1: Update CNN parameters by fine-tuning the CNN-FC
with a training set of TFI dataset;
2: Update KCRDP parameters by executing Algorithm 1;
Output: CNN-KCRDP parameters.

V. SIMULATION AND DISCUSSION
In this section, the effectiveness of the proposed technique
is verified by experimental simulation, which mainly con-
sists of five parts: First, the dataset of the radar signal and
CNN-KCRDP’s parameters are given. Second, feature sta-
bility is analysed. Then, the dictionary classification method
is comprehensively compared with state-of-the-art methods.
Moreover, the performance of the proposed technique is
displayed and compared with other recognition algorithms.
Finally, the robustness and timeliness of the algorithm are
analysed. The specific simulation environment is built on
a machine with CPU i7-9750H running at 2600 MHz,
6GB GPU (NVIDIA GeForce RTX 2060), 16GB RAM
(DDR4@2666 MHZ), and Windows 10 (64bit). All gen-
erated data and recognition algorithms were simulated in
MATLAB R2019b software, including pre-processing, and
CNN-KCRDP optimization.

A. DATASET AND PARAMETERS SETTING
The simulations were carried out using the twelve radar signal
modulation types given in section 3. Table 2 lists all parame-
ters of the radar signal. U (·) is used to denote the uniform
random distribution of data in the interval. {·} indicates a
random parameter set. The fs, Lc, fc, Ncc, B, N , fmin, M , ρ,
and Ng represent the sampling frequency, length of barker
codes, carrier frequency, number of carrier cycles in a single-
phase symbol, bandwidth, number of samples, fundamental
frequency, number of frequency steps, number of subcodes
in a code, and number of segments, respectively. The phase
states of the polytime codes are set to 2. The dataset was
generated under an SNR that varied from −10dB to 8dB

TABLE 2. Radar signal parameters with different modulations.

TABLE 3. Recognition performance of different kernel functions
under −10dB environment.

with a step of 2dB. Each type of signal produced 500 sets
of data at each SNR, of which 80% was used for training, and
20% was used for testing.

The Adam algorithm with a mini-batch size of 128 was
used for fine-tuning the CNN. The maximum iteration and
the initial learning rate were 50 and 0.001, respectively.
The decay factor of first-order and second-order moment
estimation was 0.9, 0.999, and the perturbation term was
1e−8. The Gaussian kernel function and regular parameter (λ)
of 0.01 were used to optimize KCRDP, and the termination
condition was that the maximum iterations reached 50 or the
iteration error was less than 0.001. In the MSGD algorithm,
momentum factors (αQ and αA) were 0.5, and γ0 = 1, η0 =
0.001, and B = 400. The number of atoms was similar in
each sub-dictionary, namely, K0 = 100. The dimensionality
reduction parameter m was 300.

Table 3 shows the recognition performance of different
kernel functions under the−10dB environment, of which the
Gaussian kernel function had better performance, and it was
selected for subsequent processing.

We verify the influences of dictionary atoms and feature
dimensionality on performance with numerous Monte Carlo
simulations under the condition of SNR = −10dB. The
results are shown in Fig.6. Comparative analysis indicates
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FIGURE 6. Influences of dictionary atoms and feature dimensionality
at SNR of −10dB. (a) Influences on RSR. (b) Influences on testing time.

that the RSR and computational complexity are directly pro-
portional to the dictionary atoms and feature dimensionality.
The recognition performance is better when the dimension-
ality is higher than 300, and the number of atoms is higher
than 100. Furthermore, the computational complexity mainly
depends on the number of parameters included in Q and A,
which is positively correlated with the parameters m and K0.
Based on a comprehensive consideration of recognition per-
formance and computational complexity, the relevant param-
eters are set to m = 300 and K0 = 100.

B. FEATURE STABILITY ANALYSIS
Feature stability directly affects recognition performance.
The recognition process of CNN-KCRDP includes four fea-
tures: the CWD feature, pooling layer output features of
pre-trained AlexNet, pooling layer output features of fine-
tuned AlexNet, and low-dimensionality discriminative fea-
tures of CNN-KCRDP. The 4800 samples of twelve radar
signals are chosen under the condition of SNR = 8dB.
Then, the extracted feature vector is reduced by the
t-distributed stochastic neighbor embedding (TSNE) algo-
rithm [29]. The result is shown in Fig.7. In the 2-D repre-
sentation space of TSNE, the between-class difference of the
original CWD feature and the pre-trained AlexNet feature is

TABLE 4. Recognition results of different conventional algorithms and
CNN-based classification algorithms.

small, and there is a large degree of confusion. Moreover, the
9216-dimensionality fine-tuned AlexNet feature has a high
degree of between-class discrimination and within-class
aggregation. In addition, the 300-dimensionality discrimina-
tive feature of CNN-KCRDP maintains a considerable res-
olution equivalent to fine-tuned AlexNet feature, which is
conducive to efficient subsequent identification, and indi-
rectly demonstrates the feasibility of the joint learning model.

The performance of different deep network architectures,
including AlexNet and CNN-KCRDP, is shown in Fig.8.
Pre-trained AlexNet has inferior feature stability and gener-
alization ability. Fine-tuning makes AlexNet more suitable
for the radar signal dataset, which is conducive to forming
a more stable representation. Moreover, the CNN-KCRDP
performs better than fine-tuned AlexNet, especially in low
SNR environments of −10-0dB.

C. DICTIONARY CLASSIFICATION COMPARISON
KCRDP is a dimensionality reduction and dictionary learning
(DRDL) classifier, which projects the 9216-dimensionality
output feature of CNN to a low-dimensionality discrimi-
nant space and performs efficient classification. To compare
the advantages of KCRDP, it is compared with the clas-
sic DR algorithms [57], such as random projection (RP),
principal component analysis (PCA), and kernel principal
component analysis (KPCA). Additionally, it is compared
with the traditional classifiers such as Gaussian support vec-
tor machines (SVM), k-nearest neighbor (KNN) [8], kernel
collaborative representation classification (KCRC) [33], and
LC-KSVD [14], [34]. The cross-validation method is used to
select the optimal value of k of KNN. In addition, the perfor-
mance of KCRDP is compared with several closely related
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FIGURE 7. The 2-D feature map at SNR of 8dB. (a) CWD feature. (b) Pre-trained AlexNet feature. (c) Fine-tuned AlexNet feature.
(d) Low-dimensionality discriminative feature of CNN-KCRDP.

JDDRDL [45], DSRC [47], and KDL-DA [51], which are
dimensionality reduction and dictionary learning (DRDL)
classification algorithms.

The overall average RSR under different classification
algorithms are shown in Table 4, where CNN refers to the
fine-tuned AlexNet. The recognition results of conventional
algorithms are approximately 82.63% to 84.75%, of which
the KCRDP is optimal. Moreover, they are all inferior to
CNN-based methods, which achieved a higher RSR by more
than 95.02%. CNN-based classification algorithms have bet-
ter performance because the deep features extracted by the
fine-tuned network are more stable than the CWD feature.
In addition, the low-dimensionality features learned by the
discriminative projection of DRDL algorithms are more tar-
geted, and it is easier to form a stable representation than DR
algorithms.

The computational complexity of these classification algo-
rithms under a single SNR environment is shown in Table 5.
Among them,machine learningmethods have high timeliness
of training; KCRC and LC-KSVD have better timeliness of
training than DRDL methods, but the timeliness of testing

TABLE 5. The computational complexity of different classification
algorithms under single SNR.

is inferior to the JDDRDL and KCRDP methods, which
improves the timeliness through discriminative projection
and l2 collaborative representation. It is worth noting that
kernel mapping makes KCRDP more time-consuming than
JDDRDL; l1 regular constraint significantly reduces the time-
liness of DSRC and KDL-DA. The results in Tables 4 and 5
demonstrate the superior of the KCRDP model in RSR and
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FIGURE 8. Performance comparison of different deep network
architectures.

FIGURE 9. The comparison of different radar signal recognition methods.

test timeliness, but the optimization of KCRDP requires cer-
tain computing resources.

D. RECOGNITION METHOD COMPARISON
To further verify the effectiveness of the CNN-KCRDP
method, the following recognition methods which have simi-
lar signal type or similar recognition architecture to this paper
are selected for comparison: (1) the method of Ming [21];
(2) the Inception-v3-SVM method [29]; (3) the combination
method of CWD feature and Ming’s classification network
which is denoted as CWD-Ming. The recognition results are
shown in Fig.9 and Fig.10. As shown in Fig.9, the recognition
performance under different recognition algorithms improves
as the SNR increases. In addition, CNN-KCRDP has the
best recognition performance, and the overall average RSR
reaches 87.55% at −10dB. Moreover, the performance of
the Inception-v3-SVM and CWD-Ming methods is relatively
poor, it is difficult to identify multiple types of signals with
high similarity effectively, and there is still a significant
degree of confusion at high SNR.

The results show that CNN-KCRDP improves feature sta-
bility through a deep mapping mechanism, which can achieve
optimal performance even without feature enhancement.

TABLE 6. Confusion matrix at SNR of −6dB.

Its ability to recognize multiple types of high-similarity sig-
nals is significantly better than other methods, especially
in the case of low SNR. Moreover, the recognition perfor-
mance of Inception-v3-SVM is inferior to the other methods,
because it is difficult to fine-tune and optimize the transfer
learning network of Inception-v3 with small samples. Ming’s
classification network with only seven layers has difficulty
forming an in-depth representation of features. The recog-
nition result under the CWD feature is slightly better than
Inception-v3-SVM. Furthermore, Ming’s original paper used
a feature enhancement pre-processing algorithm to enhance
the time-frequency features, thereby reducing the capacity
requirements of the classification network and performing
better than the CWD-Ming.

Recognition performance of various signals with
CNN-KCRDP under−6dB was selected for comparison. For
convenience, BPSK, LFM, Costas, and Frank are abbreviated
as S1∼ S4 in order. The confusionmatrix is shown in Table 6.
Specifically, Frank and P3, P1 and P4 have higher similar-
ity and a relatively large degree of confusion. In addition,
the overall average RSR reaches 97.58%.

E. ROBUSTNESS AND TIMELINESS ANALYSIS
To further explore the system robustness and timeliness, sam-
ples under SNR of−10dB,−2dB, and 6dB were selected for
testing. There were 100 samples and 400 samples for each
class under each SNR in the testing sets and training sets,
respectively. The experiment was repeated fifty times, and
100-400 (with an interval of 100) samples were selected for
testing in each training.

Fig.11 gives the relationship between the training size and
the RSR under different SNR environments. As the training
size increased, the overall average RSR gradually increased.
The RSR of −10dB was approximately 77.33% when the
training size was only 100, and it increased to 86.58% when
the training size was 400. The RSR of −2dB and 6dB was
always higher than 98.5% and gradually stabilized as the
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FIGURE 10. The comparison of signals with different modulations under different recognition methods.

FIGURE 11. Recognition success rate under different training size at SNR
of −10dB, −2dB, and 6dB.

training size increased. It shows strong adaptability to the
small samples and low-SNR environments.

The recognition errors of AlexNet and CNN-KCRDP are
shown in Fig.12. The recognition error decreased with the
increase in the training size, and the difference between the
AlexNet and the CNN-KCRDP gradually decreased with the
increase in the training size, from 0.023 at 100 samples to
0.011 at 400 samples, which shows the advantages of this
method over the AlexNet network on small samples.

The computational complexity test results under the same
conditions are shown in Table 7. Both training and testing

FIGURE 12. Recognition error of AlexNet and CNN-KCRDP under different
training size.

time are average running times under a single SNR. The train-
ing time of Inception-v3-SVM is mainly used to optimize
the SVM classifier, which takes the shortest time. However,
its deep features extraction process is very time-consuming
because of the great depth of the Inception-v3 network.
Ming’s shallow network optimization takes less time, but
the time consumption of the feature enhancement process-
ing algorithm is considerable. The proposed CNN-KCRDP
involves various optimizations and takes a long time, but the
timeliness of the test is optimal because its convolutional
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TABLE 7. Computational complexity comparison under single SNR.

layers for feature extraction and KCRDP layers for classi-
fication have high timeliness. In addition, we use KCRDP
layers instead of AlexNet’s FC layers, which reduce network
parameters and have better test timeliness than AlexNet.
In general, supervised learning is completed through offline
learning. Time consumption during training can be neglected
temporarily. System timeliness mainly depends on testing
time. As shown by the overall comparison results of RSR
and computational complexity, the proposed method has
certain advantages in recognition accuracy and recognition
efficiency.

Combining with the simulation results, it is concluded that
for the recognition process shown in Fig.2, CNN mainly
affects the upper limit of recognition performance, and its
deep mapping greatly promotes the improvement of RSR.
Compared with dictionary learning methods, CNN-KCRDP
architecture has multi-level representation capabilities and
better recognition performance. Compared with deep net-
works, CNN-KCRDP is more suitable for small samples and
more time-saving for classification, and it more easily forms
low-dimensionality representations. Therefore, the combina-
tion of deep learning networks and dictionary classification
can effectively improve feature stability, and further improve
timeliness and classification performance.

In practical applications, the application of deep networks
is limited by conditions such as sample capacity and com-
puting resources. Deep networks reduce the need for feature
enhancement processing and have strong recognition per-
formance with the support of large samples and computing
resources. The advantage of small networks (such as Ming’s
classification network) is high timeliness, but they are not
well suited for classification tasks in low-SNR environments
and multiple signal types due to insufficient depth represen-
tation capabilities. In addition, small networks have a greater
need for feature enhancement processing. For applications
with relatively low complexity such as radar signal identifi-
cation, medium-sized networks shown in this paper can be
reasonably selected for efficient classification and identifica-
tion, and it has performance advantages when the sample set
is relatively small. For more complicated applications, we can
choose a deeper network to replace the convolutional layers
of CNN-KCRDP.

VI. CONCLUSION
In this paper, we propose a new multi-level representation-
based deep joint learning architecture for modulation

recognition, which combines the advantages of deep learn-
ing, kernel collaborative representation, and discriminative
projection. The recognition system is built on the CWD fea-
ture without feature enhancement processing. Deep features
are obtained through the fine-tuned AlexNet’s convolutional
layers, which enhances the feature nonlinearity and stabil-
ity. Furthermore, the discriminative projection and classifica-
tion of low-dimensionality kernel space are realized through
KCRDP, which improves the classification ability of small
samples and the timeliness. Moreover, the feature stability,
dictionary classification performance and deep joint learning
technology performance are verified under the radar signal
dataset. The experimental results under twelve different mod-
ulation signals show stronger competitive performance in
comparison with the AlexNet network and other recognition
algorithms, in terms of timeliness and adaptability to small
samples. The overall average RSR aiming at twelve radar
signal modulation types reached 97.58% at SNR of −6dB.
In addition, the deep joint learning framework can also be
applied to more recognition tasks or dimensionality reduction
learning tasks.
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